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Abstract: The high level of heterogeneity in Autism Spectrum Disorder (ASD) and the lack of sys-
tematic measurements complicate predicting outcomes of early intervention and the identification of
better-tailored treatment programs. Computational phenotyping may assist therapists in monitoring
child behavior through quantitative measures and personalizing the intervention based on individual
characteristics; still, real-world behavioral analysis is an ongoing challenge. For this purpose, we
designed EYE-C, a system based on OpenPose and Gaze360 for fine-grained analysis of eye-contact
episodes in unconstrained therapist-child interactions via a single video camera. The model was
validated on video data varying in resolution and setting, achieving promising performance. We
further tested EYE-C on a clinical sample of 62 preschoolers with ASD for spectrum stratification
based on eye-contact features and age. By unsupervised clustering, three distinct sub-groups were
identified, differentiated by eye-contact dynamics and a specific clinical phenotype. Overall, this
study highlights the potential of Artificial Intelligence in categorizing atypical behavior and providing
translational solutions that might assist clinical practice.

Keywords: autism spectrum disorders; behavior imaging; computational phenotyping; eye contact;
heterogeneity; preschool children

1. Introduction

Shared frameworks or systematic behavioral indicators to analyze and evaluate the
intervention of children with autism conditions are still lacking in clinical practice. A major
cause of this is the high heterogeneity of the spectrum, both in developmental trajectories
and in response to treatment [1–6]. This wide variability recalls the need to adapt the
intervention to individual child characteristics; however, there is a shortage of effective
behavioral markers to identify better-tailored programs [7,8]. Some factors have been
considered in the literature as moderators, but the results are mixed, and their specific
importance still needs to be investigated [7]. Possible concerns may arise from using
behavioral correlates designated for clinical diagnosis that may not be sensitive enough
to measure subtle differences in either improvement or sub-group differentiation [9]. The
research effort should be directed towards structuring systematic methodologies based on
fine-grained descriptors that are suitable to measure more specific behavioral variables.
Such systems could be helpful to tackle spectrum stratification more systematically and
to provide additional information. In this study, we aim to explore the application of an
Artificial Intelligence (AI) framework based on combining video processing models and
machine learning analytics to expose fine-grained behavioral metrics that may help address
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this challenge in unstructured settings. In particular, we examined eye-contact features
through a computational phenotyping approach and employed unsupervised clustering to
explore the categorization for the spectrum.

Behavior imaging involves computational sensing and modeling techniques to analyze
human behavior through images and has proven great potential in clinical domains [10–13].
These approaches may provide tools that assist clinicians to monitor behaviors and struc-
ture personalized interventions through refined, systematic indicators [14–16]. However,
the application of AI-based systems on the intervention of autism conditions is still un-
derdeveloped and at an experimental step. The primary difficulty with real-world data
from intervention sessions is that analysis is complex and needs a lot of versatility. Within
the context of autism, it is well-known that it is crucial to assess behavior in settings that
are as naturalistic as possible [1]. Maintaining a non-invasive approach is essential to
prevent affecting the therapist-child interplay. In addition, fine-grained analyses have
to deal with the high level of the dynamics of the setting, in which both child and adult
are constantly moving and which includes periods of interrupted or low-quality signals.
For these reasons, the application of AI modeling in the intervention scenario is usually
based on restructuring interaction and setting, which often compromises the applicative
value [17,18].

The more the interaction and the environment are structured, the better the quality of
the data collected; however, this comes at the high cost of limited flexibility [19]. In most
studies, the trade-off has been weighted in favor of more efficient model performances,
resulting in a lack of translational solutions [18]. Research needs to move towards designing
more balanced computational methods that account for data quality yet emphasize the
ecology of interactions. Thus, it will be feasible to deliver effective AI-based systems that
can be scaled to real-world scenarios and provide support for clinicians and therapists
working across the autism spectrum. The novel contribution of this study in this field is
the implementation of a complete system for eye contact analysis and its validation in real
clinical environments.

1.1. Gaze Patterns

Lack of eye contact is an iconic trait on the autism spectrum [20,21]. Maintenance of
sustained eye contact may significantly enhance the quality of the social experience as well
as increase the likelihood of success in responding properly to stimuli and prompts, in ad-
dition to potentially improving the acquisition of adaptive social competencies [21–23]. As
already pointed out, children with autism, even at an early age, show marked difficulties in
gaze integration and an atypical response to adult gaze [24–28]. Therefore, gaze integration
is already a prominent goal in early intervention programs [21]. Learning appropriate
gaze modulation early in social interaction may enhance success in many domains and
potentially improve intervention outcomes of young children with ASD [29,30].

In this research area, AI has found many applications in both symptom monitor-
ing [11,31] and treatment, especially through robot-mediated therapy [16,32,33]. Notably,
computational approaches introduce the possibility of collecting quantitative and fine-
grained measures with high temporal sensitivity. Most of these approaches were designed
upon employing advanced eye-tracking technologies through wearable devices (i.e., smart-
glasses) [34–36], frontal cameras [32,37–41] or strong interaction structuring [11,37]. The
major drawback of implementing these techniques remains the constraint of operating
in not-so-naturalistic environments [17,18]. Despite the advances and the considerable
appeal of this area of study, there is still a lack of examples for eye contact detection with
sufficiently ecological methodologies in autism research. Given the relevance of integrating
gaze into intervention programs, this issue is an important goal.

Additionally, examples of the role of gaze patterns in defining different shadings
of the spectrum are also lacking in terms of a functional perspective. Most studies fo-
cused on discriminating between those diagnosed with ASD and typically developing
peers [30,34,42]. To the best of our knowledge, very few studies have investigated the role
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of gaze in stratifying the autism spectrum. Campbell and colleagues [43] investigated the
role of variability in attention to direct gaze in differentiating the autism spectrum. They
employed unsupervised clustering on 20-month-old toddlers with ASD based on visual
response to dyadic stimuli from videos. The analysis identified three different sub-groups
that were compared for verbal, social, and adaptive functioning skills [43]. The cluster that
exhibited limited attention to social scenes subsequently demonstrated a poor outcome
at 3 years of age; conversely, the sub-group with good attentional abilities developed
verbal abilities and is high functioning. The results of this work confirm that gaze analysis
may have an interesting clinical role, both in addressing spectrum heterogeneity and as a
predictor of outcome [43]. In a different approach, Fabiano and colleagues [30] used a com-
bination of hand-crafted and raw gaze variables with demographic characteristics [44,45],
such as age and gender, to classify multiple levels of ASD risk. Features included the
location and duration of gaze fixations measured by eye-tracking in children between 6
and 132 months of age. They employed several classifiers (random forest, decision tree,
deep feedforward neural network), showing that the different classes (low, medium, high,
and ASD) correspond to different patterns that can be used to classify risk. The results
confirmed the potential of gaze as an indicator that needs to be further explored by inves-
tigating the presence of sub-groups within children with ASD. In addition, the analyses
showed that age is an important factor in classifying ASD risk, resulting in an overall
accuracy of 93.45% [30]. More recently, Latrèche and colleagues [46] investigated the role
of social orientation in modulating treatment outcomes in preschool children with ASD.
They employed eye-tracking technologies to measure subjects’ attentional patterns while
watching videos of an adult engaging in child-directed speech. The results confirmed that
the degree of attention to the adult’s face strongly correlated with the severity of autistic
symptoms at baseline and also predicted improvement after treatment. Children with
ASD who stared less at the actress’s face and avoided eye contact suffered more impair-
ment in the socio-communicative domain and showed less after-treatment improvement,
particularly in the verbal domain [46].

Overall, the results are promising and highlight the importance of social-attentive
skills in categorizing the autism spectrum and for predicting treatment outcomes [30,43,46].
Gazing may be a relevant feature, but further investigations and less intrusive method-
ologies are needed. Behavior Imaging approaches may be suitable to address this need,
offering interesting alternatives for the ecological measurement of children’s behavior
through video, which can be implemented in systems with applicative value in clinical
practice [18].

1.2. Current Study

This work is focused on developing an AI-based method for the ecological analysis
of therapist-child interactions through video capable of extracting dyadic gaze coordination
episodes. The purpose of this study is to test the validity of computational solutions to system-
atically analyze the socio-attentional components of the interactions and identify behavioral
indicators that may allow for the identification of sub-groups within the spectrum.

We considered eye contact coding for analysis because it is a major impairment in
autism and because of its crucial role in the early intervention [29,46]. We collected video
recordings (around 60 min each) of ADOS administration sessions of children with ASD
in preschool age. We included videos at different resolutions, from low to high, and in
different rooms of the same laboratory, from small to large, to design a more resilient and
translational framework.

For gaze analysis, we developed a combined AI-based approach based on a module
to extract multi-person body and head pose keypoints [47] and a module to derive a 3D
vector of gaze direction frame-by-frame from wild videos [48]. We further developed
a system for derivation of eye contact periods experienced between therapist and child
during unconstrained interactions. The model was validated by matching the output with
hand-coded features. Continuous interactive sequences of about 10 min were extracted
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from five different videos (with different video resolutions and in different lab rooms)
for a total of more than 70,000 frames. The sequences were hand-coded frame-by-frame,
and the results were compared with the model’s output to evaluate the performance and
understand under which conditions the data quality stayed too low.

Finally, we tested the gaze features for autism spectrum stratification based on machine
learning methods. We hypothesized that based on our metrics, it would be possible to
identify sub-groups with different levels of functioning and symptom severity through
unsupervised clustering and validation on clinical variables.

The perspective of this exploratory study is to contribute by emphasizing the role that
computational solutions can play in identifying systematic and ecological approaches to
categorize atypical child behavior. Our method was developed by enhancing systems that
are suitable for analysis in real-world scenarios [47,48]. Identifying systematic and refined
behavioral indicators that categorize the heterogeneity of the autism spectrum and that
are predictive of treatment outcomes can be used to help clinicians monitor and design
better-tailored interventions.

2. Materials and Methods
2.1. Data Collection

All analyses and data collection were carried out in accordance with the ethical
standards of the Italian Association of Psychology (AIP) and the Ethics Committee of the
APSS (Trento, Italy). The study involved 85 (11F, 74M) preschool children (<6 years of age)
with a confirmed diagnosis of Autism Spectrum Disorders (ASD). All the participants were
Italian and recruited within ODFLab patients. All families involved in this study were well
informed about the procedure and agreed to written informed consent. They also were
aware of the possibility of abandoning the procedure at any time.

The diagnosis of ASD was confirmed through a comprehensive assessment of the
children’s functional profile and validated through a clinical judgment by an independent
clinician based on DSM-V criteria [49] and through the administration of the ADOS-2 [50].
Population characteristics are summarized in Table 1.

Table 1. Population characteristics.

ASD Sample

n = 85
Age (months), mean (SD) 46.32 (13.8)

GQ, mean (SD) 71.54 (17.4)
ADOS, mean (SD) 14.82 (1.4)

Gender, N (%)
Male 74 (87.1)

Female 11 (12.9)
Note: ADOS: Autism Diagnostic Observation Schedule, 2nd edition, raw score; GQ: Global Developmental
Quotient (GMDS-ER); ASD: Autism Spectrum Disorders.

Inclusion criteria required that the subjects had a diagnosis of ASD and that they had
been assessed within 6 years of age. During the clinical evaluation, psychological tests
were administered to assess general cognitive functioning and social skills. All assessment
meetings were video-recorded. In particular, videos of the ADOS-2 administration sessions
were collected. Clinical variables collected in the study included ADOS-2 raw scores for
social abilities and symptom severity and the Griffiths Developmental Scales (GMDS-ER)
for an overall assessment of cognitive development quotient and related subscales for all
the participants.

The ADOS-2 is the golden standard for the diagnosis of autism and is carried out by
an experienced trained specialist. The administration procedure consists of a sustained
semi-structured play interaction between the clinician and the child to elicit different socio-
cognitive skills. The instrument is structured in 4 different modules according to the child’s
chronological age and level of expressive language. Each module is divided into social
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abilities (SA) and repetitive and restricted behaviors (RRB) subscales, combined into an
overall comparison score to classify the severity of the child’s autistic symptoms. In the
present study, the raw scores have been included; as for the toddler module (suitable for
younger children), it is not possible to compute a standardized score [50].

The GMDS-ER are developmental scales (also normalized in an Italian sample) ad-
ministered to children in a laboratory setting through semi-structured activities to assess
different domains of mental development in young children. The testing provides a global
developmental quotient (GQ) and specific scoring on six different subscales of cognitive
functioning, including gross motor, hand-eye coordination, communication, social, perfor-
mance, and practical reasoning abilities. In this study, the GQ and the subscale scores were
considered; the practical reasoning scale was excluded because it is not administered to
young children [51].

2.2. Videos Specifics

The video recordings considered for the attentional pattern analysis included play
interactions between therapists and children during the administration of the ADOS-2.
The average duration of the recordings was approximately 1 h, but it varied with the
child’s responsiveness and the quality of the interplay (duration M = 63.91 min, SD = 26.2).
The play activity with the child is kept spontaneous by the therapist, although using
standardized materials and a predefined sequence.

The videos were all recorded in the same laboratory, the ODFLab, but in four different
rooms, two of which were larger (around 28 m2) and two of which were smaller (around
12 m2). Acquisition of the recording was carried out by using a single environmental
camera in the corner of the room. The location and resolution of the cameras varied based
on the room, which ranged across 384/640/720/1280/1920 pixels of width. Videos at
384 px were recorded with a Canon VC C4 camera, videos at 640 px with a Canon VB
C50i camera, videos at 720 px with an AXIS 213 PTZ network camera, and videos at
1280/1920 px with a PTZOptics PT12x SDI WH G2 camera. The video cameras employed
were not additionally calibrated. Details regarding video resolution in the sample are
shown in Table 2.

Table 2. Video resolution for the ASD sample.

Room Size. Video Resolution (px)

384 × 288 640 × 480 720 × 576 1280 × 720 1920 × 1080
Small, N (%) 10 (11.8) 5 (5.9) 43 (50.6) 1 (1.2) 0
Large, N (%) 3 (3.5) 10 (11.8) 11 (12.9) 0 2 (2.4)

The resulting data collection were recordings with a high variability of the content,
both in terms of the interaction and the video quality of the material. The data can vary
from high-resolution videos shot in a relatively small room to low-resolution videos taken
in a larger room, where the subjects were more distant and less clearly visible. Such
variability represents both a drawback and a resource. While it complicates testing and
weakens video analysis performance, it also requires the design of a system that is more
resilient to data variations.

The study’s primary objective was to define a resilient framework to extract atten-
tional patterns from our real-world clinical data automatically. Details about the model
development are described in Section 2.4.

2.3. Related Work

The application of AI-based models for the analysis of attentional patterns has recently
advanced, with promising results [11]. The potential again relies on the opportunity
to automatically measure attentional behavior through video and extract quantitative
parameters in a systematic way. However, predicting gaze direction in real-world scenarios



Brain Sci. 2021, 11, 1555 6 of 24

has been proven challenging. The strong variability of the environment, the occlusion of
the image, and the dynamism of the interaction remain difficult variables to manage.

Most systems have been integrated to analyze gaze with a frontal camera through eye
recognition and geometrical segmentation [52,53]. However effective, the strong limitation
of these approaches is that they are based on heavy interaction structuring and rely on a
fixed light source. They are not suitable for unconstrained environments, nor for analyzing
dynamic interactions within the clinical setting [48].

An alternative is appearance-based methods that learn more direct gaze mapping
using large annotated datasets [54]. These methods for gaze estimation work well in
everyday settings, yet most of the state-of-the-art models are still being developed and
evaluated based on datasets collected under controlled conditions in the laboratory, often
acquired with a frontal camera. These conditions are constrained by limited variability in
appearance and little change in head pose [54–57].

Regarding the specific analysis of eye contact episodes in dynamic interactions, there
are no benchmark designs. This is because eye contact recognition does not require
only an accurate estimation of gaze direction and information about the position and
orientation of the target. A few examples attempted to address this issue by offering
advanced solutions also using standard cameras in literature [58]. Smith and colleagues [59]
employed a classification approach to determine eye contact from a camera video. Yet,
their methodology required a priori knowledge about the size and pose of the target [59].
Similarly, Parekh and colleagues [60] developed a Convolutional Neural Network (CNN)
architecture that recognized eye contact. Their method performed well; however, it required
the subject to be stationary in front of a camera [60]. Müller and colleagues [58] developed
a novel approach to recognizing eye contact in multi-person interactions to address this
issue. The setting consisted of a setup of 8 different environmental cameras placed around
4 adults intruding while sitting. The model combined both gaze direction information
and speech (determined by analysis of facial action units), assuming that people tend to
look at the person who is talking during conversations [58,61]. The model was further
evaluated on datasets of natural group interactions and performed better against more
standard approaches [57,58].

Interesting examples are also available in the context of multi-person interactions [58,60].
Although efficient, these solutions stay constrained to highly structured environments and
are not suitable for naturalistic clinical settings, where children and therapists often rapidly
change both position and orientation. Designing a system suitable for dynamic interactions
and real-world scenarios is the primary goal of the present study.

2.4. Model Design

We aimed to develop a complete eye contact detection system (EYE-C) well suited
to analyze collected clinical videos. The first objective was to implement a computational
solution for extracting multi-person gaze directions in naturalistic videos. To address this
problem, we designed a system based on state-of-the-art pre-trained algorithms composed
of (1) a module for extracting the head position of targets in the image [47] and (2) a module
for estimating a frame-by-frame gaze direction vector [48].

For the (1) step, we used OpenPose, which is a CV model that can do real-time multi-
person 2D pose estimation from in-the-wild videos [47]. The model takes as input the colored
image and produces the 2D coordinates of the anatomical keypoints for each person in the
image. The OpenPose pipeline consists of a first step in which the input RGB image is fed to a
multi-stage CNN architecture, initialized with the VGG-19 model, and then fine-tuned [62].
In the first set of stages, a feedforward network predicts the 2D confidence map of the body
keypoints. In the second stage, Part Affinity Fields (PAFs) are predicted, representing a degree
of association between the keypoints and enabling body parts to integrate into a full-body
pose [47,63]. In the end, the confidence map and PAFs are parsed through inference to
produce 2D keypoints of all people in the image [47]. The model was evaluated on multiple
datasets [64,65] and compared against Mask R-CNN [66] and AlphaPose [67], achieving
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the best performance considering the trade-off between speed and accuracy in the COCO
Challenge 2017. The output of the model consists of a JSON file of 135 landmarks of different
body parts divided into 3 blocks: body + foot, hand, and face detection.

We employed OpenPose to extract the features from the first main block (body + foot)
and then computed the head bounding boxes of the targets by using the keypoints of ears,
eyes, nose, and neck. Once we extracted the therapist and child’s head coordinates in the
video frames, we can apply the gaze estimation module.

In the second module, (2) we used Gaze360, an appearance-based model capable
of extracting a 3D gaze vector from 2D videos in-the-wild [48]. Given the absence of
real-world datasets to estimate gaze, the authors first collected a large-scale dataset for
gaze-tracking in unconstrained images. The dataset is the largest publicly available dataset
and consists of 238 subjects in both indoor and outdoor environments with labels of 3D
gaze coordinates in many head poses and distances [48]. Based on the dataset, the authors
further implemented a model for gaze direction estimation. The architecture of Gaze360
is based on bidirectional Long Short-Term Memory (LSTM) capsules, which provide an
average of the modeling sequences in which the output depends on both previous and
future inputs [48]. Thus, a window of 7 consecutive frames of head crops is used as input
(centered around the target frame) to predict gaze. In the first stage, the head crop of each
frame is processed individually through a CNN, which produces 256-dimensional features.
In the second step, the features are fed to the bidirectional LSTMs to produce compact
representation vectors. Finally, vectors are concatenated into fully connected layers to
predict both 3D gaze coordinates and a quantile error estimate [48]. The architecture was
evaluated cross-dataset using several benchmark datasets of high- and low-resolution
3D gaze [48,56,59,68]. The model was further fine-tuned into new domains using a self-
supervised approach and improved performance across all datasets. The large variability
of the Gaze360 dataset and the cross-domain adaptation of the model allowed for excellent
performance even in unseen videos from uncurated online media sources, such as Youtube
videos, demonstrating flexibility and robustness [48]. The final output of the model is
represented by a coordinate matrix of the gaze vector g for any head crop in each frame of
the video. The coordinates in Gaze360 are computed in a spherical system and expressed
in observing the camera’s Cartesian perspective system g = (x,y,z). The origin of the vector
represents the center of the head (based on the coordinates of the eyes, mouth, and nose)
and the coordinates (expressed between 1 and −1) define its direction. For example, if
g = (0,0,−1), the target is looking directly at the camera, regardless of its position. In
this manner, the estimation of gaze vectors is based only on head crop’s appearance and
without any other global information from the environment [48].

In summary, in our study we first combined the two modules using (1) OpenPose
to extract head crops and then fed them to (2) Gaze360 to compute therapist and child
gaze vectors in our dataset. We rendered all clinical videos by drawing the headboxes
and gaze vectors to double-check the result. From video inspection, it was evident that
the model performance dropped during periods of high interaction dynamism, i.e., when
the child moved around the room and frequently changed distance and head orientation
relative to the camera. In these cases, the head recognition module failed, producing head
boxes that were generally smaller and varied a lot in size during short sequences. The
results of Gaze360 are based upon the information of multiple consecutive frames [48].
Thus, headboxes that vary a lot in size over a few seconds compromised gaze direction
estimation, often resulting in faulty vector predictions. In addition, this effect was more
noticeable in videos recorded in larger rooms, where the distance to the camera was higher
and the headboxes were smaller. Overall, the performance suffered heavily in the most
dynamic periods of the session, both for the size variability and the reduced dimension of
the head crops.

We proceeded in two directions to try to solve these problems. To better handle larger
settings, (i) we increased the size of the headboxes by 50%, providing bigger input images
for gaze estimation. In addition, to cope with moments of high mobility of the subjects,
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we (ii) forced a matched dimension of the headboxes for continuous sequences from a
single target, normalizing the shape of the head crops according to the largest size recorded
in short consecutive frame sequences. In practice, we increased the overall size of the
head crops fed to the gaze estimation module and we normalized the headbox shape
in consecutive frames, keeping the headbox constant in video sequences to manage the
headbox variability in dynamic contexts. Model validation is discussed in more detail in
Sections 2.4.1 and 2.4.2.

2.4.1. Eye-Contact Detection

Once the 3D gaze coordinates of the child with ASD and the therapist were extracted,
the challenge was to successfully build a function to extract the periods of eye contact
between targets in wild 2D clinical videos. The system needed to be resistant to variance in
predictions and flexible to different setting conditions to accomplish this task. Eye contact
periods were defined based on the relationship between therapist and child frame-by-frame
gaze estimations. One subject was looking at the other if the gaze vector was directed
toward the other’s head. If both subjects were looking at each other for a certain amount of
time, then eye contact was present.

To operationalize this dynamic, we computed the 2D coordinates (x,y) of the inter-
section p between the line passing through the coordinates of the gaze vector g, and the
line passing through the center g0 of the other target’s headbox and perpendicular to the
x-axis. Namely, we were able to establish the point p, where the gaze of subject A crossed
the position of the head of subject B on the ordinate (Figure 1B). We then calculated the
distance d (in pixels) between the intersection point p and the origin g0 to understand the
proximity of a subject’s gaze to the target head, as follows:

dB = | pB − g0A| (1)

The smaller the distance d with respect to the therapist’s head, the more the child’s gaze
will be oriented towards the face. To understand whether the child was looking at the adult’s
face, we established a maximum distance threshold Td (in pixels). We adopted a threshold
rather than the precise center to attempt to contain slight inaccuracies in gaze prediction.

When both distances dA and dB were below threshold Td, we would potentially get
eye contact. However, this first step is constrained to a bidimensional representation of
data. The outputs of OpenPose are two-dimensional coordinates of the landmarks [47]. On
the other hand, Gaze360 provides a three-dimensional vector [48]. An issue of considering
only the 2D coordinates is to recognize as episodes of eye contact some moments without
such coordination, for instance, situations when the subjects’ heads are located at very
different depths or more often when they are very close to each other. Neglecting depth
may result in many scenarios where gaze directions appear to cross, but only from a 2D
perspective. This approach would lead to include several false positives in the analysis
and compromise the quality of the data, as well as lose information.

To address this problem, we used a simple but effective approach. The output of
Gaze360 is a 3D vector in which depth is expressed through a z value that varies between
−1 and 1 [48]. When z assumes a negative value, the subject is looking toward the camera,
conversely, it assumes a positive value. Whenever child and therapist look at each other
and are on the same depth level in the room, their gaze vectors will have a value of z close
to 0. This means the therapist’s gaze will be fully oriented towards the right or left side of
the room, and vice versa for the child. On the contrary, when the subjects look at each other
from two different room depths, the z value of the gaze vector of the therapist will start
to increase or decrease according to its direction. Similarly, the z value of the child’s gaze
vector will change, but with an opposite sign. If z of subject A increases, then z of subject B
decreases below 0. This is because if vectors are aligned at different depths, they will always
have opposite signs. In this way, to recognize eye contact between child and therapist, both
gazes need to be close enough to each other’s head and need opposite depth direction.
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Figure 1. Eye-contact detection model (EYE-C). The images represent the output of the model run on
a video example from YouTube (the video is licensed under a CC licence, and was kindly offered by
White, R. [Good Behavior Beginnings]. (15 May 2015). How to Redirect Escape Behavior in 2 year olds
(Video). YouTube. https://www.youtube.com/watch?v=GzGLF8GlPmo, accessed on 28 September
2021); (A) OpenPose body keypoints output [47]; (B) Gaze360 gaze vectors output [48] and eye-
contact detection system; g0A: headbox center of subject A; g0A/g0B: headbox center of subject A/B;
gA/gB: gaze vector of subject A/B; pA: intersection point between gaze of subject B and headbox
x-axis coordinates of subject A; dB: distance (pixels) between pA and g0A.

Moreover, a rarer situation to consider is when both subjects stay at the same depth
position, and z is close to 0. In such circumstances, little fluctuations and errors in gaze
prediction might vary vector orientation, compromising the analysis and including possible
false negatives. To solve this problem, we again established a threshold Tz by setting a
maximum degree of tolerance for the absolute value of z. When z was close enough to
0, and therefore the gaze directions had nearly no depth, it was unnecessary for the two

https://www.youtube.com/watch?v=GzGLF8GlPmo
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gaze vectors to have opposite signs. In this way, we were able to control all cases in which
subjects were looking at each other closely and at the same depth level of the room. Finally,
to prevent the analyses from being affected by false positives, we established a minimum
duration threshold (defined as the number of consecutive frames) of eye contact events.

In summary, conditions for discriminating eye contact periods included that (1) the
gaze vectors were both oriented toward the headbox of the other within a threshold dis-
tance, (2) that the vectors had opposite directions when the absolute value of z exceeded a
certain value, and (3) the eye contact events had a minimum duration. This pipeline enables
a dyadic eye contact detection system resilient to common variations in terms of video
resolution and ecological clinical setting, with enough flexibility to handle interactions
with high levels of dynamism.

2.4.2. Model Evaluation

Following the design and method definition part, we evaluated the performance of
EYE-C using manual annotations.

Due to the time-consuming hand-coding, we divided the model evaluation into two
steps. (1) First, we qualitatively inspected the model’s performance through rendered
videos (with gaze vectors, headboxes, and eye contact) to assess in what conditions EYE-C
was noticeably failing. In this way, we directly excluded 13 videos recorded with low
resolution (384/640 px) and in larger rooms.

(2) Next, we did a quantitative validation by manually coding segments in 5 videos
taken from the remaining sample in other conditions. The 5 videos were selected from the
sample after matching different resolutions and room settings. We extracted a continuous
interactive dyadic sequence of about 10 min was extracted from each considered video,
selecting the first sequence with at least 10 episodes of eye contact (at least 1 per minute,
to have sufficient comparison data), for a total of more than 70,000 frames (M = 14,173.4,
SD = 261.7 frames for video) for the model testing (a total of 4360 positive frames, labelled
with eye-contact).

The 10-min videos were subsequently hand-coded frame-by-frame using a software
for observational video coding (BORIS, https://github.com/olivierfriard/BORIS, accessed
on 25 April 2021). The interactive periods in which there was eye contact between therapist
and child were annotated with a binary outcome (eye-contact present/absent) for each
frame. As a result, we were able to collect a total of 4360 positive frames and 61 (M = 12.2,
SD = 1.7) eye contact events for comparison and model testing. In parallel, the same
sequences were further encoded using the eye-contact detector according to the pipeline
described in the previous sections.

To assess whether the subset used for validation was representative of the sample, we
performed a Kolmogorov-Smirnov test to compare the variance of gaze features between
the validation subset and the other 80 videos in the ASD sample (Table S1 in Supplementary
Materials). No significant difference emerged for the average duration (dur, p = 0.659)
and distance (d, p = 0.852) of eye contact episodes, but a significant difference was found
for frequency (freq, p < 0.001). Thus, the validation subsample is representative of the
overall sample in terms of duration and distance of eye contact events, but not in terms of
frequency. This issue is influenced by considering sub-sequences with a high number of
eye contacts (at least 1 per minute) in order to have a higher number of positive annotated
frames for validation.

Finally, the output of the model was evaluated using the ground truth annotation
labels (eye-contact present/absent) for each frame as reference. The parameters described
in Section 2.4.1. (Td, Tz, minimum duration) were empirically selected to maximize
matching using the average Matthews Correlation Coefficient (MCC) to evaluate the
model’s performance [69].

Overall, the best performance was achieved by using a maximum distance thresh-
old Td corresponding to 80% (d ≤ Td) of the target headbox size, a depth threshold

https://github.com/olivierfriard/BORIS
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Tz = 0.3 (|z| ≤ 0.3), and a minimum duration of 25 consecutive frame (' 1 s) for eye-
contact sequences. The results are described in Table 3, for increasing size of the videos.

Table 3. Model evaluation results.

Video Frames (N) Res (px) Time (min/s) Room Acc Pre Rec MCC

1 13,786 640 12′31′′ Small 0.96 0.65 0.80 0.70
2 13,955 1280 6′20′′ Small 0.95 0.53 0.76 0.61
3 14,317 720 3′29′′ Large 0.96 0.79 0.65 0.69
4 14,497 720 9′11′′ Small 0.99 0.94 0.94 0.93
5 14,312 384 20′42′′ Small 0.93 0.34 0.71 0.46

Note: Time: subsection beginning timing in the original video; Res: Resolution; Acc: Accuracy; Pre: Precision;
Rec: Recall; MCC: Matthews Correlation Coefficient.

The performance of EYE-C was poor for the video sequences with the lowest resolution
(384 px), resulting in an MCC = 0.46. In particular, this subset showed a good recall = 0.71
but a very low precision = 0.34, which indicates a high rate of false positives in the results.
The setup with 384 px resolution was then excluded by the analysis. The model performed
well across all the other conditions with an average MCC = 0.74.

In summary, following the qualitative (1) and quantitative (2) validation phases, we
excluded videos recorded in the two larger rooms with resolutions of 384 and 640 px and
we excluded videos recorded in the two smaller rooms with a resolution of 384 px. After the
procedure, we excluded 23 participants from the analysis, and the sample was accordingly
reduced from 85 to 62 subjects. The median sizes of the headboxes extracted from the
videos in the sample were 39 × 39 px for the excluded videos and 54 × 54 px for the videos
included in the analysis.

Finally, EYE-C was run on the filtered dataset after the evaluation to extract fine-
grained features of the eye contact periods between therapists and children with ASD.
The metrics applied in the subsequent analyses included: average duration of eye-contact
events (M = 1.7, SD = 0.3 s), expressed in seconds (sec) and calculated by dividing the
number of frames by the frame rate of the videos (25 fps); average distance d (M = 428.9,
SD = 387.5 px), expressed in pixels (px) and calculated by collecting the distance of the
child’s gaze from the center of the therapist’s headbox; the total number of eye-contact
events (M = 20.4, SD = 19.9); and the frequency of the eye-contact episodes freq (M = 0.4,
SD = 0.3), expressed in number per minute.

2.5. Data Analysis Plan

For dataset analysis, we considered the eye-contact features as independent variables:
average duration (dur), total number (num) and frequency (freq, number per minute)
of eye-contact episodes, and the overall average distance d of the child’s gaze from the
therapist’s face during the interaction.

As dependent variables, we included the scores of psychological testing from the
clinical evaluation. Concerning cognitive functioning, we considered the general develop-
mental quotient (GQ) and 5 relative subscales: gross motor (Motor), hand-eye coordination
(Coordination), communication (Language), social (Social), and performance (Perform)
abilities. Also, we included the ADOS-2 total raw score (ADOS) and the score of the social
abilities subscale (SA) for the socio-communicative dimensions.

We did not consider the single item scores of the ADOS-2, as they are rated on a
qualitative scale with little variance (0–2). Indeed, in our sample, 78 (91.8%) of the 85
subjects received the maximum score (=2) in the item related to gaze modulation during
the first evaluation. Therefore, we chose to keep only the overall raw score of the ADOS-2.
Accordingly, we considered developmental quotient (GQ) for cognitive functioning and
raw ADOS-2 scores (ADOS) for social-communication skills within the re-evaluation phase
of the intervention sub-sample.

The analysis procedure was further divided into two separate parts: correlation and stratification.
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Correlation—As a first step, we explored the correlation between our eye contact features
and the clinical variables. We first converted all variables into z-scores to normalize the
standard deviation to 1 (using Standard Scaler from the scikit-learn library). Subsequently, we
employed multiple linear regressions (MLRs) and checked the assumptions to analyze the
relationship between the independent variables jointly against each dependent variable.

Stratification—To investigate spectrum heterogeneity, we then employed unsupervised
clustering based on eye-contact features. We first standardized the variables and then em-
ployed Uniform Manifold Approximation and Projection (UMAP) for manifold learning and
dimensionality reduction. Further, for clustering, we employed Hierarchical Density-Based
Spatial Clustering of Applications with Noise (HDBSCAN), which assumes clusters based on
density regions and leaves scattered background classified as noise. HDBSCAN is a suitable
algorithm for data-driven approaches because it does not need to determine the number of
clusters a priori and thus is more efficient in exploratory analysis design than deterministic
partitioning algorithms such as K-Means. Finally, we externally validated the clusters by
testing for differences in clinical variables based on the resulting sub-groups. We applied a
one-way MANOVA using cluster membership as an independent variable. Next, we applied
one-way ANCOVAs, with video length and resolution as covariates, and Tukey’s tests for post
hoc analysis, pairwise comparisons, and an adjusted p-value. Finally, we further analyzed the
duration and number of eye-contact episodes over time in a mixed design to see if there were
any differences between the sub-groups over the course of the interaction.

3. Results
3.1. Correlations

Before proceeding with the definition of MLRs, we checked for the assumptions.
Multicollinearity occurs when you have two or more independent variables that are highly
correlated with each other. We computed the Variable Inflation Factor (VIF) to determine
the correlation between eye-contact features by obtaining a score for each variable of how
well it is explained by the others.

A VIF score above 5 indicates high multicollinearity. As expected, a strong correlation
between frequency and number of eye-contact episodes was found (Table 4). For these reasons,
we decided to eliminate frequency (freq) and keep number (num) in the following analysis.

Table 4. Variable Inflation Factor (VIF) results.

Variable VIF

Freq 5.6
Num 5.42

D 1.07
Dur 1.34

Note: freq: eye-contact periods frequency; num: eye-contact periods total number; d: average child gaze distance
d; dur: average eye-contact periods duration.

In addition, to have more control over the independent variables, we applied Pearson’s
Correlation Coefficient to control the association between the eye-contact features and the
length of the videos to avoid a bias due to the duration of the interactions. No significant
correlation emerged.

Then we checked the distributions of the variables to check that they followed a
normal distribution. We initially used Q-Q plots to test the distribution of the variables.
From a visual inspection of the diagnostic plots, the distance (dist) and number (num) of
eye contacts, and the communication abilities quotient (Language) did not follow a normal
distribution (Figure S1 in Supplementary Materials).

We converted the two variables with a logarithmic transformation. Then we con-
ducted Shapiro–Wilk tests to check for normality of distributions. All variables resulted
normally distributed after the conversion (Figure S2 in Supplementary Materials). Next,
we standardized all the measurements and computed an MLR for each dependent variable,
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using our eye-contact features as independent variables (excluding frequency) (Figure S3
in Supplementary Materials). The assumption of homoscedasticity is that the residuals are
equal for all values of the predicted dependent variable (i.e., the variances along the line of
best fit remain similar as you move along the line). We checked for homoscedasticity by
controlling the plots of studentized residuals versus unstandardized predicted values and
by performing the Breusch–Pagan test for heteroscedasticity (Figure S4 in Supplementary
Materials). For each of the MLRs, homoscedasticity of the residuals was confirmed by
visual inspection and non-significant test results. Finally, we checked the distribution of
residuals by again using the Shapiro–Wilk test and found the normality of the error distri-
butions for all MLRs (Figure S5 in Supplementary Materials). The results of all MLRs for
each of the dependent variables are summarized in Table S2 in Supplementary Materials.

A significant regression equation with a non-robust negative correlation was found
for the ADOS-2 total score (F(3,58) = 2.718, p < 0.05), with an R2 = 0.123, and the related
Social Abilities subscale (F(3,58) = 2.866, p < 0.05), with an R2 = 0.129. No significant
regression was found for the general developmental quotient, but a significant regression
equation with a non-robust positive correlation was found for the related subscales of
communication (F(3,58) = 2.795, p < 0.05), with an R2 = 0.126, and hand-eye coordination
(F(3,58) = 2.783, p < 0.05), with an R2 = 0.126, abilities. All remaining MLRs for the subscales
of the GQ were non-significant.

The average duration (dur) and distance (d) of eye contact episodes were not sig-
nificant predictors for all regression models. Otherwise, the total number (num) of eye
contacts during child-therapist interactions was a significant predictor of ADOS (p < 0.01),
SA (p < 0.01), Language (p < 0.05), and Coordination (p < 0.05) scores.

3.2. Stratification

The second part of the analysis design further explored the findings by investigating
the effectiveness of gaze patterns (num, dur, freq, d) for spectrum stratification and iden-
tifying the possible occurrence of sub-groups within the sample. Given recent findings
regarding the importance [30], we also considered age as a factor for clustering. We initially
normalized the variables by converting them into z-scores.

We employed the uniform manifold approximation and projection (UMAP) for non-
linear dimensionality reduction and improved data visualization [70,71]. A 2-component
UMAP was applied on the 4 scaled eye-contact features and age jointly to reduce data
structure using 5 nearest neighbors and a minimum distance of 0 as hyperparameters of
the algorithm. The output is a 2D projection of the data structure into low-dimensional
space, based on a transformation (embedding) of the selected features (Figure 2A). The
resulting data embedding was further processed for unsupervised clustering.

We used the HDBSCAN algorithm, setting a minimum cluster size of 10, equal to
twice the number of features used (2 × 5 dim) [72]. In the dataset, three different clusters
were identified (sub-groups 0/1/2), and two single data points were classified as noise
(sub-group-1) (Figure 2A,B).

We computed the silhouette coefficient (SC) to assess the consistency and homogene-
ity of the resulting clusters and achieved a score of SC = 0.56. The characteristics and
population size of the clusters are summarized in Table 5.

The sub-groups were first compared according to control variables and showed no
significant differences in gender, video resolution, room setting, and duration of therapist-
child interaction (Table 5).

Finally, clustering was evaluated by comparing the differences between the groups,
considering both clinical and eye-contact features (Figure 3). A one-way MANOVA was
applied with group membership as the independent variable and clinical metrics as the
dependent variables. A statistically significant difference emerged between the sub-groups
on the combined dependent variables, (F(13,46) = 6.393, p < 0.0001).
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Figure 2. (A) HDBSCAN clusters on 2-components UMAP output, the 2 black marks represent the single data points
classified as noise; (B) Eye-contact metrics and age pairplot; freq: frequency of eye-contact episodes; num: total number of
eye-contact episodes; dur: average duration of eye-contact episodes; d: average distance of children’s gaze vectors from
therapists’ headboxes during interaction; age: children’s age at first assessment.
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Table 5. Sub-groups characteristics.

Sub-Group 0 Sub-Group 1 Sub-Group 2 F/χ2 p

Clinical sample n = 23 n = 21 n = 16
Gender, N (%) 3.572 0.734
Male 22 (95.7) 17 (80.9) 12 (75)
Female 1 (4.3) 4 (19.1) 4 (25)
Video resolution (px) - - - 11.069 0.748
Interaction duration (min),
mean (SD) 64 (37.1) 56.3 (16.3) 67.5 (28.1) 0.750 0.477

Room setting (small/large) - - - 0.291 0.865
Age (months), mean (SD) 37.9 (10.2) 43.9 (10.1) 60.9 (10.1)
Eye-contact num, mean (SD) 9 (6.2) 40.7 (6.2) 11.6 (6.1)
Eye-contact freq (N/min), mean
(SD) 0.2 (0.1) 0.7 (0.1) 0.2 (0.1)

Eye-contact dur (sec), mean
(SD) 1.6 (0.3) 1.9 (0.3) 1.7 (0.3)

Eye-contact d (px), mean (SD) 308.9 (152.1) 301 (152.1) 649.4 (152.1)
GQ, mean (SD) 69.7 (15.4) 77.1 (15.4) 65 (15.4)
Coordination, mean (SD) 69.6 (14.5) 82.2 (14.5) 64.8 (14.5)
Language, mean (SD) 55.7 (26.6) 67.8 (26.6) 60.4 (26.6)
Motor, mean (SD) 78.4 (13.8) 79.1 (13.8) 71.5 (13.8)
Social, mean (SD) 64.6 (16.6) 75.8 (16.6) 58.7 (16.6)
Perform, mean (SD) 89.9 (18) 88.1(18) 72.6 (18)
ADOS, mean (SD) 15.6 (3.5) 13.1 (3.5) 15.4 (3.5)
SA, mean (SD) 12.2 (3.5) 10.2 (3.5) 11.8 (3.5)

Note: freq: eye-contact periods frequency; num: eye-contact periods total number; d: average child gaze distance
d; dur; average eye-contact periods duration. GQ: Global Developmental Quotient; SA: Social Abilities subscale.

As follow-up analyses, univariate one-way ANCOVAs and Tukey’s Tests were per-
formed for post hoc pairwise comparisons of each dependent variable.

Concerning our eye-contact features, we found a significant difference in total number
(F(2,57) = 31.82, p < 0.0001), frequency (F(2,57) = 55.577, p < 0.0001), average duration
(F(2,57) = 5.815, p < 0.01), and the overall average distance (F(2,57) = 6.618, p < 0.01)
between the sub-groups. A significant difference between the sub-groups was also found
in terms of the children’s age (F(2,57) = 23.597, p < 0.0001).

Comparing the sub-groups based on clinical variables revealed significant differences
concerning the ADOS (F(2,57) = 3.549, p < 0.05) total score and the cognitive development
subscales of social (F(2,57) = 3.207, p < 0.05), hand-eye coordination (F(2,57) = 5.803,
p < 0.01), and performance (F(2,57) = 3.238, p < 0.05) abilities.

We further tested the significant results achieved through pairwise comparisons with
an adjusted p-value (Table S3 in Supplementary Materials). Tukey post hoc tests showed
that sub-group 1 showed a significantly higher number and frequency of eye contact than
both sub-groups 0 (num p < 0.001, freq p < 0.001) and 2 (num p < 0.001, freq p < 0.001).
Conversely, sub-groups 0 and 2 did not differ either in number (p = 0.82) or frequency
(p = 0.9). In terms of duration, sub-group 1 showed significantly longer episodes of eye
contact than sub-group 0 (p < 0.01), but no difference emerged either between sub-groups
1 and 2 (p = 0.096) or 0 and 2 (p = 0.595). In addition, sub-group 2 showed a significantly
higher overall distance d than both sub-groups 1 (p < 0.01) and 0 (p < 0.01); the latter
showed no difference in distance (p = 0.9).

Regarding the clinical variables, a difference emerged between the ADOS-2 total scores
of sub-groups 0 and 1 (p < 0.05), the latter having significantly lower scores. In contrast, there
were no significant differences between the other sub-groups (2 vs. 0 p =.9, 2 vs. 1 p = 0.1).

In terms of hand-eye coordination abilities, sub-group 1 showed a significantly higher
mean quotient compared to both sub-groups 0 (p < 0.05) and 2 (p < 0.01), whereas sub-
groups 1 and 2 did not differ (p = 0.063). Sub-group 1 showed a significantly higher score in
the social abilities subscale than sub-group 2 (p < 0.05), but not sub-group 0 (p = 0.195); there
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was no difference between sub-groups 0 and 2 (p = 0.653). Concerning the performance
subscale, pairwise comparisons showed no significant differences among sub-groups.

Figure 3. Boxplots of each dependent and independent variable for resulting sub-groups; num: eye-contact periods total
number; freq: eye-contact periods frequency (N/min); dur: eye-contact periods average duration (s); d: average distance of
children’s gaze vectors from therapists’ headboxes during interaction (px); age: children’s age at first assessment (months);
length: video total duration (min).

When comparing age, sub-group 2 was significantly older than sub-groups 1 (p < 0.001)
and 0 (p < 0.001), which also did not differ in age (p = 0.152).

We also compared the three sub-groups on the basis of the resolution of the videos,
the duration of the video, the room where the interaction occurred, and the gender of the
subjects as controls and found no significant differences.

In addition, to better explore the characteristics of the subgroups, we tested for the
presence of outliers in the clinical variables (GQ, GQ subscales, ADOS, SA subscale)
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by converting data into z-scores and detecting specific cases deviating over 3 standard
deviations from the mean. In sub-group 1, an outlier emerged showing eye contact metrics
(num = 37, freq = 0.6, dur = 1.7 s, d = 365 px) and age (=42 months) consistent with the
sub-group average, but a higher (z = 3.02) ADOS score (=24). In subgroup 0, an outlier
emerged showing metrics of eye contact (num = 15, freq = 0.2, dur = 2.1 s, d = 413 px) and
age (=43 months) in the subgroup average, but a higher score (z = 3.71) in the subscale of
language abilities (=152).

As the last step of clustering exploration, we divided interactions into 4 equivalent
time-points to check whether there was any difference in gaze patterns over time between
the sub-groups. We measured both the number and duration of eye contact periods at
4 consecutive time points. Mixed two-way ANOVAs were performed with number and
duration over time as the within factors and sub-group membership as the between factor
(Figure S6 in Supplementary Materials).

As expected from the previous analyses, there was an overall significant difference
between the sub-groups in both number (p < 0.0001) and duration (p < 0.0001). There was no
significant difference within the number (p = 0.195) and duration (p = 0.246) of eye-contact
episodes over periods of the interaction. Finally, there was no significant interaction between
the sub-groups and the duration (p = 0.41) or number (p = 0.725) over time.

4. Discussion

The study aimed to develop and test an efficient computational phenotyping method
to study the interactive behavior of young children with ASD for ecological exploration
of gaze patterns during therapy. Identifying a marker sensitive to individual differences
is an important goal in the perspective of personalized treatment. Despite promising
results in the literature, the major bottleneck is the development of generalizable and
flexible methods into real-world scenarios. For this reason, we implemented a method
that is resilient to variability in data structure with added applicative value. Our approach
combined unsupervised machine learning analysis with a data collection based on fine-
grained features acquired by behavior imaging solutions.

Eye contact was studied both for its central role in the diagnostic framework as
well as its value as an indicator of the severity of social-communicative symptoms in the
autism spectrum [21–23,28,30,43,46]. Indeed, it has recently been suggested that attentional
patterns should be further investigated in the context of outcome prediction [46] and
stratification of the condition [30,43].

The first part of our study addressed the development of EYE-C, the eye-contact
detection model. Our main goal was to offer a more practical solution trying to overcome
the translational limitations of previous implementations of CV-based systems in the
clinical setting [17,18]. Towards this end, we implemented a state-of-the-art model-based
design for behavior analysis in wild videos [47,48]. Our system performed well during
validation in clinical scenarios with an average MCC = 0.74 across different interaction
videos, with different resolution and setting. We were able to identify episodes of eye
contact with good precision and accuracy in highly dynamic interactions between child and
therapist. To the best of our knowledge, ours is the first solution for eye contact detection
in non-structured clinical settings.

We implemented a method to deliver more reliable and quantifiable measurements
of a behavioral feature that is very important in clinical ASD. Previously developed solu-
tions were based on a heavy structuring of interaction, which often limited the value of
subsequent analysis and application aspects [11,32,35–41]. Considering the importance of
integrating eye contact into intervention programs [21], our method offers a solution with
the potential to support the real clinical context of ASD. Our system can better decompose
the dynamics of gaze and eye contact than commonly used testing techniques, i.e., ADOS-2
scores, which are not suitable to accurately quantify behavior.

In the second part of the study, we employed EYE-C to explore the dynamics of dyadic
gaze coordination in child-therapist interactions. The need for more refined measurements
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of behavior has been highlighted in the literature to address major challenges such as
stratification and outcome prediction [9,73]. Traditional psychological testing, which is
generally used in this area of research, is rather validated to diagnose and detect differences
from typical development. Therefore, it is not well suited to recognize the subtle variability
within the spectrum [7,9,74]. In our study, more than 90% of the sample had the same
maximum score in the item of ADOS-2 concerning eye contact abnormalities. Behavior
Imaging offers an excellent opportunity in this perspective by allowing quantitative and
refined measurements to study behavior in a more systematic way [11]. Consistently, in the
present work, we have employed eye-contact features collected in this manner combined
with data-driven analysis of unsupervised machine learning.

The first step of the analysis covered a preliminary exploration of the gaze features
extracted. We examined the correlation between our metrics and the clinical variables
collected during the assessment of preschool children with ASD. The results of the re-
gression models confirmed the presence of associations, although not robust, between the
eye-contact features and the rates of symptom severity, and some subscales of cognitive
functioning. As hypothesized, a negative correlation emerged between ADOS scores to-
gether with the relative subscale of social impairments (SA) and the number of eye contact
episodes. Children with a higher degree of interactive deficits and higher severity of
social symptoms displayed less eye-contact coordination with the therapist. These data are
consistent with findings in the literature regarding the association between the degree of
attention to the adult face and the severity of autistic symptoms in preschool children [46].
No correlation was found concerning general cognitive functioning, suggesting a stronger
association between attentional patterns and socio-interactive aspects, rather than cognitive
ones. However, taking into account the individual subscales, positive correlations emerged
within the domains of hand-eye coordination and communication abilities. These findings
are also coherent if we consider the importance of motor coordination aspects in the inte-
gration of attentive schemas and the critical role of eye contact in the later development of
socio-communicative skills [21,29,75,76]. Contrary to expectation, there was no significant
association with the social abilities subscale. This might be explained in part by considering
that the social subscale of the GMDS-ER includes both items related to interactive skills
and items related to the child’s level of autonomy, which is less related to social abilities;
yet this will need to be further investigated.

In the second stage of data analysis, we stepped forward to address the challenge
of autism heterogeneity. We employed unsupervised clustering based on eye-contact
features to check whether sub-groups would emerge within the spectrum. Unsupervised
approaches applied to computational phenotyping outputs can also facilitate the devel-
opment of fine-grained instruments and the identification of novel specifiers that may
help detect reliable subtypes. Along with attentional metrics, we also considered age as
a factor, given the findings regarding its importance in stratification [30]. Three different
homogeneous clusters were found, which differ in gaze coordination and age. Sub-group 1
(high-coordination) is characterized by including toddlers who showed improved gaze
coordination, including a higher number, frequency, and duration of eye contact episodes.
In contrast, the other two sub-groups (low-coordination, 0 and 2) were characterized by
lower and similar eye contact features. Considering age, the low-coordination cluster 2
(old-low-coordination) was distinguished by including children with significantly higher
age than the low-coordination cluster 0 and the high-coordination cluster 1.

To summarize, two low- and high-coordination sub-groups (0 and 1) of age-matched
toddlers were found, which differed significantly in terms of number, frequency, and
duration of eye-contact episodes with the therapist during the interaction. In addition, a
smaller third old-low-coordination sub-group (2) was identified, which was characterized
by a quality of gaze coordination comparable to the other low-coordination sub-group, but
at a higher age. Interestingly, the children in the old-low-coordination cluster also differed
from the others in displaying a higher overall distance d, which measures the distance of
the child’s gaze from the face of the therapist. This may be explained by the fact that in
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typical development, older children generally tend to be less focused on dyadic interaction
and explore the environment more by gazing at objects and paying less attention to adults
in general.

Afterward, the clustering was validated by taking into account the clinical variables
collected during children’s diagnostic assessment, which included both symptom severity
(ADOS-2, SA), and level of functioning scores (GQ, Coordination, Social, Motor, Language,
Perform). When comparing the clinical characteristics of the sub-groups, the high-low
distinction remained consistent, with high-coordination children showing higher levels
of general cognitive functioning, social abilities, and hand-eye coordination along with
lower scores on the symptom severity and social impairment. In comparison, the two low-
coordination clusters showed comparable clinical features, including a higher degree of
symptom severity and social impairments and lower cognitive functioning, social abilities,
and coordination.

In a statistical analysis of the distributions, the two age-matched sub-groups of low-
and high-coordination were significantly distinguished for symptom severity and hand-eye
coordination abilities. The older low-coordination cluster did not differ in any clinical
variable from the other low-coordination sub-group but showed differences in hand-eye
coordination and social abilities compared to the high-coordination sub-group.

Altogether, some interesting data emerged from stratification. Our findings seem to
support the hypothesis that the autism spectrum could be stratified into two major levels
of functioning, consistent with what was found in previous studies [5,43,77]. Two core
age-matched sub-groups emerged, one cluster consisting of autistic children with a milder
symptom phenotype, better hand-eye coordination skills, and showing a higher number
and duration of eye-contact episodes with the therapist, while the other cluster included
autistic children with lower eye-contact features, lower hand-eye coordination abilities and
a higher degree of symptom severity.

When observing data distributions, high and low functioning profiles also remained
stable in the three sub-groups across the social impairments subscale of the ADOS-2.
Nonetheless, no significant differences emerged as we expected, but further investigation
is necessary. In addition, differences in hand-eye coordination abilities were also found
significant between the high-coordination and the old-low-coordination sub-groups. These
persistent differences across clusters corroborate the results of prior analyses and are con-
sistent with previous studies that supported a strong link between fine-motor coordination
and social competencies [75,76,78–80]. From an operational outlook, given the importance
of eye contact in early intervention and its potential for predicting outcomes [30,43,46],
we could hypothesize that identifying clusters of children with ASD and worse gaze co-
ordination could assist clinicians in focusing treatment activities on specific aspects of
interaction. This suggests that children who show increased eye contact impairments also
have higher symptom severity and lower hand-eye coordination abilities. Furthermore,
from a longitudinal perspective, it would be interesting to monitor eye-contact features
across intervention sessions and to investigate the characteristics of the clusters in which
we found concerning developmental trajectories and intervention outcomes.

Overall, this work highlights once again the major potential of behavior imaging
for the analysis of behavior in clinical practice [11,12]. To provide concrete support, it is
necessary to develop robust, translational approaches that are flexible to the dynamics
of interaction and that take into account the variability of settings [18]. In our study,
structuring an effective system to measure gaze patterns in a refined and ecological way
yielded interesting results in the field of stratification within the autism spectrum. A
flexible analytical system was developed by employing advanced AI-based models with
high potential for translational applications to real-world clinical scenarios. Computational
solutions could help integrate aspects of heterogeneity, paving the way for personalized
treatment based on individual differences [6,14–16]. This may assist clinicians in optimally
delivering intervention based on (1) quantitative data, (2) fine-grained analysis impossible
to be carried out by humans involved in the social interplay [81]. From a clinical standpoint,
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this approach may support the implementation of better-tailored interventions aimed at
maximizing efficacy in terms of developmental outcomes, symptom severity reduction,
and adaptive functioning [8,14,16,18].

Our research represents an initial step towards this perspective by trying to develop
a methodology with a more applicative value. By exploring the validity of systematic
gaze features in categorizing spectrum heterogeneity, we have highlighted the role of
computational applications in the clinical context. In terms of intervention, they could help
therapists identify more precise measures to quantify and categorize atypical behaviors
and deliver timely personalized treatment.

Limitations

This study also carries some relevant methodological limitations. Firstly, the limited
data size may constrain the generalizability of the results in this study regarding the
UMAP-HDBSCAN clustering. In particular, the reported number of clusters tends to
grow with an increased sample size [5,21]. In addition, the analysis of the outliers showed
the presence of two subjects with borderline clinical profiles as compared to their sub-
groups, which need further investigation. It would be thus interesting to verify on a larger
dataset if novel additional data may introduce additional subgroups based on eye-contact
patterns. Further, the stratification could be analyzed in the context of personalized early
intervention, in particular to investigate the role of these variables in outcome prediction.
Additionally, including a control sample with typical development would be beneficial. In
particular, clarifying whether the correlations that emerged are specifically related to the
autistic phenotype or, more generally, to the degree of social impairments would strengthen
the analyses and deepen the functional nature of the clustered subgroups. Finally, from
a more technical point of view, the validation process of the model was limited by the
availability of annotations for five hand-coded videos. Despite a large number of frames
was extracted in this comparison (>70,000 frames and >4300 eye-contact examples), and
that all the relevant setups were covered, the number of annotated frames is potentially
limited compared to the whole sample size. Tests comparing the variance of the gaze
features in the validation subset and the general sample showed that although the subset
appears to be representative for duration and distance of eye contact episodes, there is a
difference in frequency. This difference can be explained by choosing sequences with a
higher number of eye contacts to have more balanced data and a higher number of positive
events for comparison. Accordingly, it is appropriate to take those aspects into account
when interpreting the results.

5. Conclusions

The main contribution of this study is the availability of a computational phenotyping
system that has potential application in clinical activity. Refined analysis of attentional
dynamics provided interesting results in the field of spectrum stratification, yet the findings
need to be further investigated on a larger longitudinal dataset. The future validation of
similar translational methods may help bridge the gap between research and healthcare
environments and considerably enhance clinical practice by offering solutions to support
therapists and families in symptom monitoring during the treatment of children with ASD.
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