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Abstract: Cardiovascular disease, like hypertension, is one of the top killers of human life 

and early detection of cardiovascular disease is of great importance. However, traditional 

medical devices are often bulky and expensive, and unsuitable for home healthcare. In this 

paper, we proposed an easy and inexpensive technique to estimate continuous blood 

pressure from the heart sound signals acquired by the microphone of a smartphone.  

A cold-pressor experiment was performed in 32 healthy subjects, with a smartphone to 

acquire heart sound signals and with a commercial device to measure continuous blood 

pressure. The Fourier spectrum of the second heart sound and the blood pressure were 

regressed using a support vector machine, and the accuracy of the regression was evaluated 

using 10-fold cross-validation. Statistical analysis showed that the mean correlation 

coefficients between the predicted values from the regression model and the measured 
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values from the commercial device were 0.707, 0.712, and 0.748 for systolic, diastolic, and 

mean blood pressure, respectively, and that the mean errors were less than 5 mmHg, with 

standard deviations less than 8 mmHg. These results suggest that this technique is of 

potential use for cuffless and continuous blood pressure monitoring and it has promising 

application in home healthcare services. 

Keywords: blood pressure; cross-validation; heart sound; smartphone; support  

vector machine 

 

1. Introduction 

Cardiovascular disease (e.g., hypertension, arteriosclerosis, coronary heart disease) is one of the top 

killers of human life. As reported by the World Health Organization (WHO), it took 17.5 million 

people’s lives globally in 2012 [1]. The number will increase as the population ages. Therefore, early 

detection and prevention of the cardiovascular disease is of significant importance to promote people’s 

health. However, traditional medical devices used in the hospital are often bulky and expensive, only 

operated by specially trained nurses, and not suitable for home healthcare. Hence, there is a need of 

portable, low-cost devices that can be easily operated by ordinary people to detect physiological 

parameters (e.g., heart rate, breath rate, blood pressure) for self-monitoring at home. 

As the smartphone is becoming ubiquitous, its application in medicine is of increasing interest [2]. 

The new generation smartphones have larger memories, more powerful CPUs, and more built-in 

sensors to collect data from the outside world, making it possible to detect physiological parameters 

using a smartphone without the help of external sensors. Many researchers have demonstrated that the 

smartphone can be used to detect heart rate [3–7], respiratory rate [5], pulse volume [7], and oxygen 

saturation [5]. These new techniques require no specialized hardware but only software installed in the 

smartphone, so that they can be used anywhere, anytime, by anyone, and have great potential to be 

used in home healthcare services in the future. 

In this paper, we demonstrate that the smartphone can also be used to estimate blood pressure.  

Blood pressure is the pressure exerted on the wall of blood vessels by blood when the blood flows 

through arterial vessels [8]. It is an essential parameter for the diagnosis and treatment of 

cardiovascular disease, and daily monitoring of blood pressure is also important for the prevention of 

cardiovascular disease among normal people. To the best of our knowledge, the most common method 

to measure blood pressure is to use a mercury sphygmomanometer with an inflatable cuff; however, it 

is rarely reported in previous literature to measure blood pressure with a smartphone. Lamonaca et al. 

applied an artificial neural network to evaluate blood pressure from the pulse wave signal acquired by 

the camera of the smartphone [9,10]. Chandrasekaran et al. proposed two other methods to cufflessly 

estimate blood pressure with smartphones [11]. The first method used two smartphones to separately 

acquire the heart sound and the pulse wave signals, and then calculated vascular transit time for blood 

pressure estimation. The second method used a single smartphone to acquire the pulse wave signal and 

a custom external microphone to acquire the heart sound, and also calculated the vascular transit time. 

Different from these above, a novel method was employed herein to estimate continuous blood 
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pressure from the heart sound signal acquired by a smartphone. It is based on the principle that the 

pattern of the second heart sound (S2) is associated with the blood pressure [12]. If the pattern of the 

S2 is recognized, then the blood pressure will be determined. 

2. Methods 

2.1. Dependence of S2 upon Blood Pressure 

Heart sounds are mixed audible sounds generated by the contraction and relaxation of the atria and 

ventricles, the valve movements, and the blood flow [13]. The two primary components of the heart 

sounds in a heart cycle are the first heart sound (S1) and the second heart sound (S2). S1 is produced 

by nearly simultaneous closure of the mitral and the tricuspid valve, and S2 is produced by nearly 

simultaneous closure of the aortic and the pulmonic valve [14]. 

It is well-recognized in clinical medicine that the S2 has a characteristic “accentuation” in 

hypertensive patients [12,15]. Bartels et al., explained this phenomenon as the mechanical oscillation 

caused by the elasticity of the vessel walls and the inertia of the blood column. When the blood 

pressure is increasing, the arterial wall will exert an increasing reset force to counteract the tangential 

tension of the arterial wall, resulting in increasing oscillation frequencies of the blood column [12]. 

According to this, Zhang et al., built a mathematical model for the vibration of the closed aortic valve, 

and the simulation results showed that the increasing aortic pressure lead to an increase both in 

frequency and amplitude of the produced sound [16]. Later, Bombardini et al. utilized a force sensor to 

collect heart sound signals and carefully investigated the relationship between S2 and blood pressure in 

146 patients. They found that the S2 recordings quantitatively documented the blood pressure changes 

and that the correlation coefficients between the amplitude of S2 and systolic, diastolic, and mean 

blood pressure were 0.544, 0.502, and 0.567, respectively [17]. Accordingly, it is possible to  

non-invasively estimate blood pressure from the heart sound signals. We herein developed a regression 

model between the Fourier spectrum of S2 and blood pressure using a support vector machine, and 

then used this model to estimate blood pressure from the heart sound signals acquired by a smartphone. 

2.2. Data Acquisition 

The experiment was approved by the Institutional Review Board of Shenzhen Institutes of 

Advanced Technology (registration number: SIAT-IRB-120515-H0009). Thirty-two subjects 

participated in the experiment (25 males and 7 females, age 20–32 years, height 150–185 cm, weight 

44–90 kg). They were all healthy without any known diseases and provided their written informed 

consent. They were asked to refrain from caffeine, alcohol, cigarettes or strenuous exercise for 2 h 

before the experiment. 

In the experiment, all the subjects were instructed to lie in the supine position on a mattress.  

As shown in Figure 1, a smartphone was used to collect the heart sound signals. The microphone on 

the earphone line was fixed in the hollow tube of a stethoscope, and the stethoscope was placed on the 

chest of the subject to enhance the acoustic wave. Since we were interested in the S2, the stethoscope was 

located at the right upper sternal border where the S2 is stronger than that in other regions. Simultaneously, 

a Finometer® MIDI (Model II, Finapres Medical Systems B.V., Amsterdam, The Netherlands) was used 
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with a finger cuff around the right middle finger to measure continuous blood pressure. The Finometer is a 

commercial medical device that can measure beat-to-beat blood pressure based on the volume-clamping 

principle. It provided a report of the systolic, diastolic and mean blood pressure for each heartbeat. 

 

Figure 1. Schematic diagram for heart sound acquisition using a smartphone.  

The stethoscope is used to enhance the acoustic wave and the microphone on the earphone 

line is fixed in the hollow tube of the stethoscope. 

As shown in Figure 2, the experimental procedure lasted 13 min for each subject, including three 

stages. Firstly, the subject had a rest lying on the mattress for 5 min, with the room temperature 

conditioned at 26 °C. Secondly, the subject was instructed to immerse his/her left hand into the 10 °C 

cold water and to keep in the water for 3 min, so that the sympathetic nerves were evoked to elevate 

the blood pressure. Thirdly, the subject took his/her hand out of the water and had another rest for  

5 min. During the whole experimental process, the subject was asked not to speak and to keep as still 

as possible to reduce random noise and motion artifact. 

 

Figure 2. The procedure of the cold pressor test. 

2.3. Identification of S2 

All the data were processed offline in Matlab 7.0 (The Mathworks Inc., Natick, MA, USA) on a 

personal computer. The heart sound signals were first filtered by a Butterworth low-pass filter with 

cutoff frequency of 1000 Hz to reduce high-frequency noise, and then were filtered by a Butterworth 

high-pass filter with cutoff frequency of 5 Hz to remove the baseline wandering. These filters were 

implemented by filtering the signal in both forward and backward direction to achieve a zero-phase 

response without group delay. As the heart sound signals were sampled at 44.1 kHz by the smartphone, 

they were decimated by a factor of 20 to obtain a lower sampling frequency of 2205 Hz. 

Resting
5 min (26℃)

Cold stimulus
3 min (10℃)

Recovering 
5 min (26℃)
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Then each down-sampled signal was segmented based on its envelope of Shannon energy [18]. 

Firstly, the signal was normalized to the range of [−1, 1] by dividing by its absolute maximum.  

Secondly, the Shannon energy was calculated according to the equation as: 
2 2log( )E = x x−  (1)

where x is the normalized signal. Thirdly, the Shannon energy was averaged in a moving time window 

of 20 ms with overlap of 10 ms, as expressed by: 

1

1 N

A
i=

E = E
N
  (2)

where E is the Shannon energy, EA is the average Shannon energy and N is the length of the window. 

Since the sampling frequency was 2205 Hz, N was equal to 44 here. Then, EA was normalized by 

subtracting the mean and dividing by the standard deviation, as expressed by: 

( )

( )
A A

N
A

E M E
E = 

S E

−
 (3)

where EN is the normalized average Shannon energy, M(EA) and S(EA) are its mean value and standard 

deviation, respectively. 

 

Figure 3. Identification of the second heart sound using the Shannon energy envelope.  

(a) The normalized heart sound signal; (b) The normalized average Shannon energy;  

(c) The first heart sounds and the second heart sounds marked with squares and  

circles, respectively. 

Afterwards, two thresholds were applied to EN to identify the potential peaks of S1 and S2 [18].  

A high threshold was set as a preset coefficient (usually 0.2–0.4) times the mean value of the five 

largest amplitudes, in order to detect the large-amplitude peaks and to eliminate the effect of noise.  

A low threshold was set as half of the mean value of the envelope. It was slightly higher than the 
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background noise and was used to pick up the low-amplitude peaks that might be regarded as noise by 

the high threshold. These peaks were then classified as S1 or S2 according to the clinical knowledge 

that the duration from S1 to S2 is shorter than that from S2 to S1. An example of the identification 

process of S1 and S2 are shown in Figure 3. In some cases that the heart sound signals were disturbed 

and the S1 and S2 were not correctly identified, for example when the subject spoke or cough, the S1 

and S2 were manually removed or adjusted by visual inspection on the computer screen. 

2.4. Regression Using Support Vector Machine 

Once identified, the S2 of each heartbeat in the normalized heart sound signals was truncated by a  

64 ms window centered at the maximum of the S2, and its frequency spectrum was obtained by fast 

Fourier transform (FFT), shown in Figure 4. The spectrum was then normalized by dividing its 

maximum value, and the 36 spectral values with 10 Hz interval in the frequency band 50–400 Hz were 

chosen as the S2 features. 

 

Figure 4. The second heart sound and its frequency spectrum. 

Afterwards, the S2 features were separately connected with the systolic, diastolic and mean blood 

pressure using a support vector machine (SVM). The SVM is a popular machine learning method for 

classification and regression [19]. The regression of the SVM is to solve the convex optimization 

problem defined as below [20]: 
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where xi is a feature vector with target value yi, w is weight vector, b is intercept, , iw x b  +  is the 

prediction value for the feature vector xi, and ε is a threshold of the deviation. The SVM regression 

maps the feature vectors xi (e.g., the S2 features) into a higher dimensional space by a nonlinear 
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transform, and finds an optimal linear hyperplane with at most ε deviation to fit the target value yi  

(e.g., the blood pressure) in this higher dimensional space [21]. The nonlinear transform is usually 

implemented by properly defining an inner product function, also called the kernel function, such as 

polynomial function, radial basis function (RBF), and sigmoid function. Here the RBF kernel was 

chosen for the regression of the S2 features and the blood pressure, because it is widely used in many 

applications and generally has a good performance. 

The LIBSVM package developed by Chih-Chung Chang and Chih-Jen Lin [19] was employed for 

the SVM training and testing. As there were no testing data, the 10-fold cross-validation[22] was used 

to test the accuracy of the regression model. For each subject, the sample data (Feature vector: the S2 

features. Target value: the systolic, diastolic, and mean blood pressure) were divided into 10 subsets of 

equal size. Nine subsets were used for training the regression model and the other one was retained for 

testing the accuracy of the model. Then another nine subsets were used for training and the remaining 

one for testing, and so on. This cross-validation process was repeated 10 times so that each instance in 

the whole dataset was tested exactly once. 

2.5. Statistical Analysis 

For each subject, the predicted values using the SVM regression were compared with the ‘true’ 

values measured by the Finometer device. Pearson correlation coefficient (CC), mean absolute error 

(MAE), mean error (ME), and standard deviation (SD) were calculated as below: 

1
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where y is the predicted value, x is the measured value, and n is the number of samples. 

3. Results 

The relationship between the spectrum of the S2 and blood pressure is shown in Figure 5. We can 

see in Figure 5a that when the blood pressure was increasing, the normalized Fourier spectrum of the 

S2 was slightly shifting upward to the higher frequency. This phenomenon was more clearly shown in  

Figure 5b that when the blood pressure increased from 140 to 170 mmHg, the Fourier spectrum of the 

S2 shifted rightward to the higher frequency and the spectral peak became wider. We can thus infer 

that it was possible to predict blood pressure from the Fourier spectrum of the S2. 
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(a) (b) 

Figure 5. Spectral change of the second heart sound with blood pressure variation.  

(a) Normalized Fourier spectrum of the second heart sound with systolic blood pressure 

increasing. (b) Normalized Fourier spectrum of the second heart sound when the systolic 

blood pressure was 140, 150, 160 and 170 mmHg. 

A typical example of blood pressure estimation was given in Figures 6 and 7.The predicted values 

of the systolic, diastolic, and mean blood pressure using the SVM regression were compared with the 

corresponding values measured by the Finometer device. It is clearly shown in Figure 6 that the 

predicted values increased as the measured values increased at the beginning of the cold stimulus, and 

that the predicted values decreased as the measured values decreased after the cold stimulus.  

Namely, they had a close correlation. In Figure 7 the correlation analysis shows that the CCs between 

the predicted values and the measured values were 0.893, 0.922, and 0.931 for systolic, diastolic and 

mean blood pressure, respectively. It is apparent that the dots in each plot clustered around the linear 

regression line and distributed equally on both sides, which indicated that the predicted values were 

closely correlated to the measured values. 

 

Figure 6. Variation of predicted values and measured values for systolic blood pressure 

(SBP), diastolic blood pressure (DBP) and mean blood pressure (MBP) during the cold 

pressor test. The vertical lines indicate the beginning and the end of the cold stimulus. 
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(a) (b) (c) 

Figure 7. Correlation analysis between predicted values and measured values for  

(a) Systolic blood pressure (SBP); (b) Diastolic blood pressure (DBP); (c) Mean blood 

pressure (MBP). In each plot, the diagonal is the linear regression line; r, Pearson 

correlation coefficient. 

(a) (b) 

(c) (d) 

Figure 8. Comparison of predicted values and measured values for each subject.  

(a) Correlation coefficients (CC); The presented data were all statistically significant  

(p < 0.05); (b) Mean absolute error (MAE); (c) Mean error (ME); (d) Standard deviation (SD). 

SBP, systolic blood pressure; DBP, diastolic blood pressure; MBP, mean blood pressure. 
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The CCs, MAEs, MEs, and SDs for each subject were presented in Figure 8. As shown in  

Figure 8a, most of the CCs were greater than 0.5. This meant that the predicted values and measured 

values were strongly correlated in most cases. In Figure 8b, all the MAEs were less than 8 mmHg.  

This meant that the predicted values were very close to the measured values with their distance less 

than 8 mmHg. In Figure 8c, the MEs were approximately to zero and had a small fluctuation up and 

down. This meant that the predicted values were nearly unbiased to the measured values and there was 

only a small systematic error between them. In Figure 8d, most of the SDs were less than 8 mmHg, 

except for the systolic blood pressure in a few subjects. This meant that the variations of the difference 

between the predicted values and measured values were small enough. 

The distributions of CC, MAE, ME, and SD among all the subjects were presented in Table 1.  

The mean CCs were 0.707, 0.712 and 0.748 for systolic, diastolic, and mean blood pressure, 

respectively. The mean MEs were −0.204, −0.274, and −0.357 mmHg for systolic, diastolic, and mean 

blood pressure, respectively. The mean SDs were 6.121, 4.471, and 4.961 mmHg for systolic, diastolic, 

and mean blood pressure, respectively. These results were better than those from the pulse transit time 

(PTT) model which is commonly used in literature for blood pressure estimation, as we have done 

some preliminary work on the PTT model and the mean CCs for PTT vs. SBP and PTT vs. DBP were 

−0.544 and −0.451, respectively. Additionally, as required by the American Association for the 

Advancement of Medical Instrumentation (AAMI), the ME should be ± 5 mmHg or less, with a SD of 

8 mmHg or less [23]. These results suggested that this technique might provide effective estimates of 

blood pressure with sufficient accuracy. 

Table 1. Distributions of the statistical parameters among all the subjects. 

Parameter Maximum Median Minimum Mean 

CCSBP 0.981 0.707 0.386 0.707 
CCDBP 0.923 0.716 0.358 0.712 
CCMBP 0.996 0.742 0.567 0.748 

MAESBP(mmHg) 7.472 3.846 1.050 4.339 
MAEDBP(mmHg) 5.472 3.040 1.767 3.171 
MAEMBP(mmHg) 6.101 3.459 0.585 3.480 
MESBP(mmHg) 1.231 −0.108 −2.494 −0.204 
MEDBP(mmHg) 0.496 −0.174 −1.190 −0.274 
MEMBP(mmHg) 0.463 −0.247 −1.490 −0.357 
SDSBP(mmHg) 10.708 5.452 2.815 6.121 
SDDBP(mmHg) 7.488 4.225 2.878 4.471 
SDMBP(mmHg) 8.383 4.819 1.014 4.961 

CC, Pearson correlation coefficient; MAE, mean absolute error; ME, mean error; SD, standard deviation; 

SBP, systolic blood pressure; DBP, diastolic blood pressure; MBP, mean blood pressure. 

4. Discussion 

The results confirmed that the spectrum of S2 had a strong connection with the blood pressure, and 

that it was realizable to estimate blood pressure from the heart sound acquired by a smartphone.  

This new technique can continuously and non-invasively measure beat-to-beat blood pressure using 

only a smartphone and a stethoscope. It needs neither the sphygmomanometer with an inflatable cuff, 
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nor the bulky and expensive medical instrument used only in the hospital. It is easy-to-use and low in 

cost, and well-suited for daily use at home. As we have tested, when the environment is quiet, even the 

stethoscope is not required and the heart sound can be clearly detected by just pressing the microphone 

tightly on the chest of the subject [11], or using a plastic funnel instead of the conventional stethoscope 

to enhance the acoustic wave. Furthermore, this technique can be extensively applied to wearable 

medical devices. For example, the microphone can be minimized into a small piece, pasted on the 

chest of the subject to acquire the heart sound, and wirelessly communicate with a smartphone or a 

computer so that the blood pressure can be monitored all day without any disturbance to the user’s 

daily life. In short, the technique of estimating blood pressure from heart sound has great potential in 

home healthcare applications. 

Although the results are encouraging, there are some technical issues which need to be taken into 

account to use this technique in practical situations. The first is to reduce the training phase. In the 

presented experiment, to collect the training data, we elevated the blood pressure by the cold stimulus, 

which cannot be applied to cardiovascular patients due to its potential risk of strokes or heart attacks. 

Therefore, the wide blood pressure variation needs to be simplified to a safe and convenient procedure, 

for example, collecting the training data before and after physical exercise [24], or changing the blood 

pressure by raising the hand at different heights [25,26]. Another possible way to reduce the training 

phase is to build a general mathematical model for all people or a family of models for specific age and 

gender groups [27]. If the model or models are well-trained by massive clinical datasets and served as 

the calibrated benchmark for continuous blood pressure monitoring, then there is no need for 

personalized calibration for each individual. 

The second is to implement a real-time SVM algorithm on the smartphone. At the current stage, the 

SVM algorithm runs on a personal computer and all the signals are processed offline. In order to 

monitor blood pressure in real-time, it is important to port the SVM algorithm to a smartphone 

platform where the CPU power and memories are limited. However, as the smartphone technology is 

rapidly developing, we think this is not a huge problem. 

The third is to reduce the interference of environmental noise. The heart sound is so weak that it 

may be corrupted by the environmental noise. We suggest strengthening the heart sound signals in two 

aspects. In the hardware aspect, the microphone can be designed as a small piece pasted on the chest of 

the subject, with a small funnel embedded inside to collect acoustic wave, and with sponges covered 

outside to prevent environmental noise. However, this design can be only applied to home-made 

wearable devices, and is not applicable to off-the-shelf smartphones. In the software aspect, adaptive  

filters [28] can be used to eliminate the external noise, and robust segmentation algorithms [29,30] can 

be used to improve the performance of S2 detection in a noisy environment. 

5. Conclusions 

In this paper, with a smartphone to collect heart sound signals, we demonstrate a new technique to 

estimate blood pressure from the spectra of the second heart sound, continuously, non-invasively and 

without a cuff. This technique provides an easy, low-cost and comfortable solution for daily 

monitoring of blood pressure, which is especially useful for cardiovascular patients. 
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