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Abstract

Background: In the past, multiple sclerosis (MS) medications have been primarily designed to modulate T cell properties.
Based on the emerging concept that B cells are equally important for the propagation of MS, we compared the effect of
four commonly used, primarily T cell-targeting MS medications on B cells.

Methods: Using flow cytometry, we analyzed peripheral blood mononuclear cells (PBMC) of untreated (n =19)
and dimethyl fumarate (DMF; n = 21)-, fingolimod (FTY; n = 17)-, glatiramer acetate (GA; n = 18)-, and natalizumab (NAT;
n = 20)-treated MS patients, focusing on B cell maturation, differentiation, and cytokine production.

Results: While GA exerted minor effects on the investigated B cell properties, DMF and FTY robustly inhibited
pro-inflammatory B cell function. In contrast, NAT treatment enhanced B cell differentiation, activation, and
pro-inflammatory cytokine production when compared to both intraindividual samples collected before NAT
treatment initiation as well as untreated MS controls. Our mechanistic in vitro studies confirm this observation.

Conclusion: Our data indicate that common MS medications have differential, in part opposing effects on B cells. The
observed activation of peripheral B cells upon NAT treatment may be instructive to interpret its unfavorable effect in

withdrawal.

Gottingen (#3/4/14).

certain B cell-mediated inflammatory conditions and to elucidate the immunological basis of MS relapses after NAT

Trial registration: Protocols were approved by the ethical review committee of the University Medical Center
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Background

The enormous success of B cell-depleting anti-CD20 anti-
bodies in treatment of multiple sclerosis (MS) [1] corrobo-
rates that B cells play an important role in its pathogenesis.
Antigen-activated, differentiated B cells most likely act as
potent antigen-presenting cells for the activation of T cells
and as providers of pro-inflammatory cytokines [2].
Hereby, B cells are considered to be crucial for the
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development of new inflammatory central nervous system
(CNS) lesions and acute MS relapses.

Based on the earlier assumption that the pathophysiology
of MS is mainly mediated by T cells, the majority of estab-
lished MS medications have been designed and trialed to
target pro-inflammatory T cell properties. As a conse-
quence, relatively little is known on how these MS drugs
may influence B cells, and if so, how this may contribute to
their therapeutic efficacy. Therefore, we investigated in a
parallel approach how the four commonly prescribed medi-
cations dimethyl fumarate (DMF), fingolimod (FTY), glatira-
mer acetate (GA), and natalizumab (NAT) affect peripheral
B cells with a focus on B cell activation, differentiation, and
cytokine production, a procedure allowing us to directly
compare treatment effects without inter-study discrepancies.
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Methods

Study subjects and sample preparation

We collected peripheral blood from relapsing-remitting
MS patients at the Clinical MS Center of the University
Medical Center Gottingen (#3/4/14) between 2015 and
2018. Patients had received DMF, FTY, GA, and NAT
according to the current European guidelines [3] for the
respective drug for at least 6 months or had not received
any permanent medication or steroids for at least
6 months (untreated controls). Seven patients receiving
NAT were in addition analyzed longitudinally. Demo-
graphic and disease-related information including age,
gender, disease activity, disease onset, treatment dur-
ation, and previous treatments of the patient cohorts are
summarized in Table 1. Human peripheral blood mono-
nuclear cells (PBMC) were isolated by Ficoll density
gradient centrifugation. Samples were cryopreserved in
Dulbecco’s modified Eagle medium (DMEM; Sigma Al-
drich, MO) containing 20% dimethyl sulfoxide (Sigma
Aldrich, MO) and 20% fetal calf serum (FCS, Sigma Al-
drich, MO) and stored at — 80 °C.

Cell count determination

Immune cell counts from whole blood were determined
in our hospital’s routine laboratory. To determine the
frequency of the respective immune cell populations
(CD4", CD8", and CD19" cells), we first excluded dou-
blets, followed by gating for lymphocytes according to
their size and granularity (FSC vs SSC). Thereafter, we
gated for living lymphocytes by exclusion of Zombie
positive cells, finally determining the frequency of CD4",
CD8", and CD19" within all living lymphocytes. We
then multiplied the lymphocyte count with the fraction

Table 1 Characteristics of the patient cohorts
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of the lymphocyte subset of interest determined by flow
cytometry. Since this approach is based on scatter gating
only, there is some room for small inaccuracies which
should be considered when evaluating the data.

PBMC handling and stimulation

For analysis, cells were thawed; washed in DMEM con-
taining 10% FCS, 1% sodium pyruvate (Sigma Aldrich,
MO), 1% L-glutamine (Sigma Aldrich, MO), and 0.1% -
mercaptoethanol (Sigma Aldrich, MO); and plated at a
concentration of 0.5 x 10° cells/ml in 96-well U-bottom
plates (Sarstedt, Germany). For the analysis of activation
marker and co-stimulatory molecules, PBMC were stim-
ulated with 2 pg/ml CpG oligodeoxynucleotides (CpG)
or 100 pg/ml lipopolysaccharide (LPS) as indicated for
20 h at 37°C and 5% CO,.

To determine the intracellular cytokine content,
PBMC were cultured for 12 h in the presence of 1 pg/ml
CpG followed by incubation with 500 ng/ml ionomycin,
20 ng/ml phorbol 12-myristate 13-acetate (PMA; both
Sigma Aldrich, MO), and the protein transport inhibitor
GolgiPlug (BD Bioscience, NJ) for 4 h according to the
manufacturer’s recommendations. For the in vitro ana-
lysis of NAT-mediated effects, we incubated PBMC of
healthy donors for 4 h with various concentrations of
NAT or an immunoglobulin G (IgG) 4 isotype control
antibody (IGHG4; Biolegend, CA) followed by 40h
simultaneous incubation with NAT/control and 1 pg/ml
CpG. Thereafter, GolgiPlug, 500 ng/ml ionomycin, and
20 ng/ml PMA were added for additional 6 h. Geometric
mean fluorescent intensity (gMFI) of intracellularly ac-
cumulated cytokines was determined via flow cytometry.

Control DMF FTY GA NAT NAT longitudinal
Number of patients 19 21 17 18 20 7
Age (y) 342+81 370+119 395+94 40.1+£9.1 3574103 256+6.3
Female sex (%) 73.7 476 64.7 50.0 550 714
EDSS score 200+ 140 1.95+1.50 276 +1.39 1.81+143 370+ 211 264 +201
MS since (y) 5.07+5.30 548 £3.89 12.00 +4.50 750 +£4.04 9.50£545 239+£281
Drug taken since (y) - 0.73+0.31 1.75+0.99 422 +248 3574278 -
Previous treatment (n)
Interferon beta 0 5 3 1 10 1
Glatiramer acetate 0 3 2 0 2 1
Natalizumab 0 2 4 0 0 0
Fingolimod 0 0 0 0 2 0
Mitoxantrone 0 0 0 0 0 1
None 19 1 8 17 6 4

Control multiple sclerosis (MS) patients had not been treated with any immunomodulatory drug for at least 6 months when phlebotomy was performed, while
dimethyl fumarate (DMF)-, fingolimod (FTY)-, glatiramer acetate (GA)-, and natalizumab (NAT)-treated MS patients were on medication for at least 6 months before

sampling. Data are displayed as mean + standard deviation
EDSS Expanded Disability Status Scale, y years
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Fig. 1 B cell subset frequencies are altered by established MS medications. Peripheral blood mononuclear cells (PBMC) were isolated from
controls (n = 19; circles) or dimethyl fumarate (DMF; n = 21; squares)-, fingolimod (FTY; n=17; triangles up)-, glatiramer acetate (GA; n=18;
triangles down)-, and natalizumab (NAT; n = 20; diamonds)-treated multiple sclerosis patients. Cells were stained with the respective antibodies
and analyzed using flow cytometry. Bars represent standard error of the mean (SEM); * P < 0.05; **P < 0.01; ***P < 0.001; ***P < 0.0001; unpaired t
test. a Exemplary gating strategy: within all recorded events, doublets were excluded and living cells were determined using size exclusion and
staining with Zombie dye. CD19"* B cells were further subdivided into transitional B cells (trans; CD27~ CD38"), antigen-experienced B cells (ag-
exp,; CD27%), and memory B cells (mem; CD27"*; CD387). Within the CD27" CD38" cells, plasmablasts (plasmabl; CD20~ CD27* CD38") were
defined as CD20™. b Mean frequency and fold changes (treated/control 1; e.g., a value of — 0.4 represents a reduction by 40%) + SEM of CD19* B
cells within the PBMC pool, grouped according to the patient’s treatment. ¢ Mean frequency + SEM of transitional B cells, memory B cells,
antigen-experienced B cells, and plasmablasts within the B cell pool

For the evaluation of apoptosis, PBMC were incubated
with 30 ug/ml NAT or isotype control antibody for 72 h.

Flow cytometry analysis

Prior to antibody incubation, cells were stained with via-
bility dye (Zombie™ dye, 1:500, Biolegend) for live cell/
dead cell discrimination and incubated with Fc receptor
blocking solution (Human TruStain FcX, BioLegend,
CA) to prevent unspecific antibody binding. Extracellular
antigens were stained using anti-human cluster of differ-
entiation (CD)4-PE-Cy7, CD8-PE, CD14-PE-CF594 and
CD19-FITC/PerCP-Cy5.5, CD20-APC-Cy7, CD25-BV605,
CD27-PacificBlue, CD38-FITC, CD80-PE-Cy7, CD150-
BV-421, major histocompatibility complex class II
(MHC-II)-APC (all Biolegend, CA), CD19-PerCp-Cy5.5,
CD40-PE-Dazzle, CD69-FITC, CD86-BV421, and CD95-
PE (all BD Biosciences, NJ) antibodies. For analysis of
intracellular cytokines, cells were permeabilized by adding
fixation/permeabilization solution (Cytofix/Cytoperm,
BD Biosciences, NJ) and stained with anti-human interleu-
kin (IL)-6-FITC, IL-10-PE/CF594, and tumor necrosis
factor (TNF)-Alexa Flour 700 (all BD Biosciences, NJ)
antibodies. Apoptosis was evaluated using propidium
iodide-PE and annexin V-FITC (both BioLegend, CA).

Samples were analyzed using a LSRII Fortessa; FACS Diva
(BD Biosciences) and FlowJo software were used to quan-
tify flow cytometric data.

B cell proliferation assay

For the analysis of B cell proliferation, B cells were
isolated using magnetic-activated cell sorting (MACS;
anti-human CD19 MicroBeads, Miltenyi Biotec). After
carboxyfluorescein succinimidyl ester (CFSE) staining
(BD Biosciences), 60,000 cells/well were plated in 96-well
plates and stimulated with anti-human IgG and IgM
F(ab), antibody fragments (20 pg/ml; Jackson Immunor-
eaearch, PA), anti-human CD40 antibodies (10 pg/ml; Bio-
Cell, NH), CpG (0.5 pg/ml), and IL21 (50 ng/ml) for 72 h.
Samples were analyzed using a LSRII Fortessa; FACS Diva
(BD Biosciences) and FlowJo software were used to quan-
tify flow cytometric data.

Statistical analysis

For normality testing, we used the D’Agostino & Pearson
omnibus normality test; the paired ¢ test was used for
parametric data, Mann-Whitney U tests for non-parametric
data, and the Wilcoxon signed-rank tests for longitudinal
samples. Statistical significance was defined as P < 0.05.
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Fig. 2 Natalizumab treatment increases the expression of activation markers and TNF production in B cells. Peripheral blood mononuclear cells
(PBMC) were isolated from controls (n = 19; circles) or natalizumab (NAT; n = 20; diamonds)-treated multiple sclerosis patients. Cells were stained
with the respective antibodies and analyzed using flow cytometry. Each dot represents the value of an individual patient; bars indicate mean +
standard error of the mean; *P < 0.05; **P < 0.01; ***P < 0.001; ***P < 0.0001; unpaired t test for cross-sectional data. a Total leukocyte counts and
neutrophil, lymphocyte, monocyte, eosinophil, and basophil counts were determined from whole blood. b, ¢ Cell frequencies and absolute cell
counts were determined for b CD4" and CD8" T cells and CD19* B cells as well as for ¢ B cell subsets such as transitional B cells (trans), antigen-
experienced B cells (ag-ex), memory B cells (mem), and plasmablasts (plas.). d PBMC were stimulated with 1 ug/ml CpG for 12 h, followed by 4 h
of 500 ng/ml ionomycin / 20 ng/ml phorbol 12-myristate 13-acetate (PMA) stimulation. We determined the frequency as well as the absolute
number of B cells producing tumor necrosis factor alpha (TNF), interleukin-(IL-)6, and IL-10. e, f Frequency and absolute number of B cells
expressing markers for activation (e) and antigen presentation (f) were determined after 20 h of 2 ug/ml CpG stimulation. g PBMC were pre-
stimulated for 12 h with 1 ug/ml CpG, followed by 4 h of 500 ng/ml ionomycin / 20 ng/ml PMA stimulation. We determined the frequency and
absolute number of myeloid cells (CD14") producing TNF, IL-6, or IL-10. CD150 expression was determined after 20 h of incubation with 100 pg/
ml lipopolysaccharides (LPS). h PBMC were incubated with 100 pg/ml LPS for 20 h and determined their expression of CD150 and major
histocompatibility complex class Il (MHC-I1)

Results

First, we investigated the effect of treatment with
FTY, NAT, DMF, and GA on the overall abundance
of B cells in the blood. Compared to untreated MS
patients, the FTY group showed a reduced B cell fre-
quency, NAT treatment resulted in a significant in-
crease of B cells, and both DMF and GA had no
detectable effect (Fig. 1a, b). DMF and even more so
FTY raised the relative abundance of immature transi-
tional B cells, while the frequency of differentiated
memory B cells was correspondingly lower in both

groups. DMF treatment was furthermore associated
with a reduced frequency of CD27" antigen-
experienced B cells, while NAT treatment resulted in
a substantial rise of this mature B cell population.
Lastly, the proportion of plasmablasts was elevated
upon FTY treatment (Fig. 1c). Using this set of pa-
rameters, GA treatment exerted no detectable effect
on B cells.

Analyzing the effect of NAT in detail, we found
that NAT treatment was associated with an incline of
the total number of leukocytes (Fig. 2a left), including
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lymphocytes, monocytes, eosinophils, and basophils
(Fig. 2a right). Within the enriched fraction of lym-
phocytes, the frequency of B cells was proportionally
increased, while CD4" T cells were compensatory re-
duced (Fig. 2b left). However, when calculating absolute
numbers, all investigated immune cell populations were
significantly elevated upon NAT treatment (Fig. 2b right).
Furthermore, B cells from NAT-treated patients were dis-
tinctly enriched in antigen-activated and memory B cells
(Fig. 2c), showed a higher production of pro-inflammatory
cytokines (Fig. 2d), and presented with an elevated fre-
quency and total number of activated CD25%, CD69", and
CD95" cells (Fig. 2e). While the expression of MHC-II
remained unchanged, the level of the co-stimulatory mole-
cules CD40, CD80, and CD86 was increased on B cells
upon NAT treatment (Fig. 2f). In conjunction, this finding
revealed a rise in all investigated immune cell subpopula-
tions and pointed towards a predominant increase in pro-
inflammatory B cell subsets upon NAT treatment. In line
with this data, the longitudinal analysis of interrelated sam-
ples collected prior and after NAT treatment initiation
confirmed our observations regarding memory, antigen-
experienced (CD27%), CD40*, CD95", and TNF' B cells
(Fig. 3) and consolidated the assumption that NAT treat-
ment triggers the activation and pro-inflammatory differ-
entiation of B cells. In addition, NAT treatment was
associated with an increase in the production of pro-
inflammatory TNF and IL-6 by CD14" myeloid cells
(Fig. 2g) as well as an enhanced expression of the activation
marker CD150, an effect which was even more pro-
nounced when absolute cell numbers were analyzed. Only
minor effects could be detected regarding the assessed pa-
rameters on T cells, where the number of MHC-II* CD8"
T cells was slightly elevated in NAT-treated patients (Fig.
2h).

In order to study the immune-stimulating effect of
NAT mechanistically, we cultured whole PBMC of
healthy donors with increasing concentrations of
NAT (0-120 pg/ml) in vitro, which were chosen ac-
cording to reported serum levels in treated patients
[4]. In line with the patient’s ex vivo data, in vitro
NAT exposure enhanced the production of pro-
inflammatory TNF and IL-6 by B cells and CD14"
myeloid cells (Fig. 4a, b) and upregulated the expres-
sion of CD40, CD69, and CD95 on B cells (Fig. 4c).
To explain mechanistically how the aforementioned
enrichment of B cells in NAT-treated patients may
occur, we investigated the proliferation and apoptosis
behavior of these cells upon NAT treatment. Within
the chosen culture period, NAT exposure to PBMC
or purified B cells exerted an effect on neither B cell
frequency (no antibody 11.1+0.7%, NAT 12.0 + 0.9%;
isotype 11.8 £ 1.1%), nor their apoptosis rate (Fig. 5a,
b) or proliferation (Fig. 5c-d).
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Fig. 3 Natalizumab increases pro-inflammatory properties of B cells
in longitudinal samples. Blood samples (n =7) were collected before
NAT treatment initiation and at the indicated time intervals. Cells
were stained with the respective antibodies and analyzed using flow
cytometry. Lines connect the values of individual patients. *P < 0.05;
Wilcoxon signed-rank test. a Frequency of CD4" and CD8" T cells,
CD14" phagocytes, and CD19" B cells within all peripheral blood
mononuclear cells (PBMC). b Frequency of transitional (trans.) B cells,
antigen-experienced (ag-exp.) B cells, memory B cells, and
plasmablasts within all B cells. ¢ The expression of activation markers
and molecules involved in antigen presentation was determined
after stimulation with 2 ug/ml CpG for 20 h. d PBMC were pre-
stimulated for 12 h with 1 ug/ml CpG, followed by 4 h of 500 ng/ml
ionomycin / 20 ng/ml phorbol 12-myristate 13-acetate stimulation.
Cytokine production of B cells (BC) was quantified using the
geometric mean fluorescent intensity (gMFI) of the

respective cytokine

Discussion

In this manuscript, we aimed to investigate in a parallel
approach how commonly used MS medications affect B
cells, a procedure allowing us to compare treatment
effects directly without inter-study discrepancies. Despite
the fact that all investigated agents have proven efficacy
in large clinical trials, our data showed that DMF, FTY,
GA, and NAT exerted differential, in parts even opposing
effects on the composition and properties of peripheral B
cells. Confirming previous studies, our data showed that
GA treatment has no detectable effect on B cell
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Fig. 4 Natalizumab increases TNF and IL-6 production of B cells in vitro. Peripheral blood mononuclear cells (PBMC) were collected from healthy
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fluorescent intensity (gMFI) of intracellularly accumulated cytokines (tumor necrosis factor (TNF), interleukin (IL)-6 and IL-10) in a B cells (CD19")
and b CD14* myeloid cells was determined via flow cytometry. ¢ Without further stimulation, expression of activation markers and co-stimulatory
molecules on B cells were determined using flow cytometry
J

maturation and differentiation [5], while both DMF [6]
and FTY [7] suppressed the prevalence and function of
mature B cells and increased the relative frequency of
their immature phenotypes.

NAT treatment on the contrary was associated with a
substantial expansion of all leukocytes in blood, but
most strikingly of mature B cell subsets. In an attempt
to investigate whether this enrichment may ascribe to
changes in cell survival, we challenged B cells in vitro
with NAT, but detected neither effects on apoptosis nor
proliferation. Various other explanations have been
proposed to explain the rise of B cells in blood. Based
on the observation that particularly the number of
CXCR3" B cells is increased in this compartment [8],
Saraste et al. suggested that NAT treatment detains B
cells with a high migratory capacity in the blood stream,
which would—without treatment—extravasate into the
inflamed tissue. Others though claimed that NAT treat-
ment perturbs the homing of mature B cell subsets into

secondary lymphoid organs, which increases their preva-
lence in the circulation [9]. Our in vitro observation that
NAT exposure enhances neither apoptosis nor proliferation
of B cells may add an additional explanation why B cells are
enriched upon NAT treatment.

Besides these assumed effects on cellular
compartmentalization, we observed that in vivo and
in vitro treatment with NAT resulted in B cells with an
elevated production of pro-, but not anti-inflammatory
cytokines and enhanced expression of activation marker
and co-stimulatory molecules. Especially the latter
setting indicated that NAT exerted a direct stimulating
effect on B cells, possibly mediated by the bidirectional
signaling effect upon binding of the NAT to CD49d [10,
11], a mode of action suggested to increase IL-2, inter-
feron-y, and IL-17 production of purified CD4" T cells
in vitro [12]. In this context, it was shown that NAT ther-
apy modulates microRNA and pro-inflammatory cyto-
kine expression in T cells of MS patients [13, 14],
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suggesting underlying epigenetic processes. In compari-
son with the described stimulating impact of NAT on
T cells, we observed a much stronger effect on B cells
in our study. This may be explained by the higher ex-
pression of CD49d on B cells than T cells [15]. Further-
more, CD49d is as well expressed on CD14" myeloid
cells [16], a fact possibly explaining why the production
of pro-inflammatory cytokine by these cells is also
enhanced upon NAT treatment.

We assume that the here described increase in B cell
number and activation upon NAT treatment is not just
an epiphenomenon but has clinical implications. This as-
sumption is fueled by the observation that high B cell
frequencies after NAT treatment are associated with on-
going disease activity [17]. Along the same lines, a recent
report showed that B cells are enriched in the CNS
parenchyma of patients experiencing relapses after NAT
therapy cessation [18] placing focus on the question
whether a prompt therapeutic follow-up with B cell
suppressive agents can decrease the risk of such relapses.
Indeed, first investigations showed that patients receiving
the B cell-inhibiting agent FTY as follow-up treatment
after NAT experience less frequent relapses than patients
receiving GA [19] or no ensuing treatment [20]. B cell de-
pletion with rituximab was even more effective than FTY

as a post-NAT treatment [21], underscoring the presumed
key role of B cells in relapses after NAT cessation.

Moreover, the development of extra nodal large B cell
lymphomas that has been described in some NAT-
treated patients [22] may be linked to our observations
regarding B cell activation and proliferation.

Lastly, the expansion of peripheral B cells with
presumed pathogenic properties plausibly explains why
NAT worsens neuromyelitis optica [23, 24]. In this
regard, it needs to be evaluated how patients with other
CNS demyelinating diseases, which show a prominent B
cell contribution, such as myelin oligodendrocyte glyco-
protein antibody-associated encephalomyelitis [25], or MS
patients solely and consistently responding to plasmapher-
esis as relapse intervention [26] respond to NAT.

Limitations

We are aware that the small cohort size is limiting this
study and that future investigations, which will include a
larger population, extended clinical readouts, and a longer
follow-up, should substantiate our data. More detailed
in vitro experiments on isolated B cells may clarify if the
observed pro-inflammatory effects are induced directly on
B cells or indirectly via other immune cells.
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Conclusions

Established MS therapeutics exert fundamentally oppos-
ing effects on B cells, reaching from their inhibition
(DMF, FTY) to substantial activation (NAT). Possible
clinical consequences of these complex alterations yet
need to be established.
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