

Article

Novel Caryophyllane-Related Sesquiterpenoids with Anti-Inflammatory Activity from *Rumphella antipathes* (Linnaeus, 1758)

Yu-Chia Chang ^{1,†}^(D), Chih-Chao Chiang ^{2,†}, Yuan-Shiun Chang ³, Jih-Jung Chen ⁴^(D), Wei-Hsien Wang ⁵, Lee-Shing Fang ^{5,6,7}, Hsu-Ming Chung ^{8,*}, Tsong-Long Hwang ^{1,9,10,11,12,*} and Ping-Jyun Sung ^{5,13,14,15,16,*}

- ¹ Research Center for Chinese Herbal Medicine, Graduate Institute of Healthy Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333324, Taiwan; ycchang03@mail.cgust.edu.tw
- ² Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 333323, Taiwan; D0600501@cgu.edu.tw
- ³ Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung 404333, Taiwan; yschang@mail.cmu.edu.tw
- ⁴ Faculty of Pharmacy, School of Pharmaceutical Sciences, National Yang-Ming University, Taipei 112304, Taiwan; chenjj@ym.edu.tw
- ⁵ Department of Marine Biotechnology and Resources, College of Marine Sciences, National Sun Yat-sen University, Kaohsiung 804201, Taiwan; whw@mail.nsysu.edu.tw (W.-H.W.); lsfang@gcloud.csu.edu.tw (L.-S.F.)
- ⁶ Center for Environmental Toxin and Emerging-Contaminant Research, Cheng Shiu University, Kaohsiung 833301, Taiwan
- ⁷ Super Micro Mass Research and Technology Center, Cheng Shiu University, Kaohsiung 833301, Taiwan
- ⁸ Department of Applied Chemistry, College of Science, National Pingtung University, Pingtung 900393, Taiwan
- ⁹ Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333323, Taiwan
- ¹⁰ Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 333423, Taiwan
- ¹¹ Department of Chemical Engineering, College of Environment and Resources, Ming Chi University of Technology, New Taipei City 243303, Taiwan
- ¹² Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333324, Taiwan
- ¹³ National Museum of Marine Biology and Aquarium, Pingtung 944401, Taiwan
- ¹⁴ Graduate Institute of Marine Biology, College of Marine Sciences, National Dong Hwa University, Pingtung 944401, Taiwan
- ¹⁵ Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung 404394, Taiwan
- ¹⁶ Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
- * Correspondence: shiuanmin@mail.nptu.edu.tw (H.-M.C.); htl@mail.cgu.edu.tw (T.-L.H.); pjsung@nmmba.gov.tw (P.-J.S.); Tel.: +886-8-766-3800 (ext. 33253) (H.-M.C.); +886-3-211-8800 (T.-L.H.); +886-8-882-5037 (P.-J.S.); Fax: +886-8-723-0305 (H.-M.C.); +886-3-211-8506 (T.-L.H.); +886-8-882-5087 (P.-J.S.)
- + These authors contributed equally to this work.

Received: 21 September 2020; Accepted: 2 November 2020; Published: 6 November 2020

Abstract: Two previously undescribed caryophyllane-related sesquiterpenoids, antipacids A (**1**) and B (**2**), with a novel bicyclo[5.2.0] core skeleton, and known compound clovane- 2β , 9α -diol (**3**), along with rumphellolide L (**4**), an esterified product of **1** and **3**, were isolated from the organic extract of octocoral *Rumphella antipathes*. Their structures, including the absolute configurations were elucidated by spectroscopic and chemical experiments. In vivo anti-inflammatory activity analysis indicated

that antipacid B (2) inhibited the generation of superoxide anions and the release of elastase by human neutrophils, with IC₅₀ values of 11.22 and 23.53 μ M, respectively, while rumphellolide L (4) suppressed the release of elastase with an IC₅₀ value of 7.63 μ M.

Keywords: *Rumphella antipathes*; antipacid; caryophyllane; clovane; rumphellolide; superoxide anion; elastase

1. Introduction

Rumphella (family Gorgoniidae) is a genus of soft coral consisting of four species, R. aggregata, *R. antipathes, R. suffruticosa,* and *R. torta,* the center of marine diversity of this genus being found in the Indo-Pacific Ocean. Corals were described by Shi-Zhen Li in his ancient herbal Compendium of Chinese Materia Medica, published in 1596, as "sweet, neutral and non-toxic; used to remove eye vision obstruction; clear abiding static blood; blow the powder to nose to stop nose bleeding; brighten the eye and calm the spirit; stop epileptic seizure; apply to the eye to improve floater." Previous studies showed that the *Rumphella* genus exhibited extensive bioactivities, including antiproliferative [1], cytotoxic [2–4], antifungal [5], antibacterial [6–9], and anti-inflammatory [10–18] activities. Studies of the chemical constituents of octocorals of the Rumphella genus have led to the isolation of a series of compounds, including caryophyllanes [2,6–12,16–22], clovanes [13–15,23], steroids [3–5,24,25], glycerols [5], and fatty acids and lipids [25–29]. Our continuing studies of the constituents of the same extract from R. antipathes (Figure 1) resulted in the isolation of two novel caryophyllane-related sesquiterpenoids, antipacids A (1) and B (2), featuring a bicyclo [5.2.0] carbon core; a known sesquiterpenoid, clovane- 2β , 9α -diol (3); and rumphellolide L (4), an esterified product of 1 and 3 (Figure 1). This paper describes the isolation, structure determination, biosynthetic pathway analysis, and anti-inflammatory properties of sesquiterpenoids 1-4.

Figure 1. Structures of antipacids A (1) and B (2), clovane- 2β , 9α -diol (3), and rumphellolide L (4), and an image of *Rumphella antipathes*.

2. Results and Discussion

Antipacid A (1) was obtained as a colorless colloid, showing an electrospray ionization mass spectrum (ESIMS) quasimolecular ion peak at m/z 253, and was found to have the molecular formula

$C_{15}H_{24}O_3$ by analysis of ¹³ C and ¹ H NMR data (Table 1); this conclusion was confirmed by a positive-
mode high-resolution-ESIMS ([+]-HRESIMS) peak at $m/2$ 253.1792 [M + H] ⁺ (calcd. for C ₁₅ H ₂₄ O ₃ + H ₂₄ O ₃
253.1789), with four indexes of hydrogen deficiency. The IR spectrum showed absorption bands at
3600–2400 (carboxyl group) and 1708 cm ^{-1} (ketonic carbonyl). From the ¹³ C NMR data of 1 (Table 1),
ketonic (δ_C 212.8, C-4) and carboxyl (δ_C 179.1, C-5) groups were deemed present. Thus, 1 was identified
as a bicyclic compound. ¹ H- ¹ H correlation spectroscopy (COSY) enabled identification of two spin
systems, H ₂ -10/H-9/H-1/H ₂ -2/H ₂ -3 and H ₂ -6/H ₂ -7 (Figure 2). These findings, together with the ² J-
and ³ <i>J</i> - ¹ H– ¹³ C long-range correlations between protons and non-protonated carbons, such as H ₂ -3,
H2-12/C-4; H2-6, H2-7/C-5; H2-6, H2-7, H-9, H2-10, H2-12, H3-13/C-8; and H-1, H2-10, H3-14, H3-15/C-11
in the heteronuclear multiple-bond coherence (HMBC) experiment (Figure 2), permitted elucidation of
the main carbon skeleton of 1 .

	1		2		
C/H	δ _H (J in Hz)	δ _C , Type	δ _H (J in Hz)	δ _C , Type	
1	1.77 ddd (10.4, 10.4, 3.6)	45.3, CH	1.81 ddd (10.8, 10.8, 3.6)	44.9 <i>,</i> CH	
2a/b	1.70 m; 1.64 m	23.7, CH ₂	1.71 m; 1.62 m	23.7, CH ₂	
3a/b	2.48 m; 2.41 m	43.8, CH ₂	2.49 m	43.7, CH ₂	
4	-	212.8, C	-	212.5, C	
5	-	179.1, C	-	-	
6	2.27 m	29.3, CH ₂	-	176.0, C	
7a/b	1.72 m; 1.53 m	36.5, CH ₂	2.29 d (13.6); 2.28 d (13.6)	44.7, CH ₂	
8	-	35.0, C	-	34.9, C	
9	1.87 ddd (10.4, 10.4, 8.0)	46.3, CH	1.98 ddd (10.8, 10.8, 8.4)	46.2, CH	
10a/b	1.57 dd (10.4, 8.0); 1.49 dd (10.4, 10.4)	35.5, CH ₂	1.56 dd (10.8, 8.4); 1.48 dd (10.8, 10.8)	34.9, CH ₂	
11	-	34.4, C	-	33.9 <i>,</i> C	
12a/b	2.35 d (11.2); 2.30 d (11.2)	54.8, CH ₂	2.60 d (11.2); 2.49 d (11.2)	54.1, CH ₂	
13	0.92 s	20.5, CH ₃	1.08 s	21.2, CH ₃	
14	1.01 s	30.1, CH ₃	1.02 s	30.1, CH ₃	
15	1.01 s	22.1, CH ₃	1.01 s	22.1, CH ₃	

Table 1. 1 H (400 MHz, CDCl₃) and 13 C (100 MHz, CDCl₃) NMR data of 1 and 2.

Figure 2. (A) Key COSY (—), HMBC (), and (B) NOESY () correlations of 1.

The relative configuration of **1** was assigned from the results of a nuclear Overhauser effect spectroscopy (NOESY) experiment (Figure 2) and vicinal coupling constants. The *trans* geometries of H-9 ($\delta_{\rm H}$ 1.87) and H-1 ($\delta_{\rm H}$ 1.77) were indicated by a large coupling constant (J = 10.4 Hz) between these two ring juncture protons, and H-9 and H-1 were α - and β -oriented, respectively. H-1 exhibited a correlation with H₃-13, setting Me-13 at C-8 on the β face. Based on the above findings, the stereogenic carbons of **1** were elucidated as ($1R^*$, $8S^*$, $9S^*$). Antipacids A (**1**) and B (**2**) were isolated along with natural

products rumphellaone A, a novel 4,5-*seco*-caryophyllane [2], and (8*R*,9*R*)-isocaryolane-8,9-diol [21,30] (the numbering system used in reference [30] was different to that in this study) from the same target organism, *R. antipathes* [2,21]. The structures, including the absolute configurations, of rumphellaone A [31–33] and (8*R*,9*R*)-isocaryolane-8,9-diol [30], were confirmed by synthetic methods. Based on these findings and previous studies [2,6–12,16–22], all marine-origin naturally occurring caryophyllane-type sesquiterpenoids have the H-9 *trans* to H-1, which are assigned as α - and β -oriented, respectively. Therefore, it is reasonable on biogenetic grounds to suggest that **1** and **2** have the same absolute configurations of the stereogenic carbons of **1** can be elucidated as (1*R*,8*S*,9*S*) (Supplementary Materials, Figures S1–S7).

Antipacid B (2) was isolated as a colorless colloid that showed a sodiated adduct ion peak in (+)-HRESIMS at m/z 261.1468 [M + Na]⁺, which accounted for the molecular formula, $C_{14}H_{22}O_3$ (calcd. for $C_{14}H_{22}O_3$ + Na, 261.1467), with 4 degrees of unsaturation. The spectroscopic data of **2** resembled those of **1** (Table 1). The one-dimensional (1D) and two-dimensional (2D) NMR spectra revealed that the signals corresponding to the propanoic acid moiety in **1** were replaced by those of an acetic acid in **2** (Figure 3). Therefore, **2** was assigned as having a structure with the same stereochemistry as **1** because of the stereogenic carbons that **2** had in common with **1** by correlations observed in the NOESY spectrum (Figure 3); therefore, the configurations of the stereogenic carbons of **2** were elucidated as (1*R*,8*S*,9*S*) (Supplementary Materials, Figures S8–S14).

Figure 3. Key COSY (—), HMBC (), and NOESY () correlations of 2.

Compound **3** was identified by comparison of its spectroscopic data with those of clovane- 2β ,9 α diol, which had been previously isolated from terrestrial plants *Dipterocarpus pilosus* [34], *Salvia canariensis* [35], *Viguiera excelsa* [36], *Viguiera linearis* [37], and *Sindora sumatrana* [38]. This was the first occasion in which this metabolite was obtained from a marine source. Clovane **3** was treated with (*R*)-(–)- and (*S*)-(+)-MTPA chloride to yield (*S*)- and (*R*)-MTPA esters **3a** and **3b**, respectively. A comparison of the ¹H NMR chemical shifts of **3a** and **3b** ($\Delta\delta$ values shown in Figure 4) led to the assignment of the *S*-configuration at C-2 (Supplementary Materials, Figures S15–S16). Therefore, the absolute configurations of the stereogenic centers of **3** were determined as (*1S*,2*S*,5*S*,8*R*,9*R*).

Figure 4. ¹H NMR chemical shift differences $\Delta \delta$ ($\delta_S - \delta_R$) in ppm for the MPTA esters of **3**.

Rumphellolide L (4) was isolated as a colorless colloid that showed a sodiated adduct ion peak $[M + Na]^+$ at m/z 495.3447 in (+)-HRESIMS. The result revealed that this compound had a molecular formula of $C_{30}H_{48}O_4$ (calcd. for $C_{30}H_{48}O_4$ + Na, 495.3450), with 7 degrees of unsaturation. Strong bands at 3485, 1731, and 1704 cm⁻¹ in the IR spectrum indicated the presence of hydroxy, ester, and ketonic groups. The ¹³C NMR and distortionless enhancement by polarization transfer (DEPT) spectra revealed that 4 had 30 carbons (Table 2), including six methyls, twelve methylenes, five methines (including two oxymethines), five sp³ quaternary carbons, an ester carbonyl, and a ketonic carbonyl. Therefore, 4 was identified as having five rings.

C/H	$\delta_{\rm H}$ (J in Hz)	δ _C , Type	C/H	$\delta_{\rm H}$ (J in Hz)	δ _C , Type
1	1.77 m	45.2, CH	1′	-	44.5, C
2	1.64 m	23.6, CH ₂	2	4.83 dd (8.8, 6.0)	82.1, CH
3a/b	2.48 ddd (12.4, 7.6, 4.0); 2.39 m	43.7, CH ₂	3´a/b	1.78 dd (12.0, 6.0); 1.51 m	44.3, CH ₂
4	-	212.2, C	4´	-	38.0, C
5	-	173.6, C	5	1.48 m	50.3 <i>,</i> CH
6	2.21 t (7.6)	29.8, CH ₂	6´	1.46 m	20.8, CH ₂
7	1.73 m	36.7, CH ₂	7´	1.40 m	33.0, CH ₂
8	-	35.1, C	8´	-	34.6, C
9	1.87 ddd (10.8, 10.8, 8.4)	46.4, CH	9´	3.31 br s	74.9 <i>,</i> CH
10	1.54 m	35.5, CH ₂	10´a/b	2.00 m; 1.65 m	26.3, CH ₂
11	-	34.4, C	11′	1.58 m	27.3, CH ₂
12	2.31 s	54.9, CH ₂	12´a/b	1.53 m; 1.01 m	35.4, CH ₂
13	0.90 s	20.5, CH ₃	13′	1.05 s	31.4, CH ₃
14	1.02 s	30.1, CH ₃	14′	0.91 s	25.3, CH ₃
15	1.00 s	22.1, CH ₃	15´	0.94 s	28.2, CH ₃

Table 2. ¹H (400 MHz, CDCl₃) and ¹³C (100 MHz, CDCl₃) NMR data for 4.

From the ¹H–¹H COSY spectrum, the data differentiated the spin systems H₂-10/H-9/H-1/H₂-2/H₂-3, H₂-6/H₂-7, H-2'/H₂-3', H-5'/H₂-6'/H₂-7', and H-9'/H₂-10'/H₂-11' (Figure 5), and these findings together with the results of key HMBC correlations shown in Figure 5 confirmed the carbon skeleton of 4. An HMBC correlation between H-2' ($\delta_{\rm H}$ 4.83), an oxymethine proton, and the C-5 ester carbonyl carbon ($\delta_{\rm C}$ 173.6) was found, which proved the existence of an ester linkage in 4. It was found that the NMR data were similar to those of 1 and 3, and this compound was proven to be the dehydrated product of 1 and 3. Due to the absolute configurations of 1 and 3 having been determined, the absolute configurations of the stereogenic carbons of 4 were assigned as (1*R*,8*S*,9*S*,1'*S*,2'*S*,5'*S*,8'*R*,9'*R*) (Supplementary Materials, Figures S17–S23).

The proposed biogenetic pathway of sesquiterpenoids 1-4 is outlined in Scheme 1. The ringopening reaction might be rationally derived from (8R,9R)-isocaryolane-8,9-diol [30] (the numbering system used in reference [30] was different to that in this study), which had also been isolated from *R. antipathes* [21], and might subsequently, under oxidation, produce the carbon skeletons of **1** and **2**.

Figure 5. Key COSY (—) and HMBC (() correlations of 4.

Scheme 1. Plausible biogenetic pathway of 1–4.

The in vitro anti-inflammatory effects of **1–4** were assessed (Table 3). Antipacid B (**2**) displayed inhibitory effects on the generation of superoxide anions and the release of elastase by human neutrophils ($IC_{50} = 11.22$ and 23.53 μ M, respectively). Antipacid A (**1**) did not show activity, implying that the presence of a large substituent at C-8 weakens the activity in comparison with the structure and anti-inflammatory activities of **2**. Although **1** and **3** were not active, rumphellolide L (**4**), the dehydrated product of **1** and **3** with esterification, showed activity in inhibiting the release of elastase ($IC_{50} = 7.63 \mu$ M).

Table 3. Inhibitory effects of sesquiterpenoids **1–4** on superoxide anion generation and elastase release by human neutrophils in response to *N*-Formyl-L-methionyl-L-leucyl-L-phenylalanine/ Cytochalasin B (fMLF/CB).

	Superoxide Anion		Elastase	
Compound	IC ₅₀ (µM) ^a	Inh % ^b	IC ₅₀ (µM) ^a	Inh % ^b
1	-	11.89 ± 5.13	-	13.69 ± 2.33 *
2	11.22	-	23.53	-
3	-	22.92 ± 4.27 *	-	$35.33 \pm 6.40 *$
4	-	19.57 ± 3.69 **	7.63	-

^a Concentration necessary for 50% inhibition (IC₅₀). ^b Percentage of inhibition (Inh %) at 10 μ g/mL. Results are presented as means ± S.E.M (standard error of the mean) (n = 3). * p < 0.05, ** p < 0.01 compared with the control (solvent, dimethyl sulfoxide-DMSO).

3. Materials and Methods

3.1. General Experimental Procedures

Optical rotations were recorded on a JASCO-P1010 polarimeter (Japan Spectroscopic Corporation, Tokyo, Japan). IR spectra were obtained on a Varian Diglab FTS 1000 FT-IR spectrometer (Varian Inc., Palo Alto, CA, USA). NMR spectra were recorded on a Varian Mercury Plus 400 spectrometer (400 MHz for ¹H and 100 MHz for ¹³C) (Varian Inc.) using the residual CHCl₃ ($\delta_{\rm H}$ 7.26 ppm) and CDCl₃ ($\delta_{\rm C}$ 77.1 ppm) signals as internal references for ¹H and ¹³C NMR, respectively.

Chemical shifts are shown in δ (ppm) and coupling constants (*J*) are given in Hz. ESIMS and HRESIMS data were recorded using a Bruker APEX II FTMS system (Bremen, Germany). Silica gel (230–400 mesh, Merck, Darmstadt, Germany) was used for column chromatography. Thin-layer chromatography (TLC) was performed on plates precoated with Kieselgel 60 F₂₅₄ (0.25-mm-thick, Merck), then sprayed with 10% H₂SO₄ solution followed by heating to visualize the spots. Normal-phase HPLC (NP-HPLC) (Hitachi L-7100 series using a L-7455 photodiode array detector, Hitachi Ltd., Tokyo, Japan; and a semi-preparative Hibar 250 mm × 10 mm, LiChrospher Si 60, 5 μ m column, Merck) was employed.

3.2. Animal Material

The octocoral *R. antipathes* (Linnaeus, 1758) was collected by hand by self-contained underwater breathing apparatus (SCUBA) divers off the coast of South Taiwan in May 2004. The samples were stored in a -20 °C freezer until used for extraction. Identification of the species of this organism was performed by comparison as described in previous studies [39,40]. A voucher specimen (no.: NMMBA-TWGC-010) was deposited in the National Museum of Marine Biology and Aquarium, Taiwan.

3.3. Extraction and Isolation

R. antipathes (wet/dry weight = 402/144 g) was sliced and then extracted with a solvent mixture of MeOH and dichloromethane (DCM) (1:1). The extract was partitioned between ethyl acetate (EtOAc) and H₂O. The EtOAc layer (1.23 g) was then applied on silica gel column and eluted with gradients of hexanes/EtOAc (from 25:1 to 100% EtOAc) to furnish 29 subfractions. Fraction 18 was purified by NP-HPLC using a solvent mixture of *n*-hexane/EtOAc (5:1; at a flow rate = 3.0 mL/min) to yield 4 (3.5 mg, 5:1). Fraction 22 was separated by NP-HPLC using a mixture of DCM and EtOAc (10:1; at a flow rate = 5.0 mL/min) to afford **2** (3.5 mg). Fraction 24 was separated by NP-HPLC using a mixture of *n*-hexane and EtOAc (1:1; at a flow rate = 5.0 mL/min) to afford **2** (3.5 mg). Fraction 24 was separated by NP-HPLC using a mixture of *n*-hexane and EtOAc (1:1; at a flow rate = 5.0 mL/min) to afford **2** (3.5 mg).

Antipacid A (1): Colorless colloid; $[\alpha]25D - 9.2$ (*c* 0.29, CHCl₃); IR (neat) ν_{max} 3600–2400 (broad), 1708 cm⁻¹; ¹H and ¹³C NMR data, see Table 1; ESIMS: *m*/*z* 253 [M + H]⁺; HRESIMS: *m*/*z* 253.1792 [M + H]⁺ (calcd. for C₁₅H₂₄O₃ + H, 253.1789).

Antipacid B (**2**): Colorless colloid; $[\alpha]25D - 9.4$ (*c* 0.18, CHCl₃); IR (neat) ν_{max} 3600–2600 (broad), 1710 cm⁻¹; ¹H and ¹³C NMR data, see Table 1; ESIMS: *m/z* 261 [M + Na]⁺; HRESIMS: *m/z* 261.1468 [M + Na]⁺ (calcd. for C₁₄H₂₂O₃ + Na, 261.1467).

Clovane-2 β ,9 α -diol (3): Amorphous powder; [α]23D +3.5 (*c* 1.82, CHCl₃) (ref. [38] [α] D +3.19 (*c* 2.27, CHCl₃)); IR (neat) ν_{max} 3378 cm⁻¹; ¹H (400 MHz, CDCl₃) and ¹³C (100 MHz, CDCl₃) NMR data were found to be in complete agreement with a previous report [37]; ESIMS: *m/z* 261 [M + Na]⁺.

Rumphellolide L (4): Colorless colloid; $[\alpha]25D - 7.5$ (*c* 0.18, CHCl₃); IR (neat) ν_{max} 3485, 1731, 1704 cm⁻¹; ¹H and ¹³C NMR data, see Table 2; ESIMS: *m/z* 495 [M + Na]⁺; HRESIMS: *m/z* 495.3447 [M + Na]⁺ (calcd. for C₃₀H₄₈O₄ + Na, 495.3450).

3.4. (S)- and (R)-MTPA Esters of 3

To a solution of **3** (10.0 mg) in pyridine (0.4 mL) (–)- α -methoxy- α -(trifluoromethyl)-phenylacetyl (MTPA) chloride was added (25.0 μ L) at 25 °C for 4–5 h. The mixture was dried and purified by a silica gel column with *n*-hexane/EtOAc (10:1) to give (*S*)-MTPA ester **3a** (8.5 mg). The (*R*)-MTPA ester

3b (0.2 mg) was prepared from (+)-MTPA chloride by the same method (10 mg compound **3** was used). Selected $\Delta\delta$ values are shown in Figure 4.

3.5. Superoxide Anion Generation and Elastase Release by Human Neutrophils

The proinflammatory suppression assay was employed to assess the activities of isolated compounds **1–4** against the generation of superoxide anions and the release of elastase by human neutrophils according to the protocols described in the literature [41].

4. Conclusions

The current work illustrated the anti-neutrophilic inflammatory properties of caryophyllanerelated sesquiterpenoids, and two metabolites with novel structures, antipacids A and B (1 and 2), clovane- 2β , 9α -diol (3), and rumphellolide L (4), an esterified product of 1 and 3, were isolated from *R. antipathes*. Compound 2 displayed inhibitory effects on the generation of superoxide anions and the release of elastase, and 4 showed activity in suppressing the release of elastase. These results indicated a structural-dependent specificity of C-8 in 1, 2, and 4 in neutrophilic targets, which will motivate future research examining this specificity, as well as clarify the molecular mechanisms of the active leads.

Supplementary Materials: The following are available online at http://www.mdpi.com/1660-3397/18/11/554/s1, Figure S1: HRESIMS spectrum of 1; Figures S2–S7: ¹H NMR (400 MHz), ¹³C NMR (100 MHz), HMQC, ¹H-¹H COSY, HMBC and NOESY Spectrum of 1 in CDCl₃; Figure S8: HRESIMS spectrum of 2; Figures S9–S14: ¹H NMR (400 MHz), ¹³C NMR (100 MHz), HMQC, ¹H-¹H COSY, HMBC and NOESY Spectrum of 2 in CDCl₃; Figure S15: ¹H NMR (*S*)-MTPA ester of 3 in CDCl₃; Figure S16: ¹H NMR (*R*)-MTPA ester of 3 in CDCl₃; Figure S17: HRESIMS spectrum of 4; Figures S18–S23: ¹H NMR (400 MHz), ¹³C NMR (100 MHz), HMQC, ¹H-¹H COSY, HMBC and NOESY Spectrum of 4 in CDCl₃.

Author Contributions: Conceptualization, H.-M.C., T.-L.H., and P.-J.S.; investigation, Y.-C.C., C.-C.C., Y.-S.C., J.-J.C., W.-H.W., L.-S.F., and H.-M.C.; writing—original draft preparation, Y.-C.C., H.-M.C., and P.-J.S.; writing—review and editing, Y.-C.C., H.-M.C., T.-L.H., and P.-J.S. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by grants from the NMMBA; and the Ministry of Science and Technology, Taiwan (Grant Nos: MOST 107-2320-B-291-001-MY3 and 109-2320-B-291-001-MY3) awarded to P.-J. Sung.

Acknowledgments: This research was supported by grants from the National Museum of Marine Biology and Aquarium; and the Ministry of Science and Technology (Grant Nos MOST 106-2320-B-291-001-MY3, 107-2320-B-291-001-MY3), Taiwan, awarded to P.-J.S.

Conflicts of Interest: The authors declare no conflict of interest.

References

- 1. Nourry, M.; Urvois, A.P.; Tomasoni, C.; Biard, J.F.; Verbist, J.F.; Roussakis, C. Antiproliferative effects of a product isolated from the gorgonian Rumphella aggregata. *Anticancer. Res.* **1999**, *19*, 1881–1885.
- Chung, H.-M.; Chen, Y.-H.; Lin, M.-R.; Su, J.-H.; Wang, W.-H.; Sung, P.-J. Rumphellaone A, a novel caryophyllane-related derivative from the gorgonian coral Rumphella antipathes. *Tetrahedron Lett.* 2010, 51, 6025–6027. [CrossRef]
- 3. Liu, C.-X.; Li, P.-L.; Tang, X.-L.; Li, G.-Q. Studies on chemical constituents of the South China Sea gorgonian Rumphella aggregata. *Chin. J. Mar. Drugs* **2012**, *31*, 5–10.
- 4. Yin, F.-Z.; Yang, M.; Li, S.-W.; Wu, M.-J.; Huan, X.-J.; Miu, Z.-H.; Wang, H.; Guo, Y.-W. Two new hydroperoxy steroids from the South China Sea gorgonian *Rumphella* sp. *Steroids* **2020**, *155*, 108558. [CrossRef] [PubMed]
- 5. Alarif, W.M. Glycerol Derivatives and Steroid Constituents from the Soft Coral *Rumphella aggregata* (Gorgoniidae) of Saudi Red Sea Water. *J. King Abdulaziz Univ. Sci.* **2012**, *23*, 57–67. [CrossRef]
- Sung, P.-J.; Chuang, L.-F.; Kuo, J.; Chen, J.-J.; Fan, T.-Y.; Li, J.-J.; Fang, L.-S.; Wang, W.-H. Rumphellolides A–F, six new caryophyllane-related derivatives from the Formosan gorgonian coral *Rumphella antipathes*. *Chem. Pharm. Bull.* 2007, 55, 1296–1301. [CrossRef]

- Sung, P.-J.; Chuang, L.-F.; Kuo, J.; Fan, T.-Y.; Hu, W.-P. Rumphellatin A, the first chloride-containing caryophyllane-type norsesquiterpenoid from *Rumphella antipathes*. *Tetrahedron Lett.* 2007, *48*, 3987–3989. [CrossRef]
- 8. Sung, P.-J.; Chuang, L.-F.; Hu, W.-P. Rumphellatins B and C, two new caryophyllane-type hemiketal norsesquiterpenoids from the Formosan gorgonian coral *Rumphella antipathes*. *Bull. Chem. Soc. Jpn.* **2007**, *80*, 2395–2399. [CrossRef]
- 9. Chuang, L.-F.; Fan, T.-Y.; Li, J.-J.; Kuo, J.; Fang, L.-S.; Wang, W.-H.; Sung, P.-J. Isokobusone, a caryophyllane-type norsesquiterpenoid from the gorgonian coral *Rumphella antipathes* (Gorgoniidae). *Platax* **2007**, *4*, 61–67.
- Sung, P.-J.; Su, Y.-D.; Hwang, T.-L.; Chuang, L.-F.; Chen, J.-J.; Li, J.-J.; Fang, L.-S.; Wang, W.-H. Rumphellatin D, a novel chlorinated caryophyllane from gorgonian coral *Rumphella antipathes*. *Chem. Lett.* 2008, 37, 1244–1245. [CrossRef]
- 11. Hwang, T.-L.; Su, Y.-D.; Hu, W.-P.; Chuang, L.-F.; Sung, P.-J. Rumphellolide H, a new natural caryophyllane from the gorgonian *Rumphella antipathes*. *Heterocycles* **2009**, *78*, 1563–1567.
- 12. Sung, P.-J.; Su, Y.-D.; Hwang, T.-L.; Chuang, L.-F.; Chung, H.-M.; Chen, J.-J.; Li, J.-J.; Fang, L.-S.; Wang, W.-H. Rumphellolide I, a novel caryophyllane-related tetrahydropyran norsesquiterpenoid from gorgonian coral *Rumphella antipathes. Chem. Lett.* **2009**, *38*, 282–283. [CrossRef]
- Chung, H.-M.; Hwang, T.-L.; Chen, Y.-H.; Su, J.-H.; Lu, M.-C.; Chen, J.-J.; Li, J.-J.; Fang, L.-S.; Wang, W.-H.; Sung, P.-J. Rumphellclovane B, a novel clovane analogue from the gorgonian coral *Rumphella antipathes*. *Bull. Chem. Soc. Jpn.* 2011, *84*, 119–121. [CrossRef]
- 14. Chung, H.-M.; Su, J.-H.; Hwang, T.-L.; Li, J.-J.; Chen, J.-J.; Chen, Y.-H.; Chang, Y.-C.; Su, Y.-D.; Chen, Y.-H.; Fang, L.-S.; et al. Rumphellclovanes C–E, new clovane-type sesquiterpenoids from the gorgonian coral *Rumphella antipathes. Tetrahedron* **2013**, *69*, 2740–2744. [CrossRef]
- 15. Chung, H.-M.; Wang, W.-H.; Hwang, T.-L.; Wu, Y.-C.; Sung, P.-J. Natural clovanes from the gorgonian coral *Rumphella antipathes. Nat. Prod. Commun.* **2013**, *8*, 1037–1040.
- Chung, H.-M.; Wang, W.-H.; Hwang, T.-L.; Li, J.-J.; Fang, L.-S.; Wu, Y.-C.; Sung, P.-J. Rumphellaones B and C, new 4,5-seco-caryophyllane sesquiterpenoids from *Rumphella antipathes*. *Molecules* 2014, 19, 12320. [CrossRef]
- 17. Chung, H.-M.; Wang, W.-H.; Hwang, T.-L.; Fang, L.-S.; Wen, Z.-H.; Chen, J.-J.; Wu, Y.-C.; Sung, P.-J. Rumphellaoic acid A, a novel sesquiterpenoid from the Formosan gorgonian coral *Rumphella antipathes*. *Mar. Drugs* **2014**, *12*, 5856. [CrossRef]
- Chung, H.-M.; Wang, W.-H.; Hwang, T.-L.; Chen, J.-J.; Fang, L.-S.; Wen, Z.-H.; Wang, Y.-B.; Wu, Y.-C.; Sung, P.-J. Rumphellols A and B, New Caryophyllene Sesquiterpenoids from a Formosan Gorgonian Coral, *Rumphella antipathies. Int. J. Mol. Sci.* 2014, *15*, 15679. [CrossRef]
- 19. Chuang, L.-F.; Fan, T.-Y.; Li, J.-J.; Sung, P.-J. Kobusone: Occurrence of a norsesquiterpenoid in the gorgonian coral *Rumphella antipathes* (Gorgoniidae). *Biochem. Syst. Ecol.* **2007**, *35*, 470–471. [CrossRef]
- 20. Sung, P.-J.; Chuang, L.-F.; Fan, T.-Y.; Chou, H.-N.; Kuo, J.; Fang, L.-S.; Wang, W.-H. Rumphellolide G, a new caryophyllane-type tetrahydropyran norsesquiterpenoid from the gorgonian coral *Rumphella antipathes* (Gorgoniidae). *Chem. Lett.* **2007**, *36*, 1322–1323. [CrossRef]
- 21. Chung, H.-M.; Wang, W.-H.; Hwang, T.-L.; Wu, Y.-C.; Sung, P.-J. Natural caryophyllane sesquiterpenoids from *Rumphella antipathes*. *Nat. Prod. Commun.* **2015**, *10*, 835–838.
- Lin, C.-C.; Chung, H.-M.; Su, Y.-D.; Peng, B.-R.; Wang, W.-H.; Hwang, T.-L.; Wu, Y.-C.; Sung, P.-J. Rumphellolide J, an ester of 4β,9β-epoxycaryophyllan-5-ol and rumphellaoic acid A, from the gorgonian *Rumphella antipathes. Nat. Prod. Commun.* **2017**, *12*, 1835–1837.
- 23. Chung, H.-M.; Chen, Y.-H.; Hwang, T.-L.; Chuang, L.-F.; Wang, W.-H.; Sung, P.-J. Rumphellclovane A, a novel clovane-related sesquiterpenoid from the gorgonian coral *Rumphella antipathes*. *Tetrahedron Lett.* **2010**, *51*, 2734–2736. [CrossRef]
- Ciereszko, L.S.; Johnson, M.A.; Schmidt, R.W.; Koons, C.B. Chemistry of coelenterates—VI. Occurrence of gorgosterol, A C30 sterol, in coelenterates and their zooxanthellae. *Comp. Biochem. Physiol.* 1968, 24, 899–904. [CrossRef]
- 25. Kader, N.A.A.; Habib, E.S.; Hasanean, H.A.; Ahmed, S.A.E.; Abdelhameed, R.F.; Ibrahim, A.K. B:Chemical Investigation of the Red Sea Gorgonian Coral Rumphella torta. *Rec. Pharm. Biomed. Sci.* **2020**, *4*, 16–24.
- 26. Joseph, J.D. Lipid composition of marine and estuarine invertebrates: Porifera and cnidaria. *Prog. Lipid Res.* **1979**, *18*, 1–30. [CrossRef]

- Urvois, P.A.; Barnathan, G.; Biard, J.F.; Debitus, C.; Verbist, J.F. Fatty acid composition of the New Caledonian gorgonian Rumphella aggregata: Identification of 9-methyl-6,9-heptadecadienoic acid. In *Proceedings of Marine Lipids, Brest, France, 19–20 November 1988*; Baudimant, G., Guézennec, J., Roy, P., Samain, J.F., Eds.; IFREMER: Plouzane, France, 2000; pp. 44–49.
- 28. Bergé, J.-P.; Barnathan, G. Fatty Acids from Lipids of Marine Organisms: Molecular Biodiversity, Roles as Biomarkers, Biologically Active Compounds, and Economical Aspects. *Aestivation* **2005**, *96*, 49–125.
- Imbs, A.B.; Demidkova, D.A.; Dautova, T.N.; Latyshev, N.A. Fatty Acid Biomarkers of Symbionts and Unusual Inhibition of Tetracosapolyenoic Acid Biosynthesis in Corals (Octocorallia). *Lipids* 2008, 44, 325–335. [CrossRef] [PubMed]
- Racero, J.C.; Macías-Sánchez, A.J.; Hernández-Galán, R.; Hitchcock, P.B.; Hanson, J.R.; Collado, I.G. Novel Rearrangement of an Isocaryolane Sesquiterpenoid under Mitsunobu Conditions. *J. Org. Chem.* 2000, 65, 7786–7791. [CrossRef]
- 31. Hirokawa, T.; Kuwahara, S. Synthesis of rumphellaone A via epoxy nitrile cyclization. *Tetrahedron* **2012**, *68*, 4581–4587. [CrossRef]
- 32. Ranieri, B.; Obradors, C.; Mato, M.; Echavarren, A.M. Synthesis of Rumphellaone A and Hushinone by a Gold-Catalyzed [2 + 2] Cycloaddition. *Org. Lett.* **2016**, *18*, 1614–1617. [CrossRef]
- 33. Beck, J.C.; Lacker, C.R.; Chapman, L.M.; Reisman, S.E. A modular approach to prepare enantioenriched cyclobutanes: Synthesis of (+)-rumphellaone A. *Chem. Sci.* **2019**, *10*, 2315–2319. [CrossRef] [PubMed]
- 34. Gupta, A.S.; Dev, S. Studies in sesquiterpenes–XLVI. Sesquiterpenes from the oleoresin of Dipterocarpus pilosus: Humulene epoxide-III, caryophyllenol-I and caryophyllenol-II. *Tetrahedron* **1971**, 27, 635–644. [CrossRef]
- González, A.G.; Fraga, B.M.; Luis, J.G.; Ravelo, A.G. Componentes de la "Salvia canariensis L.". An. Quim. 1975, 71, 701–705.
- 36. Delgado, G.; Cárdenas, H.; Peláez, G.; De Vivar, A.R.; Pereda-Miranda, R. Terpenoids From Viguiera excelsa and Viguiera oaxacana. *J. Nat. Prod.* **1984**, *47*, 1042–1045. [CrossRef]
- 37. Delgado, G.; Alvarez, L.; De Vivar, A.R. 15-Hydroxy-acetylerioflorin and other constituents from Viguiera linearis. *Phytochem.* **1985**, *24*, 2736–2738. [CrossRef]
- Heymann, H.; Tezuka, Y.; Kikuchi, T.; Supriyatna, S. Constituents of Sindora sumatrana MIQ. I. Isolation and NMR Spectral Analysis of Sesquiterpenes from the Dried Pods. *Chem. Pharm. Bull.* 1994, 42, 138–146. [CrossRef]
- 39. Bayer, F.M. Key to the genera of octocorallia exclusive of Pennatulacea (Coelenterata: Anthozoa), with diagnoses of new taxa. *Proc. Biol. Soc. Wash.* **1981**, *94*, 902–947.
- Dai, C.-F.; Chin, C.-H. Octocoral Fauna of Kenting National Park; Kenting National Park Headquaters: Kenting, Pingtung, Taiwan, 2019; pp. 484–485.
- 41. Chen, P.-J.; Ko, I.-L.; Lee, C.-L.; Hu, H.-C.; Chang, F.-R.; Wu, Y.-C.; Leu, Y.-L.; Wu, C.-C.; Lin, C.-Y.; Pan, C.-Y.; et al. Targeting allosteric site of AKT by 5,7-dimethoxy-1,4-phenanthrenequinone suppresses neutrophilic inflammation. *EBioMedicine* **2019**, *40*, 528–540. [CrossRef] [PubMed]

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).