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DCE-MRI, DW-MRI, and MRS in Cancer: Challenges and
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aging in the Clinic
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Abstract: Multi-parametric magnetic resonance imaging (mpMRI) offers a

unique insight into tumor biology by combining functional MRI techniques that

inform on cellularity (diffusion-weighted MRI), vascular properties (dynamic

contrast-enhanced MRI), and metabolites (magnetic resonance spectroscopy)

and has scope to provide valuable information for prognostication and response

assessment. Challenges in the application of mpMRI in the clinic include the

technical considerations in acquiring good quality functional MRI data, devel-

opment of robust techniques for analysis, and clinical interpretation of the

results. This article summarizes the technical challenges in acquisition and

analysis of multi-parametric MRI data before reviewing the key applications of

multi-parametric MRI in clinical research and practice.
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M agnetic resonance imaging (MRI) has markedly increased in
demand as a diagnostic modality over the last decade because it

has unparalleled potential to generate tissue contrast on the basis of
differences in tissue properties. Information on tissue structure and
function can be obtained from measurements of intrinsic differences
in tissue relaxation times of hydrogen nuclei (protons) following radio-
frequency (RF) excitation, as well as evaluation of fat content, water
diffusion, vascularity, elasticity, and characterization of MR-active
nuclei by their molecular environment (chemical bonds). In addition,
injected extrinsic paramagnetic agents such as gadolinium chelates tend
to accumulate in tumors, highlighting their location on T1-weighted
images. Following the uptake of these agents dynamically probes the
tissue vascular state by permitting the generation of semi-quantitative
and quantitative parameters relating to tissue perfusion and permeability.
A number of contrast-generating techniques can therefore be employed
in the same examination to characterize a tissue of interest.

Cancer tissues, with few exceptions, are notably more vascular
than their surrounding normal tissues. Because of intense cellular
proliferative activity, they also tend to be more densely cellular. This
makes dynamic contrast-enhanced MRI (DCE-MRI) combined with

diffusion-weighted MRI (DW-MRI) a useful combination of
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techniques to document these respective features. Certain tumors
are also recognizable through a metabolite fingerprint, for example,
loss of N-acetyl aspartate (NAA) in gliomas or loss of citrate in
prostate cancer, together with an elevation in total choline, which is
universal to tumors (Fig. 1). When DCE-MRI, DW-MRI, and
magnetic resonance spectroscopy (MRS) are implemented together
with morphological T1-weighted (T1-w) and T2-weighted (T2-w)
imaging, the combination is now commonly referred to as multi-
parametric MRI (mpMRI). The purpose of this article is to describe
the challenges in data acquisition and analysis of qualitative and
quantitative data sets, discuss issues in data interpretation, and
examine the role of mpMRI as a decision-making tool in the
clinical setting.

TECHNICAL CHALLENGES IN DATA ACQUISITION
The main aims in data acquisition are to acquire good quality data

[high signal-to-noise ratio (SNR), high spatial resolution, no signal
artifacts] in an acceptable total scan time. SNR increases at least in
proportion to magnetic field strength.1 SNR is also improved with close-
fitting external phased array receiver coils, supplemented with internal
receiver coils where appropriate, such as for prostate2,3 and cervix.4

Recently, the move of the analog-to-digital convertors from the equip-
ment room to the magnet housing and even to within the RF coil has
greatly improved SNR by reducing noise in the receiver pathway (Philips
Medical Systems quote a 40% improvement for their coils, http://
www.philips.ng/healthcare/product/HC781342/ingenia-30t-mr-system).
Optimum strategies for addition of data from the phased array elements
may differ between MRI applications5 and MRS.6 Shimming of the static
magnetic field gives better resolved peaks in MRS scans as well as
reducing the susceptibility distortions characteristic of echo-planar imag-
ing (EPI) acquisitions. Such artifacts are further reduced using parallel
acquisition strategies.7 At higher magnetic fields, multi-transmit systems
permit shimming of the B1 field that greatly improves uniformity of
detection, and can reduce specific absorption rate (SAR).8

Combining data from different functional MRI techniques is
simplest if they have been acquired using the same geometry (slice
thickness etc.). However, MRS in particular has a lower SNR than
other functional methods and therefore compromises have to be
made depending on the specific system and questions being
addressed. Consideration also needs to be given to the order of data
acquisition: contrast-enhanced images acquired before MRS aid
placement of single-voxel or single-slice 2D-magnetic resonance
spectroscopic imaging (MRSI, Fig. 1C) but risk the effects of the
contrast agent on some metabolite signals.9,10 Use of the same
scanner and imaging protocol is recommended for follow-up studies,
particularly when deriving quantitative results.

DW-MRI data are usually acquired using EPI, which allows
rapid acquisition, although other DW-MRI techniques are possible.
EPI is particularly vulnerable to artifacts and careful optimization is

11
required. Furthermore, because low SNR affects image quality
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FIGURE 1. mpMRI examination of a patient with grade IV glioblastoma multiforme of the right parietal lobe (marked by arrows in A and B), acquired

on a Philips 3T Achieva TX system. A, Axial diffusion-weighted image (b¼1000 s mm�2). B, Axial postcontrast T1-w image. C, TruFISP image of same

axial slice, with grid showing locations of voxels used in MRSI. D, 1H spectra obtained from the voxels shown in (C), showing peaks due to choline

(Cho), creatine (Cr), and N-acetyl aspartate (NAA). Data acquired with TR¼1500 ms and TE¼144 ms. Note the relatively high NAA in normal brain,
compared with reduced NAA and elevated choline in the tumor region, and that the voxels are metabolically abnormal in regions in which there is no

significant uptake of contrast agent (B).

Winfield et al Topics in Magnetic Resonance Imaging � Volume 25, Number 5, October 2016
and quantitation, a reduced spatial resolution (eg, 2.5 mm-by-
2.5 mm pixels with 5 mm slice thickness) and as short an echo time
(TE) as possible are used to maximize SNR. Other strategies to
increase SNR include reducing the highest b-value acquired, apply-
ing parallel imaging, using monopolar diffusion-encoding gra-
dients, and using diffusion-encoding schemes that apply
gradients along >1 direction simultaneously (eg, 3-scan trace,
gradient overplus).12

Geometric distortions caused by inhomogeneities in the static
B0 field may be more problematic at 3 T than 1.5 T but can be reduced
by using advanced shimming methods and increasing the readout
bandwidth. Geometric distortion due to time-varying B0 field inho-
mogeneities caused by eddy currents13 can be minimized by reducing
the maximum b-value acquired; using a sequence with eddy-current
compensation, such as a double spin-echo (DSE)14; increasing the
readout bandwidth; and using parallel imaging.11,15 Ghosting, due to
phase-correction errors, can be reduced by optimizing the echo

spacing through adjusting the receiver bandwidth and TE. Good
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suppression of the fat signal is required, as the chemical-shift artifact
from unsuppressed fat may obscure areas of interest and bright fat
may affect image scaling. To do this, inversion-recovery (IR) or
spectral methods may be used (the preferred method may be appli-
cation- and scanner-dependent); a combination of fat suppression
techniques may be required at 3 T.16

In quantifying the apparent diffusion coefficient (ADC, Figs. 2
and 3), nonlinearity of diffusion-encoding gradients may lead to bias
in ADC estimates at the edges of large fields-of-view11,17 making
sequential acquisition of multiple stations, with each station acquired
at the isocenter, essential for larger volumes. The alignment of
stations for whole-body DW-MRI may be improved by omitting
shimming on each station and using the same center frequency at all
stations.12 The optimal choice of b-values depends on SNR and the
ADC of the tumor/tissue of interest.18 A minimum of 2 b-values is
required for ADC estimation, but a larger number of appropriately
chosen b-values is required for investigation of other models, which

19
increases the acquisition time.
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FIGURE 3. A 63-year-old man with tumor (Gleason grade, 4 þ 3);
prostate-specific antigen, 13.1 ng/mL in the right lobe of peripheral

zone and central gland with no lymph node malignancy. A, Photo-

micrograph of prostatectomy specimen shows tumor outline. (H and
E); B, Photomicrograph shows fresh slice of macroscopic specimen

corresponding to A with tumor outline warped onto it. C, T2-weighted

MR image shows tumor outline warped further to fit MRI slice.

D, T2-weighted MR image shows outlines of whole prostate (blue)
and central gland (red) with histologically defined tumor region (yel-

low) superimposed. E–I, Apparent diffusion coefficient map (E), MR

spectroscopic voxels (F), and vascular parametric maps of initial area

under the gadolinium plasma concentration-time curve (G), forward
rate constant Ktrans (H), and return rate constant kep (I). Reprinted with

permission from the American Journal of Roentgenology.58

FIGURE 2. Axial images from a patient with rectal adenocarcinoma. A,

ADC map (color) superimposed on b¼0 s/mm2 image. B, Ktrans map
(color) superimposed on pre-contrast T1-w image.
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Standard DW-MRI sequences average signal over respiratory
cycles, with 3 to 6 signal averages being common. Breath-holding
and respiratory triggering may produce sharper images, but respir-
atory triggering, using bellows or a navigator, has failed to show
advantages over free-breathing in estimation of ADCs in abdominal
organs.20,21 Cardiac triggering is not often used but may have value in
DW-MRI in the upper abdomen.22 Peristaltic motion can be reduced
by administration of an anti-peristaltic agent before imaging.

DCE-MRI is usually acquired using a 3D gradient echo
sequence, with T1-weighted images (Fig. 2B). Proton density-
weighted images acquired before, or in some cases after, contrast
agent administration are employed in addition if quantitative analysis
is required because pharmacokinetic modeling requires robust esti-
mation of T1 relaxation times. A reproducible contrast-agent injec-
tion rate (usually 2 to 4 mL/s)23 is used and postcontrast images are
acquired every 5 to 10 seconds in order to provide sufficient data
support to model the gadolinium concentration-time curve. Postcon-
trast imaging for at least 5 minutes after injection is recom-
mended.23,24

Quantitative analysis requires estimation of the arterial input
function (AIF). Patient-specific AIFs can be estimated from the main
DCE-MRI acquisition or from a pre-bolus acquisition. The former
requires the presence of a suitable artery within the imaging volume,
while the latter uses administration of a pre-bolus followed by
dynamic imaging before and separate from the main DCE-MRI
acquisition. Both techniques may be adversely influenced by
partial volume effects, signal nonlinearity, B1 inhomogeneity, and
inadequate temporal resolution.25,26

In anatomical regions that are affected by respiratory motion,
for example, abdominal tumors, DCE-MRI data may be acquired
using sequential breath-holds with breathing intervals between
acquisitions.

MRS measurements provide information regarding the concen-
tration (and sometimes other properties such as diffusion) of rela-
tively abundant low molecular weight metabolites in a target volume
(or volumes) of tissue (Figs. 1 and 3). MRS data are usually acquired
from single voxels, single slices, or 3D volumes. For mpMRI, full 3D
acquisition is usually most appropriate. For coupled spin systems, it
is essential to select the acquisition echo time to achieve the optimal
in-phase signals (eg, for lactate27 and citrate in prostate28). The
repetition time should be chosen with reference to expected metab-
olite T1 to achieve optimal SNR per unit time.29

Similar principles apply to acquiring signals from other nuclei
(31P, 13C, etc.), but require a coil combination that also permits
acquisition at the 1H frequency. Although these coils often incorp-
orate surface coil transmitters, relatively uniform spin excitation can
still be achieved with sequences including adiabatic RF pulses to

30,31
create uniform spin excitation.

� 2016 Wolters Kluwer Health, Inc. All rights reserved.
Historically, MR spectroscopic imaging studies were con-
strained by the time required to acquire data from all the phase-
encoding steps. When the intrinsic SNR is high, faster acquisitions

using parallel acquisition and echo-planar methods are possible so
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that whole brain coverage in approximately 20 minutes with 5 to
10 mm voxels is achieved.32

Most MRS measurements require care to eliminate unwanted
signals. Several strategies exist for suppressing unwanted water and
lipid signals33–37 or to excite metabolites of interest without exciting
these unwanted signals.38 Some residual water signal, however, can
be useful for subsequent frequency and phase correction of the
data.39,40 Unwanted signals from outside the required volume can
be reduced using very selective saturation slices41 or high-bandwidth
excitation pulses in a sequence such as LASER.42–45 The latter
methods also reduce the effects of the chemical shift displacement
artifact (voxels of different metabolites being shifted relative to each
other, and attenuation of signals from coupled spin systems46).

MRS data may often be compromised by tissue motion. A range
of methods exist, including simple breath-holding, respiratory and
cardiac triggering, and dynamic updating of scan parameters to
minimize, follow, and correct for motion.40,47–52

TECHNICAL CHALLENGES IN DATA ANALYSIS
Analysis of DCE-MRI, DW-MRI, and MRS data may be

qualitative or quantitative, or in some cases ‘‘semi-quantitative.’’
Data analysis may be further categorized into online and offline
methods. The former uses tools provided by the scanner manufac-
turers, either on the scanner or on a separate workstation or PACS
system, for example, visual assessment of ADC maps, contrast agent
uptake curves, and spectra. Offline methods use processing steps
outside the clinical workflow and involve transfer of the data to a
separate system.

Qualitative or semi-quantitative analyses, for example, those
recommended by the Breast/Prostate Imaging and Reporting
Systems (BI-RADS/PI-RADS),53,54 may be carried out online. They
are quick, have a simplified workflow, and use validated systems and
processes. Some quantitative analyses are also possible online [eg,
estimation of ADC summary statistics from a region of interest
(ROI)]. Offline analysis using in-house or third-party software (eg,
quantitative analysis using pharmacokinetic modeling of DCE-MRI
data55) may be time-consuming and may not be easily incorporated
into the clinical workflow.

Most reported studies of quantitative mpMRI analyze each
imaging method separately (Fig. 2), for example, estimating
the median ADC from DW-MRI (Fig. 2A) and median Ktrans from
DCE-MRI (Fig. 2B), in some cases copying the same ROIs between
DW-MRI and DCE-MRI, with assessment of the summary statistics
separately or in combination.56,57 Thus, multi-parametric analysis on
a per-pixel basis requires registration of images from each imaging
sequence, including deformations if distortion has occurred and
resampling if resolutions differ (Fig. 3). This is a challenging task,
which is not routinely undertaken.58 More commonly, simple images
showing parametric maps overlaid on anatomical images are used to
aid data interpretation in a clinical setting (Figs. 2A, B).

DW-MRI
On qualitative analysis, most solid tumors exhibit restricted

diffusion with retention of signal intensity with increasing b-value
compared with neighboring tissues, therefore appearing hyperintense
on high b-value images and hypointense on ADC maps (Fig. 3E).59,60

To distinguish structures with long T2 relaxation times, for example,
cystic or necrotic regions from solid tumor, it is essential to examine the
ADC map in conjunction with high b-value images and T2-w images.
Regions with long T2 may appear bright on high b-value images, so-
called ‘‘T2 shine-through’’ effect, but can be distinguished by the
absence of restricted diffusion on ADC maps. Maximum intensity
projections (MIPs) of high b-value images using an inverted grey scale

can be produced on the scanner console and are used particularly in
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whole-body DW-MRI for evaluation of diffuse61 and focal skeletal
disease.62,63 Segmentation of the whole tumor burden has been shown
to have value in evaluation of bone disease.61,64,65

The simplest level of quantitative analysis can be carried out
using ROIs drawn using manufacturers’ tools or PACS systems.
Offline analysis allows derivation of ADC summary statistics from
volumes of interest (VOIs). A minimum lesion size of 1 to 2 cm
should be imposed in selecting lesions for analysis to avoid partial
volume effects. Good SNR is required to avoid noise bias in ADC
estimates. Fitting alternative models to DW-MRI data, for example,
bi-exponential, stretched exponential, or kurtosis models, requires
offline processing and may provide additional information in some
cases. Application of alternative models requires appropriately
chosen b-values; it is also essential to avoid overfitting the data
and consider the effects of noise. Although estimates of ADC
and some other fitted parameters have shown good repeatability,
estimates of f and D� from the bi-exponential model generally exhibit
poorer repeatability.66,67

DCE-MRI
Visual assessment of pre- and postcontrast images, or of curve

shapes, can be carried out on the scanner console or separate
workstation. Semi-quantitative analysis, for example, estimation
of properties of the relative enhancement curves such as time-to-
peak enhancement, maximum slope and peak enhancement, or
characterization of curve shapes (persistent increase, plateau, or
washout) may also be carried out on the same systems. These
assessments are relatively simple to conduct and are clinically
relevant, leading to their inclusion in BI-RADS and PI-RADS
criteria.53,54 It is important to note, however, that semi-quantitative
methods may be influenced by properties of the scanner or the
injection procedure and may thus be difficult to make comparisons
between patients or scanners.23,24

Quantitative analysis using pharmacokinetic modeling may
provide valuable information related to perfusion and permeability,
but the complexity of the offline analysis required and lack of
consensus on methods and software has so far limited applications
mainly to clinical trials in expert centers. A number of models
are available68 and consensus recommendations list the transfer
constant (Ktrans, Figs. 2B, 3H) and initial area under the gadolinium
concentration time curve (IAUGC, Fig. 3G) as recommended
primary end-points.24 Reliable estimation of the AIF from
individual patient-based measurements is problematic and may
contribute to the observed poor repeatability of fitted parameters.
A population-based AIF improves repeatability and removes the
requirement for an estimate of the AIF as part of the DCE-MRI
acquisition.25,26

MRS
Magnetic resonance spectra can be evaluated in a variety of

ways. Sometimes visual inspection is sufficient. Some clinical
questions can be adequately addressed by analyzing quantitative
data from a single voxel representing the corresponding tissue.
However, for probing lesion heterogeneity, grids of MRSI spectra
need to be analyzed (Figs. 1D, 3F). Using high-resolution spectral
grids [eg, a matrix of 100 (read) x 50 (phase) x 18 (slice) spatial
samples for a field-of-view of 280 mm x 280 mm x 180 mm]69 with
peak fitting and smoothing, images of individual metabolites can
be obtained.

Quantitative methods of MRS analysis include measuring peak
area ratios, such as (choline þ creatine þ polyamines)/citrate in 1H
MR spectra of the prostate,70 or total phosphomonoester (PME)/ATP
in 31P MR spectra of tumors.71 Lesions are usually characterized by

metabolite ratios deviating from normal. However, such ratios
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depend upon many factors, in particular sequence timing, which
makes it hard to compare data between institutions. By applying
suitable correction factors, it is possible to produce estimates of
metabolite concentration,72–74 although this usually relies on
assumptions that are hard to verify (such as correct values for the
relaxation time constants T1 and T2). Ideally, experimental design
should aim to minimize dependence on these factors.

Obtaining peak areas from spectral data involves a number of
steps, including phase correction (sometimes individually for each
transient to overcome motion effects).39 Baseline correction has to
make assumptions about macromolecules present.75 Spectral analysis
tools on clinical scanners are limited and specialist spectral processing
and analysis software, such as jMRUI76,77 and LCmodel,78,79 or other
in-house software are often employed. More sophisticated tools
provide estimates of uncertainty in the fit (usually Cramer-Rao Lower
Bounds, although these need to be treated with some caution80 because
they assume that the model is a good representation of the data, which
is not always the case, and some method for quality control is
required81). The results of spectral analysis generally cannot be

imported to PACS systems and require separate viewing.
CHALLENGES IN DATA INTERPRETATION

Qualitative Image Evaluation
One of the greatest challenges of qualitative image interpret-

ation arises from a need to combine a range of qualitative features
from multiple image types and interpret them consistently. Driven by
this need for consistency, structured qualitative (or semi-quantitative)
scoring systems have been proposed. The most widely adopted of
these are the BI-RADS and PI-RADS systems that use qualitative and
semi-quantitative assessment of mpMRI to characterize lesions.53,54

These scoring systems express the likelihood of cancer based on
mpMRI features where no parameter independently has sufficiently
significant positive or negative predictive value for malignancy.
On the basis of scores, patients are stratified for appropriate
management; those at a higher risk of malignancy are directed
toward tissue sampling.82,83

These semi-quantitative reporting systems express mpMRI in a
consistent language and reduce variability between readers. Inter-
observer variability is lower and clarity of communication among
physicians improved for BI-RADS compared with unstructured
reporting, with similar results seen for similar systems in other
subspecialties.84–86 Structured qualitative mpMRI reporting also
increases efficiency of data mining and correlation with histopathol-
ogy, enabling performance feedback for radiologists and systematic
reader training. The importance of training is demonstrated by
stronger reporting agreement between experienced readers than
between less experienced readers, for whom rates of identifying
and sampling malignant lesions (ie, accuracy) improve as their
training progresses.87,88 Despite the advantages of reducing errors
with structured reporting, many radiologists are reluctant to adopt
this practice outside specific clinical settings. There is a perceived
work-flow disruption associated with ‘‘pro-forma’’ reporting as well
as the limit of the available lexicon. Large randomized trials dem-
onstrating outcome benefit for structured reporting are lacking and
this area requires further investigation.84,89

Repeatability and Reproducibility for Quantitative
Studies

For quantitative biomarker evaluation, the Radiological Society
of North America (RSNA) Quantitative Imaging Biomarkers
Alliance (QIBA) has recommended that the uncertainty in a measure-

ment must be evaluated before use in therapy response evaluation,
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prognostication, or lesion characterization.90 At a minimum, this
includes analysis of marker precision and bias estimation, along with
measurement linearity91 by comparison with an accepted reference
or standard measurement. For many MRI measurements, in vivo
physiological reference is not available and bias/linearity measure-
ments are extrapolated from phantom studies.90–92 It is worth noting
that qualitative scoring systems (eg, BI-RADS/PI-RADS) yield
categorical values, for which absolute differences or ratios between
2 measurements are not meaningful and reference standards do not
apply.90

Repeatability is defined as the closeness of agreement between
measured values obtained by replicate measurements performed on
the same subject, on the same scanner, with identical imaging
protocols. In clinical MRI studies, repeatability is usually estimated
through test-retest measurements, for example, 2 MRI examinations
carried out with a short interval of separation.90 Reproducibility, on
the other hand, is the closeness of agreement between measured
values obtained by replicate measurements under different con-
ditions, which may include different scanners or operators.90 Differ-
ences between scanners (or institutions), imaging readers, imaging
protocols, or postprocessing methods contribute to imperfect repro-
ducibility of quantitative results.91 It is usually possible to perform
imaging for each patient on the same scanner and for analysis to be
carried out by the same reader, especially within single-center studies
and clinical trials. Factors affecting reproducibility will, however,
include intra- (and inter-) observer variability, arising from factors
such as lesion segmentation,90,93 and may also include differences
between scanners or imaging protocols11,94,95 and analysis soft-
ware96 in multicenter studies.

It is unlikely that quantitative analysis will obviate the need for
qualitative image interpretation, especially when delineating tumor
from surrounding anatomical structures for the purpose of surgical
planning. It is, however, likely that improved probing of biophysical
processes using quantitative images of tumors will become increas-
ingly valuable in clinical trials and for directing therapy in clinic,
especially with increased availability of targeted therapeutic agents.97

VALUE OF mpMRI IN CLINICAL DECISION-MAKING
To be of use in clinical decision-making, biomarker(s) must

improve disease detection, aid staging, or provide prognostic infor-
mation or robust response assessment and follow-up. Disease detec-
tion and staging are usually done by qualitative, subjective
assessment of images, whereas prognostic or response assessment
biomarkers require quantitative evaluation. The evidence for the use
of DW-MRI alone in cancer diagnosis is overwhelming with nearly
1000 publications and numerous meta-analyses in the last decade
advocating its use in a variety of tumor types.98–101 Diagnostic
accuracies vary by disease site, but in most meta-analyses, sensitivity
and specificity were greater than 80%, except for prostate cancer,
wherein pooled sensitivity for DW-MRI in a meta-analysis of 21
studies was 62%102 and in breast cancer wherein specificity at best is
around 71%.103 In both these tumor types, therefore, there has been a
move to use a combination of parameters to improve diagnostic
performance and an increasing body of data are accruing indicating
the superiority of a multi- over a single parameter approach (Fig. 3).
In the brain, wherein magnetic field homogeneity is good and SNR
high, quantitation is more robust, so mpMRI has been exploited more
fully as a prognostic biomarker as well as for assessment of treatment
response (Fig. 1).

Prostate Cancer
In detecting prostatic cancer, mpMRI evaluated using a

PI-RADS system has proven of benefit in peripheral zone (PZ)
104
but not transitional zone (TZ) lesions. Where no distinction is
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made between PZ and TZ, DW-MRI has the highest sensitivity for
tumor localization (31.1% for T2-w vs 27.4% for DCE-MRI and
44.5% for DW-MRI) but combining all 3 techniques improved
sensitivity to 58.8%.105 The performance of mpMRI also depends
on the grade of cancer. mpMRI outperforms clinical risk calculators
for predicting high-grade prostate cancer (AUC 0.769 vs 0.676,
respectively)106 and has proven to be of benefit when added to
clinical criteria for detecting these lesions.107 Not surprisingly,
therefore, the diagnostic performance of mpMRI in a cohort of
100 patients proved better for Gleason grade >7 than <7 tumors
and tumors >1 cm3 than those 0.5 to 1.0 cm3.108 Recognition of an
abnormality on mpMRI allows targeted biopsy of the suspicious area
either through cognitive fusion of the MR images with the transrectal
ultrasound (TRUS) images or by registration and overlay of the MR
data on the real-time ultrasound, which requires specialist software.
There is now an increasing body of evidence indicating that targeted
biopsies increase the sensitivity of prostate cancer diagnosis109

compared with systematic biopsies alone. Interestingly, disease
identification on contrast-enhanced imaging is associated with
increasing lesion size, intermixed benign epithelium, loose stroma,
and high malignant epithelium to stroma ratio, while on DW-MRI
only size, Gleason score and loose stroma were significant for lesion
identification.110

For disease staging, semi-quantitative assessment using PI-
RADS scoring is used. Its sensitivity for detecting extracapsular
extension (ECE, Stage 3a) in patients undergoing prostatectomy is
only 35% to 49%,111,112 although specificity is high (90% and 74%,
respectively). For seminal vesicle invasion, a 65% sensitivity (Stage
3b, verified on pathology at biopsy and subsequently at prostatec-
tomy) is recorded.113 The addition of mpMRI evaluation to clinical
nomograms (Partin tables) improves sensitivity of detecting ECE on
pathology to 84% (positive predictive value [PPV] 66.7%, negative
predictive value [NPV] 94.9%).114 PPV is better in the clinically
defined (D’Amico criteria) high-risk groups at 88.8%, while NPV is
best in those at low risk (87.7%).115 A regression model for predict-
ing ECE showed that the most reliable predictors are DW-MRI þ
DCE-MRI and Gleason score.116

Qualitatively scored mpMRI has also been used to predict
biochemical recurrence in a population of >300 cases undergoing
radical prostatectomy,117 but the clinical utility of this relies on the
ability to change adjuvant therapy protocols.

Breast Cancer
In breast cancer, the addition of normalized ADCs to 3D T1-w

and DCE-MRI data improves diagnostic performance (AUC 0.98 vs
0.89).118 The value of parameter combinations has been confirmed in
other studies: analysis of 100 breast lesions (27 malignant and 73
benign) in 77 women showed that ADC is lower for lesions exhibit-
ing predominantly washout or plateau patterns than those exhibiting
predominantly persistent enhancement, and in multivariate analysis,
worst curve type and ADC were significant independent predictors of
malignancy.119 Extension of mpMRI to 3 parameters (DCE-MRI,
DW-MRI, and 3D 1H-MRSI) rather than 2 (DCE-MRI and DW-MRI)
showed that the former yielded significantly higher areas under the
curve than histology (0.936 vs 0.808) because of elimination of false-
negative lesions and reduction in false-positives.120

Seven features derived from DW-MRI and DCE-MRI (eg, slope,
entropy, ADC) have been shown to discriminate malignant from
benign lesions and their combination achieves the highest classifi-
cation accuracy.121 The use of multiple parameters from DCE-MRI
alone has illustrated the possibilities of identifying intrinsic imaging
phenotypes of breast cancer based on hierarchical clustering of
extracted feature vectors. These features have been linked to risk

122
of recurrence based on gene expression.
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As with prostate cancer, mpMRI has been explored for disease
staging albeit more modestly. A meta-analysis of 624 breast cancer
patients from 9 eligible cohort studies, 254 of whom had lymph node
metastases (LNMs) and 370 who did not, suggested that ADC values
in patients without LNM were higher.123 A more pressing need in
breast cancer is in prognostication, and efforts here have exploited
higher field strengths (7 T) to obtain quantitative mpMRI data. A
sensitivity of 100%, specificity of 88.2%, has been claimed for a
combination of DW-MRI þ DCE-MRI, which was greater than for
individual parameters (DCE-MRI 100%/53.2%; DW-MRI 93.1%/
88.2%) such that it eliminated all false-negative findings and reduced
false-positive findings.124 The addition of 31P-MRS in a small
(n¼ 15) study by another group showed an inverse relationship
between ADC and tumor grade. A relative increase of PME over
phosphodiester (PDE) showed significant association with increasing
mitotic counts.125

An important niche for quantitative mpMRI in breast cancer is
in response assessment to neoadjuvant chemotherapy (NAC). DCE-
MRI þ DW-MRI has been shown to have a higher specificity
(80.0%), accuracy (91.0%), and PPV (93.2%) than DCE-MRI or
DW-MRI alone.126 This was confirmed in a response assessment
study wherein DCE-MRI and DW-MRI data acquired before (n¼ 42)
and after 1 cycle (n¼ 36) of NAC showed that the kep/ADC after the
first cycle of NAC discriminated patients who went on to achieve a
pathological complete response and achieved a sensitivity, speci-
ficity, PPV, and area under the receiver operator curve (AUC) of 0.92,
0.78, 0.69, and 0.88 respectively, which were superior to the single
parameters kep (AUC, 0.76) and ADC (AUC, 0.82).57 MRS has also
been exploited in this regard and showed larger reductions in choline
SNR (35% vs 7%) in pathological complete or partial responders
compared with nonresponders after 1 cycle of chemotherapy.127

Gliomas
The use of morphological MRI with DCE-MRI and DW-MRI

for gliomas has been part of clinical practice for more than a decade.
Refinements include quantitation to improve tumor grading. Relative
cerebral blood volume (rCBV) alone in a study of 56 patients gave a
sensitivity and specificity of 100% and 88% and addition of DW-
MRI and MRS improved the specificity to 96%.69 Using a radio-
logical progression index derived from MR spectroscopy and MR
perfusion showed that the cumulative data were able to classify the
patients into different grades and were predictive of overall survival:
MR hyperperfusion indicated a shorter survival for diffuse intrinsic
pontine glioma patients.128 Further advances exploiting statistical
features obtained from the parametric maps in a prospective study of
74 glioma patients showed that the presence/absence of enhancement
coupled with the kurtosis of the first-pass curve was the feature
combination that best predicted tumor grade with the presence/
absence of enhancement being the more important feature.129

Quantitation has also proved promising in a prognostic context:
in a single-center study of 56 patients, the simultaneous analysis of
ADC and rCBV 3 weeks after completion of radiation and concurrent
temozolomide improved the predictive potential for patient survival
compared with the single parameters.130 These kind of data are also
proving worthwhile in a pediatric population wherein increased
choline to NAA and increased perfusion on dynamic susceptibility
contrast MRI (DSC-MRI) at baseline each predicted shorter survival
in children with diffuse pontine glioma, and increased perfusion
measured at any time-point in treatment also predicted shorter
survival.131

Other Cancers
In cancers other than those above, the use of mpMRI has mainly
been in the assessment of response to therapy. In high-grade soft-

� 2016 Wolters Kluwer Health, Inc. All rights reserved.
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tissue sarcomas, qualitative assessment of both DCE-MRI and DW-
MRI performed better than standard morphological imaging for
predicting response to NAC as verified at subsequent surgery,
although the functional images were not assessed in combination.132

A meta-analysis of 43 rectal cancer studies, 30 of which included
DW-MRI and 13 DCE-MRI, indicated that both these techniques
showed additional value in the prediction and detection of complete
response to therapy compared with conventional T2-w sequences
alone.133 An ongoing multicenter trial in Australia is focusing on the
prospective evaluation of quantitative mpMRI (ADC, Ktrans, kep) to
stratify patients and guide radiation dosing.134 The combination of
T2-w þ DW-MRI þ DCE-MRI has been shown to be of benefit for
distinguishing low- from high-grade bladder cancers (100% sensi-
tivity, 95% specificity in 49 T1 and T2 lesions),135 while the
combination of wash-in and wash-out ratios on DCE-MRI together
with ADC has been shown to be useful in renal clear cell cancers
wherein higher Fuhrman tumor grades had lower parenchymal wash-
in indices and lower ADCs than low-grade lesions.136 There has been
less demand for mpMRI for detecting and grading other cancers,
as single parameters often suffice or treatment paradigms do not
warrant the inclusion of complex methodology in the patient’s
diagnostic pathway.

FUTURE DIRECTIONS
To date, the major applications of multi-parametric imaging in

the clinic have been through a qualitative approach using radiologist
scores of standardized consensus systems such as PI-RADS and BI-
RADS. An obvious advance would be to increase use of quantitative
techniques to their full potential. However, methods of quantitation
are variable, lengthy, and may introduce error. These are overriding
disadvantages when planning patient management. An equivalence
between qualitative scoring and a fully quantitative approach in
prostate cancer assessment has been demonstrated,58 so that very
large economic benefits in quantitative assessments would be needed
before clinical adoption. An area wherein they may be beneficial is in
understanding tumor biology, where discordance between techniques
may provide an understanding with underlying histopathology,
which could then be clinically translated. Another area of develop-
ment is in fusion of multimodality data sets. With ultrasound
elastography providing measures of tissue stiffness137 and PET
studies mapping metabolism, hypoxia, and tumor-specific antigens
and receptors,138 it will be possible to adopt a multi-parametric,
multimodality approach to more accurately characterize and monitor
tumor behavior in the clinic to deliver individualized treatment plans.
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