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Abstract: In recent years, two-photon excited semiconductor quantum dots (QDs) have been the
subject of intense investigation due to their long excitation wavelength which helps to achieve deeper
penetration and higher image resolution in optical bioimaging. In this paper, water-soluble CdS QDs
were synthesized using a hydrothermal method and applied to human liver hepatocellular carcinoma
(HepG2) cells. The first-principles calculation suggested that the S-rich defected structure contributes
to a narrower band gap compared to the pristine structure. The resulting fluorescence wavelength
was significantly red shifted, which was attributed to the deep defect states emission. The large
Stokes shifts (> 200 nm) of the QDs can eliminate the possible cross-talk between the excitation light
and the emission light. Two-photon induced red fluorescence emission can avoid overlapping with
the autofluorescence emission of biological samples. The uptake and cell viability measurements of
the HepG2 cells showed a good biocompatibility and a low toxicity of CdS QDs. Two-photon excited
scanning microscopy images revealed that the HepG2 cells incubated with CdS QDs emitted bright
red upconversion fluorescence and the fluorescence brightness was 38.2 times of that of the control
group. These results support CdS QDs as a good candidate for application in cellular imaging.

Keywords: CdS quantum dots; deep defect states; two-photon absorption; HePG2 cells;
biological imaging

1. Introduction

Two-photon absorption, a molecular excitation process by the simultaneous absorption of
two photons, has attracted growing interest in many areas for its broad application in photonics
and biophotonics such as microscopy, data storage, optical limiting, microfabrication [1–4], etc.
Two photon absorption technology has many advantages, especially for bioimaging, such as
minimum photo-damage to living organisms, high spatial resolution and contrast, and high
light-penetration depth in tissues [5,6]. Quantum dots (QDs) are typically two-photon excited
fluorescence nanomaterials. They have received much attention in the field of multiphoton bioimaging
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due to their superior photochemical stability and biological properties compared to other materials.
First, it has been reported that the photochemical stability of QDs is 100 times higher than Rhodamine
6G (R6G) [7]. Therefore it can significantly overcome the photoquenching of organic imaging agents [8].
Second, the fluorescent QDs have a large surface-to-volume ratio, which is favorable for modifying the
surface with biomolecules to achieve better biocompatibility, low toxicity, and a higher quantum yield
(QY) [9].

As can be seen from previous references [10,11], the QD surface often creates surface or interfacial
trap states that reduce the number of exciton states through (non)-radiative charge recombination.
Brus and McLendon characterized the trap state fluorescence and concluded that the fluorescence
is attributed to charge recombination between a trapped electron and a trapped hole at the QD’s
surface [12,13]. Due to the appearance of defect states near the edges of the valence and conduction
bands, the energy gap of the QDs becomes narrower than that of the intrinsic states [14]. Therefore,
defective fluorescence shows a significant red shift compared to exciton emission by theoretical
prediction. Veamatahau and Wei reported that controlling the size of QDs or surface-enriched elements
can control the surface states of QDs and thus control the emission wavelength [11,15].

Among different types of QDs, CdS QDs have most commonly been studied owing to their ease of
synthesis and distinctive optical properties. Since Chan [7] and Bruchez [16] demonstrated the usage
of semiconductor QDs as fluorescent probes in cell, tissue, and organism imaging, multiphoton excited
fluorescent QDs have been increasingly receiving researchers’ attention in applications of biological
imaging [17], photodynamic therapy [18], and drug release control [13,14]. These studies motivated us
to investigate high brightness, low-toxicity CdS QDs suitable for cell imaging.

In this paper, a type of surface S-rich CdS QDs was synthesized using a green hydrothermal
method and applied in biological imaging. On the one hand, reducing the degradation of Cd ions
from the surface of CdS QDs can diminish their biological toxicity [19]. Energy-dispersive X-ray
spectrometry (EDS) and X-ray Photoelectron Spectroscopy (XPS) showed that there were more S atoms
on the surface of the CdS QDs. The high uptake and high cell viability of the HepG2 cells cultured
with the QDs showed a good biocompatibility and a low toxicity. On the other hand, we calculated
the density of the states of intrinsic and defected CdS QDs using the density functional theory (DFT)
method. The results show that the formation of the defect state is due to the introduction of excess
sulfur on the surface, and the energy gap of the defect QD is narrower than the energy gap of the
intrinsic QD. The CdS QDs exhibited a bright red defect state fluorescence centered at 640 nm, which
produce a red-shift compared with the corresponding bulk band gap transition emission (510 nm) [20].
This result indicates that the fluorescence of the CdS QDs may be attributed to the recombination
fluorescence of electrons and holes in defect states. The long wavelength of emission can effectively
avoid the strong absorption of the biological sample and avoid contrast reduction due to enhanced
emission in the autofluorescence wavelength range [5]. Two-photon absorption fluorescence was
observed when the QDs were excited by an 800 nm femtosecond laser. The two-photon excited
scanning microscopy images revealed that the upconversion fluorescence intensity of the HepG2
cells incubated with CdS QDs was 38.2 times of that of the control group. These results indicate
that CdS QDs is a good bioimaging material and opens up a new path for the development of more
bioimaging nanomaterials.

2. Materials and Methods

2.1. Synthesis of CdS QDs

The preparation of CdS quantum dots (QDs) was based on the previously reported synthesis
method [21,22]. See the supplementary material S1 for the detailed experimental process.
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2.2. Transmission Electron Microscopy

The morphology and structure of the CdS QDs were characterized by transmission electron
microscopy (TEM) images. TEM images, selected area electron diffraction (SAED) patterns, and EDS
data of the CdS QDs were obtained, respectively, using TEM (JEM-2100HR, JEOL, Japan) equipped
with energy-dispersive X-ray spectrometry (EDS) operating an accelerating voltage of 200 kV.

2.3. Optical Characterization

The absorption spectrum of the CdS QDs was measured using an ultraviolet–visible
spectrophotometer (UV-2700, Shimadzu, Japan). The fluorescence spectrum of the CdS QDs was
obtained using a fluorescence spectrophotometer (FL-2500, Hitachi, Tokyo, Japan). The XPS was
measured at room temperature using an Al K-alpha X-ray Photoelectron Spectrometer (Escalab
250Xi, Thermo Fisher Scientific, Waltham, MA, USA). The fluorescence quantum yields (PL QYs)
and the two-photon absorption cross-section (σ2PA) of the CdS QDs solution were measured. See the
supplementary material S2 for the detailed measurement. The two-photon fluorescence spectrum
of the CdS QDs was obtained using a mode-locked Ti:sapphire oscillator (Mira 900S, Coherent, US),
inverted microscope (Axio Observer A1, Zeiss, Berlin, Germany) and spectrometer (SR-500i-B1, Andor,
Oxford, UK). The schematic diagram of the experimental setup is shown Figure S1 in the supplementary
material S3. Femtosecond transient two-photon fluorescence decay was measured using a Fluorescence
Lifetime Spectrometer (FL920, Kirkton, Dundee, UK). See the supplementary material S4 and Figure S2
for fluorescence lifetime measurement details.

2.4. Cell Viability and Cellular Uptake of CdS QDs

The human liver hepatocellular carcinoma (HepG2) cells used in our laboratory were obtained
from the Cell Lab of the Cell Resource Center of the Chinese Academy of Sciences. The methods of
cell viability and the uptake of CdS QDs of individual HepG2 cells were similar to those described in
reference [23]. See the Figure S5 for the detailed measurement methods.

2.5. Laser Scanning Microscopy

HepG2 cells were seeded into the culture dishes at 105 cells/dish, and incubated for 24 hours in a
humidified incubator (37 ◦C, 5% CO2). The cells were washed with phosphate buffer saline (PBS) and
incubated with a fresh cell medium containing 0.16 mM CdS QDs. The cells were incubated for 6 hours
in a humidified incubator (37 ◦C, 5% CO2) before being washed three times with PBS. A drop of fresh
cell medium was added. Under the excitation of an 800 nm femtosecond pulsed laser, we obtained
two-photon excited fluorescent images of the HepG2 cells using laser scanning microscopy (Nikon
A1, Japan).

2.6. Numerical Simulations

First principle calculations based on the density functional theory (DFT) framework with the
Nanodcal package were implemented in order to obtain the density of states (DOS) of the CdS QDs [24].
The Perdew–Burke–Ernzerhof (PBE) and general gradient approximation (GGA) functionals were
used to optimize the geometric structure of the CdS QD [25] and the wavefunction was expanded
by the double zeta plus polarization (DZP) basis which was set with an energy cutoff of 80 Hartree.
The Brillouin zone was sampled with 4 × 4 × 4 Monkhorst and Pack k-points. A Cd14S14 cluster
was constructed with a diameter of about 1 nm as a control, and then the corresponding defect states
models were established by modifying the pristine Cd14S14 cluster, which included Cd13S14, Cd14S15,
Cd13S15, Cd14S13, Cd15S14, and Cd15S13 clusters.
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3. Results and Discussion

3.1. First Principle Calculations Based on Density Functional Theory

The small-size QD surface often creates surface or interfacial trap states due to their higher
surface-to-volume ratio, which would reduce the number of exciton states through (non)-radiative
charge recombination. Therefore, surface trap emission is commonly observed in small CdS
QDs [26–28]. We calculated the DOS of pristine and all possible defected structures using the Nanodcal
package. The modeled structures and the corresponding DOS of CdS QDs are presented in Figure 1,
which shows that the defect states narrow the intrinsic band gap by different levels. As shown in
Figure 1c,e, Cd vacancies and S interstitials introduced some deep donor levels appearing near the
valence band, which provided deep defect states recombination sites for CdS QDs. While the S antisites
defect states in Figure 1g introduced some deep acceptor levels appearing near the conduction band.
Cd-rich CdS QDs of S vacancies, Cd interstitials, and Cd antisites defect states also produced the same
effect by introducing some deep acceptor levels near the conduction band, as shown in Figure 1d,f,h.
The intrinsic band gap shown in Figure 1a is narrower than the experimental values, which is due to
the underestimation of the band gap originating from the first-principles calculation algorithm [29].

Nanomaterials 2019, 9, x FOR PEER REVIEW 4 of 12 

 

The small-size QD surface often creates surface or interfacial trap states due to their higher 
surface-to-volume ratio, which would reduce the number of exciton states through (non)-radiative 
charge recombination. Therefore, surface trap emission is commonly observed in small CdS QDs 
[26–28]. We calculated the DOS of pristine and all possible defected structures using the Nanodcal 
package. The modeled structures and the corresponding DOS of CdS QDs are presented in Figure 1, 
which shows that the defect states narrow the intrinsic band gap by different levels. As shown in 
Figure 1c and 1e, Cd vacancies and S interstitials introduced some deep donor levels appearing near 
the valence band, which provided deep defect states recombination sites for CdS QDs. While the S 
antisites defect states in Figure 1g introduced some deep acceptor levels appearing near the 
conduction band. Cd-rich CdS QDs of S vacancies, Cd interstitials, and Cd antisites defect states also 
produced the same effect by introducing some deep acceptor levels near the conduction band, as 
shown in Figure 1d, 1f and 1h. The intrinsic band gap shown in Figure 1a is narrower than the 
experimental values, which is due to the underestimation of the band gap originating from the 
first-principles calculation algorithm [29]. 

 
Figure 1. Density of states (DOS) of (a) pristine CdS quantum dots (QDs); (b) pristine CdS QD model; 
(c, e, g) represent DOS of CdS QDs with cadmium vacancies, sulfur interstitials and sulfur antisites, 
respectively; (d, f, h) represent the DOS of CdS QDs with sulfur vacancies, cadmium interstitials and 
cadmium antisites, respectively. The corresponding models are inserted in the DOS diagrams, 
respectively. S and Cd atoms are represented by green and red balls, respectively. 

Figure 1. Density of states (DOS) of (a) pristine CdS quantum dots (QDs); (b) pristine CdS QD model;
(c,e,g) represent DOS of CdS QDs with cadmium vacancies, sulfur interstitials and sulfur antisites,
respectively; (d,f,h) represent the DOS of CdS QDs with sulfur vacancies, cadmium interstitials
and cadmium antisites, respectively. The corresponding models are inserted in the DOS diagrams,
respectively. S and Cd atoms are represented by green and red balls, respectively.
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3.2. Morphological and Structural Characterization

The synthesized CdS QDs aqueous solution was stored at room temperature for 24 months
without precipitation or clustering, which shows good stability. Figure 2a shows the TEM image of the
CdS QDs. The morphology of the CdS QDs is nearly a spherical shape and the particles are uniformly
dispersed, and the average diameter is 3.4 nm, which is consistent with the diameter (D) calculation
from formula (1) [30],

D = −
(

6.6521 × 10−8
)
λ3 +

(
1.9557 × 10−4

)
λ2 −

(
9.2352 × 10−2

)
λ+ (13.29) (1)

where λ refers to the first exciton absorption peak in the absorption spectrum of the CdS QDs. The lattice
distribution of the CdS QDs is clearly shown, which indicates that CdS QDs have a good crystallinity.
Figure 2b is the SAED pattern of CdS QDs. The polycrystalline diffraction rings correspond to the
crystal planes of (111), (220), (200), and (311), respectively, which matches with that of the CdS cubic
zinc blende structure [31]. Figure 1c depicts a high-resolution transmission electron micrograph
(HRTEM) image of a CdS QD. The lattice fringe spacing is 2.89 Å, which corresponds to the cubic zinc
blende structure (200) crystal plane of CdS. Figure 1d shows the EDS spectrum of the CdS QDs. The
insert list of components of Figure 2d shows that the S atoms are slightly more than the Cd atoms. The
stoichiometric mismatch of S and Cd elements shown in the EDS spectrum provides a possibility for
the generation of a deep defect level [11,15].
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the relevant crystal planes are indexed in the figure; (c) HRTEM image of a single QD that displays
(200) crystal plane lattice fringes; (d) EDS spectrum of CdS QDs in our experiments.

The surface chemical composition significantly affects the fluorescence emission of the band
edge [11]. Therefore, the surface composition of the CdS QDs was further determined by XPS [32,33] as
shown in Figure 3. The XPS spectrum of the Cd 3d and S 2p regions obtained were fitted by Gaussian
functions with the distinct core electron binding energies of cadmium and sulfur: cadmium 3d 5/2
and 3/2 electrons have their binding energies at 405 and 412 eV, respectively; sulfur 2p 3/2 and 1/2
electrons have their binding energies at 162 and 163 eV [34]. The experimental binding energy of sulfur
2p 1/2 was slightly larger than 163 eV. We attributed this disparity to S atoms from stabilizer molecules
thioglycolic acid (TGA) forming S–S bonds with surface S atoms [35]. The ratio of Cd to S atoms was
determined from the integrated Cd and S signals with the appropriate atomic sensitivity factors from
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the spectrometer. Elemental analysis data are summarized in Table 1, which shows that the number of
S atoms was significantly higher than that of the Cd atoms on the surface.Nanomaterials 2019, 9, x FOR PEER REVIEW 6 of 12 
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Figure 3. XPS elemental analysis of CdS QDs. (a) and (b) are XPS counts of Cd 3d electrons and S 2p
electrons, respectively. Black dots represent raw XPS data, green lines are Gaussian curve fits at energies
corresponding to core atoms, blue lines are Gaussian curve fits centered at energies corresponding
to electrons from atoms on the surface, and red lines represent convolution of blue and green lines.
Cd signals included contributions from Cd 3d 3/2 and 5/2 electrons, S signals included contributions
from S 2p 1/2 and 3/2 electrons.

Table 1. XPS elemental analysis of CdS QDs. The table shows the atomic percentage of elements
from raw XPS data. Surface-to-inner ratios of Cd and S (Cds/Cdi and Ss/Si) were calculated from the
integrated peak area fitted from Cd and S signals in the XPS data.

QDs C1s% Cd3d% S2p% Cd/S Ratio Cds/Cdi Ss/Si Cds/Ss

CdS 85.61 6.50 7.89 0.83 0.086 0.5 0.2

3.3. Optical Properties

Figure 4a shows the ultraviolet–visible absorption spectrum and fluorescence spectrum of the
CdS QDs with a 360 nm excitation wavelength. The first exciton absorption peak is 400 nm, shorter
than the absorption peak of the CdS bulk material (510 nm) [22]. The significant blue shift is caused by
the quantum confinement effect of QDs [36]. However, the peak of the fluorescence is 640 nm. The
exciton emission peak at 460 nm is extremely weak. We attributed the fluorescence peak at 640 nm to
the recombination of a trapped electron and a trapped hole in the defect levels [15,37].

An 800 nm femtosecond pulsed laser was applied to the CdS QDs to study the upconversion
fluorescence (UPF). The UPF peak is at 640 nm, which is consistent with the corresponding fluorescence
emission, as shown in Figure 4b. Generally, the intensity of UPF depends on the power of the excitation
laser. To further understand the mechanism of UPF in the CdS QDs, we obtained UPF spectrums with
different laser powers and plotted them in logarithms. The logarithm of the intensity and the laser
power exhibited a linear relationship. According to the formula I~PK [38], where I is the fluorescence
intensity of the UPF spectrum, and P is the excitation power of the pulsed laser, and k is the exponent
of the power function, the fitted k is 2.06, which indicates that the excitation generates two-photon
fluorescence. The schematic diagram of the two-photon excitation process is shown in Figure 4d.
The fluorescence quantum yield is about 8.14%, which is higher than that of CdS QDs prepared by
non-hot-injection one-pot approaches [39]. The two-photon absorption cross-section and fluorescence
lifetime of the CdS QDs solution are shown in Table 2.
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dependence of two-photon excited fluorescence intensity of CdS QDs on 800 nm excitation power; (d)
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Table 2. Quantum efficiency, two-photon absorption cross-section and fluorescence lifetime of the CdS
QDs measured by R6G.

Sample λa
ex (nm) λb

ex (nm) λem (nm) Φ (%) UCL Γ (ns) σ2 (GM)

R6G 425 800 553 95 - 39.90

CdS 425 800 640 8.14 1.68 54.33
a The excitation wavelength of 425 nm was used to measure the quantum efficiency of the CdS QDs; b An excitation
wavelength of 800 nm was selected to measure the two-photon absorption-cross of the CdS QDs.

3.4. Cellular Toxicity of CdS QDs in HepG2 Cells

Biocompatibility must be considered when the CdS QDs are applied to cellular imaging. We
incubated HepG2 cells with different concentrations for 12 and 24 hours, and measured the viability by
3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. The results are shown in
Figure 5. It can be seen from Figure 5 that the CdS QDs can be considered to be nontoxic to HepG2 cells
(concentration below 160 µM), as the viability of the HepG2 cells still exceeds 85% at a concentration
of 160 µM after being incubated with the CdS QDs for 24 hours. The concentration and the viability
were higher than CdSe/ZnS QDs, which are 5 nM and 83%, respectively [40]. Figure S3 shows that the
morphology of the cells changes very little within 24 hours when the concentration does not exceed
160 µM. When the concentration is lower than 160 µM, the cell viability is maintained above 85%.
However, at 200 µM, the 24 hours cell viability was reduced to less than 70%, so we used concentrations
below 160 µM in the following experiments.
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3.5. Interaction between the CdS QDs and HepG2 Cells

To ascertain the cellular uptake and the intracellular distribution of CdS QDs in HepG2 cells,
TEM images of cell slices were applied after cell incubation for 24 hours. As shown in Figure 6a
and 6b, the CdS QDs entered into the interior of the organelles and agglomerated into clusters of
the cell vesicles through encapsulation. We obtained the whole cell TEM diagram for observing the
distribution of QDs in the cell, as shown in Figure S4. Figure 6c is the EDS spectrum of CdS QDs
clusters inside the cell. It can be seen from the map that these nanoparticles in the cells were CdS QDs.
The atomic Cd/S ratio resulting from the EDS map is 0.5, which is due to the organics that make up
the cells containing S element. Os, Pb, and other elements apart from Cd and S are found in the EDS
map due to the additional chemicals and nickel meshes used in the process of preparing the cell slices.
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The cellular internalization process plays a crucial role in bioimaging of nanoparticles. Using
inductively coupled plasma-mass spectrometry (ICP-MS) (ICAP-qc, Thermo Fisher, Germany),
we further measured the cellular uptake in a solution with a concentration of 160 uM. The molar mass
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and the uptake for a single HepG2 cell that we obtained for the 3.4 nm CdS QDs were 5.97 × 104 g/mol
and 3.03 × 10−12 g respectively, resulting in 3.06 × 107 particles of CdS QDs intake for each cell.

3.6. Two-Photon Excitation Bioimaging

We studied the application of the water-soluble CdS QDs in two-photon fluorescence bioimaging.
After incubating HepG2 cells with 160 uM CdS QDs in a culture dish for 6 hours, the HepG2 cells were
washed three times with PBS. Then, the HepG2 cells were scanned by a laser scan microscope excited
with an 800 nm femtosecond pulsed laser and the two-photon fluorescence images were captured.
Figure 7a–d shows the bright field image, the images of green and red channels and combination
image of the control group, respectively. Figure 7e–h shows the bright field image, the images of
the green and red channels and the superposition image of the experimental group, in which the
experimental group and the control group were incubated with and without CdS QDs, respectively.
When the cells were excited by an 800 nm laser, the upconversion fluorescence intensity of the cells
was recorded by the photomultiplier tube of each channel in the microscopy. When the laser scanned
the cells, the two-photon excited imaging was obtained. The experimental group emitted bright
red fluorescence, indicating that the CdS QDs had entered into the cells, while the control group
HepG2 cells emitted only green auto-fluorescence [41]. As can be seen from Figure 7g, there are many
bright spots in the cells. Combined with the TEM image, it can be inferred that these bright spots are
luminescence of intracellular quantum dots. In addition to the bright spot, red fluorescence can also
be observed in other parts of the cell due to the strong scattering effect of various organelles and cell
fluids within the cell. Red light emitted by quantum dots is scattered by other organelles or cell fluids,
so red light can be observed in other parts. The fluorescence brightness of the selected cells is listed in
Table 3. The fluorescence brightness of the experimental group was 38.2 times of that of the control
group that was incubated without CdS QDs. Besides, the similar fluorescence brightness enhancement
can be achieved in other cells. See the Figure S5 and Table S1 in the supplementary material S6 for
detail measurements. These results further support the superior properties of two-photon fluorescence
cellular imaging using water-soluble CdS QDs.
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Figure 7. (a–d) The image of control group HepG2 cells without culturing with CdS QDs; (a) The
bright field image; (b) The two-photon absorption fluorescence images with the green channel; (c) The
red channel; (d) The combination image of green and red channels; (e–h) The images of HepG2 cells
incubated with CdS QDs for 6 h; (e) The bright field image; (f) Two-photon absorption fluorescence
images with the green channel; (g) The red channel; (h) Combination image of green and red channels.
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Table 3. The fluorescence brightness of the selected cell.

Sample (b) (f) (c) (g) (d) (h)

Area (cell) 1 1 1 1 1 1
Intensity (min) 11 9 1 9 11 96
Intensity (max) 110 99 3 89 110 179

Intensity (mean) 37.7 31.2 1.0 38.2 37.7 133.2

4. Conclusions

In this paper, a type of surface S-rich CdS QDs was designed and synthesized. The first-principles
simulation results indicate that the defected QDs have a smaller band gap, which corresponds to a
longer emission wavelength compared with the band gap of the pristine QDs. The characterization
results proved the stoichiometric mismatch of the S and Cd elements in the QDs that we synthesized.
The emission wavelength of the CdS QDs was longer than that of the intrinsic emission in CdS bulk,
which indicates a narrower band gap caused by the defected structure. Red two-photon fluorescence
was generated by a two-photon absorption process when an 800 nm laser excited the CdS QDs. The CdS
QDs were further investigated for their fluorescence brightness, biocompatibility and toxicity. When
the HepG2 cells were incubated with CdS QDs, the two-photon excited fluorescence brightness of the
cells was 38.2 times of that of the control group. The uptake and cell viability were 3.06 × 107 CdS
QD particles for each cell and 85% incubated with 160 µM CdS QDs. The results show that the
water-soluble CdS QDs from a hydrothermal synthesis are promising as a candidate for cellular
bioimaging application.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-4991/9/3/369/s1,
Figure S1: the experimental setup used for the two-photon excitation of CdS QDs; Figure S2: Two-photon excited
luminescence decay curves (dots) of the CdS QDs solution and the best fitting curves (red line); Figure S3:
morphology of HepG2 cells observed by an inverted light microscope after incubating with different CdS QDs
concentration of (a) 0 µM (without QDs), (b) 40 µM, (c) 80 µM, (d) 120 µM, (e) 160 µM, and (f) 200 µM for 24
hours; Figure S4: (a) TEM image of a HepG2 cell incubated with CdS QDs for 24 hours. (b) The enlarged TEM
image of CdS QDs naturally created in the lysosome of the HepG2 cell; Figure S5: (a–d) the image of control
group HepG2 cells without culturing with CdS QDs; (a) the bright field image; (b) the two-photon absorption
fluorescence images with the green channel; (c) the red channel; (d) the combination image of green and red
channel; (e–h) the images of HepG2 cells incubated with CdS QDs for 6 hours; (e) the bright field image; (f)
two-photon absorption fluorescence images with the green channel; (g) the red channel; (h) the combination
image of green and red channel.
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