metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

catena-Poly[[(triphenylphosphane- κP)silver(I)]- μ -4,4'-bipyridine- $\kappa^2 N:N'$ -[(triphenylphosphane- κP)silver(I)]-di- μ chlorido]

Xiao-Ming Song,^a Feng Hu,^b Hua-Tian Shi,^b Qun Chen^a and Qian-Feng Zhang^{b,a}*

^aDepartment of Applied Chemistry, School of Petrochemical Engineering, Changzhou University, Jiangsu 213164, People's Republic of China, and ^bInstitute of Molecular Engineering and Applied Chemistry, Anhui University of Technology, Ma'anshan, Anhui 243002, People's Republic of China Correspondence e-mail: zhangqí@ahut.edu.cn

Received 8 May 2013; accepted 21 May 2013

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.005 Å; R factor = 0.039; wR factor = 0.092; data-to-parameter ratio = 19.7.

In the title coordination polymer, $[Ag_2Cl_2(C_{10}H_8N_2)-(C_{18}H_{15}P)_2]_n$, the Ag^I cation is coordinated by a 4,4'-bipyridine N atom, a triphenylphosphane P atom and two Cl⁻ anions in a distorted tetrahedral geometry. The 4,4-bipyridine and Cl⁻ anions bridge the Ag^I cations, forming polymeric chains running along [211]. In the crystal, weak C-H···Cl interactions link the polymeric chains into a three-dimensiona supramolecular architecture.

Related literature

For background to silver coordination polymers, see: Hung-Low & Klausmeyer (2008); Mishra *et al.* (2007); Pyykkö (2004); Yam & Lo (1999); Zaworotko (1994). For related structures, see: Lu *et al.* (1997); Sampanthar & Vittal (2000); Sun *et al.* (2009).

Experimental

b = 13.887 (2) Å

c = 17.826 (3) Å

Crystal data $[Ag_2Cl_2(C_{10}H_8N_2)(C_{18}H_{15}P)_2]$ $M_r = 967.36$ Triclinic, $P\overline{1}$ a = 9.1042 (16) Å

 $\alpha = 70.753 (3)^{\circ}$ $\beta = 79.332 (4)^{\circ}$ $\gamma = 75.190 (3)^{\circ}$ $V = 2044.5 (6) \text{ Å}^{3}$ Z = 2

Mo $K\alpha$ radiation

$0.23 \times 0.17 \times 0.14 \text{ mm}$

 $\mu = 1.20 \text{ mm}^{-1}$ T = 296 K

Data collection

Bruker SMART APEXII CCD	14039 measured reflections
area-detector diffractometer	9594 independent reflections
Absorption correction: multi-scan	6338 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 2001)	$R_{\rm int} = 0.018$
$T_{\min} = 0.770, T_{\max} = 0.850$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.039$	487 parameters
$wR(F^2) = 0.092$	H-atom parameters constrained
S = 1.01	$\Delta \rho_{\rm max} = 0.59 \ {\rm e} \ {\rm \AA}^{-3}$
9594 reflections	$\Delta \rho_{\rm min} = -0.44 \text{ e } \text{\AA}^{-3}$

Table 1 Selected bond lengths (Å).

Ag1-P1	2.4069 (9)	Ag2-P2	2.4162 (9)
Ag1-N1	2.430 (3)	Ag2-N2	2.386 (3)
Ag1-Cl1	2.5709 (10)	Ag2-Cl2	2.6111 (9)
Ag1-Cl1 ⁱ	2.6639 (10)	Ag2-Cl2 ⁱⁱ	2.6809 (10)

Symmetry codes: (i) -x + 1, -y + 2, -z + 1; (ii) -x - 1, -y + 1, -z + 2.

Table 2 Hydrogen-bond geometry (Å °)

Tyurogen-bonu	geometry	(A,)	

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
C9-H9···Cl2 ⁱⁱⁱ	0.93	2.82	3.669 (4)	153
G (1 ()				

Symmetry code: (iii) x + 1, y, z.

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

This project was supported by the Natural Science Foundation of China (90922008).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5704).

References

Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Hung-Low, F. & Klausmeyer, K. K. (2008). *Inorg. Chim. Acta*, **361**, 1298–1310. Lu, J., Crisci, G., Niu, T. & Jacobson, A. J. (1997). *Inorg. Chem.* **36**, 796–801.

Mishra, L., Prajapati, R., Kimura, K. & Kobayashi, S. (2007). *Inorg. Chem. Commun.* 10, 1040–1044.

Pyykkö, P. (2004). Angew. Chem., Int. Ed. Engl. 43, 4412-4456.

Sampanthar, J. T. & Vittal, J. J. (2000). Cryst. Eng. 3, 117-133.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

- Sun, D., Luo, G.-G., Zhang, N., Huang, R.-B. & Zheng, L.-S. (2009). Acta Cryst. C65, m440–m442.
- Yam, V. W. W. & Lo, K. K. W. (1999). Chem. Soc. Rev. 28, 323-334.

Zaworotko, M. J. (1994). Chem. Soc. Rev. 23, 283-288.

supplementary materials

Acta Cryst. (2013). E69, m342 [doi:10.1107/S160053681301413X]

catena-Poly[[(triphenylphosphane- κP)silver(I)]- μ -4,4'-bipyridine- $\kappa^2 N$:N'-[(triphenylphosphane- κP)silver(I)]-di- μ -chlorido]

Xiao-Ming Song, Feng Hu, Hua-Tian Shi, Qun Chen and Qian-Feng Zhang

Comment

There has been an extensive interest in d¹⁰ metal complexes with phosphane ligands due to their potential application in luminescence (Yam & Lo, 1999), for this important reason, the study of d¹⁰ "closed-shell" interactions that exist between the monovalent elements of group 11 has been active for many years (Pyykko, 2004). Actually, these metal-metal interactions are typically associated with the ligand-bridged, hydrogen-bonded and pi-pi stacked effects, which may result in formation of supramolecular assemblies (Mishra *et al.*, 2007; Zaworotko, 1994). Metal coordination polymers with linear spacer ligands have been exploited by many research workers to construct a variety of network structures. Specifically silver(I) ion has been extensively used in inorganic crystal engineering using self-assembly of tailored building-blocks (Hung-Low & Klausmeyer, 2008). In recent decade, self-assembly of silver(I) salts with different aliphatic dinitrile ligands such as 4,4'-bipyridyl (4,4'-bpy) have also been successfully made resulting into novel coordination polymers (Sampanthar & Vittal, 2000). With this in mind, we have chosen a simple AgCl salt and a linear spacer 4,4'-bpy and allowed them to react separately with PPh₃ as an ancillary ligand. The results of this work are reported in this paper.

The title coordination polymer crystallizes in the triclinic centrosymmetric *P*-1 space group with Z = 2 as it contains one half molecule in an asymmetric unit. A view of the structure of building block in the title polymeric complex is depicted in Fig. 1. The structure consists of { $(\mu$ -Cl)(AgPPh₃)}² units bridged by 4,4'-bipy ligands to form a zig-zig infinite chain, as shown in Fig. 2. This structure is isostructural to [$(\mu$ -4,4'-bipy)(μ -I)₂(AgPPh₃)₂]_n (Sampanthar & Vittal, 2000) and [$(\mu$ -4,4'-bipy)(μ -Cl)₂(CuPPh₃)₂]_n (Lu *et al.*, 1997). The coordination polymer possesses to the crystallographic inversion center through the middle of Ag₂Cl₂ squares. Two pyridine rings in the 4,4'-bipy are non-planar with dihedral angle of 22.4 (3)°. The average Ag···Ag distance in the Ag₂Cl₂ ring is 3.392 (1) Å, which is slightly longer than that of 3.139 (1) Å in [$(\mu$ -4,4'-bipy)(μ -I)₂(AgPPh₃)₂]_n (Sampanthar & Vittal, 2000). Each silver(I) ion in the title coordination polymer is coordinated by one nitrogen atom of 4,4'-bipy ligand, one phosphorous atom of PPh₃ ligand and two chloride atoms, leading to the distorted tetrahedron with the angles around silver varying from 94.24 (7)° to 130.08 (3)°. Two silver(I) ions are separated by 4,4'-bipy groups at a distances of 10.957 (1) Å along with axial direction. The average Ag—N and Ag—P bond lengths are 2.408 (3) Å and 2.4116 (9) Å, respectively, which almost similar to the values reported in the related other complexes (Sampanthar & Vittal, 2000, Sun *et al.*, 2009). The Ag—Cl—Ag angles of 97.37 (3)° and 102.05 (2)° in the title coordination polymer are obviously larger than the Ag—L—Ag angle of 66.27 (1)° in [(μ -4,4'-bipy)(μ -I)2(AgPPh₃)₂]_n (Sampanthar & Vittal, 2000).

Experimental

AgCl (0.080 g, 0.56 mmol) and PPh₃ (0.162 g, 0.62 mmol) were mixed together and stirred in a mixture of CH_2Cl_2 (15 mL) and MeCN (5 mL) for 45 min to get a clear solution. An MeCN solution (5 mL) of 4,4'-bipyridyl (0.043 g, 0.28 mmol) was added slowly to the above solution with stirring. The clear solution was filtered and left for slow evaporation. Colorless crystals were collected by decanting the solvent and washed with MeOH (5 mL) and Et₂O (5 x 2 mL) then airdried. Yield: 157 mg, 58 %. Analysis for $C_{46}H_{38}N_2Cl_2P_2Ag_2$: calcd C 57.11, H 3.96, N 2.90 %; found C 57.07, H 4.03, N 2.88 %.

Refinement

H atoms were placed in geometrically idealized positions and refined in riding model with C—H = 0.93 Å and $U_{iso}(H) = 1.2U_{eq}(C)$].

Computing details

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT* (Bruker, 2007); program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

Figure 1

The structure of the title coordination polymer, showing the atom-numbering scheme and displacement ellipsoids at the 50% probability level.

Figure 2

A view the $[(\mu-4,4'-bipy)(\mu-Cl)_2(AgPPh_3)_2]_n$ chain, four unit cells along as drawn by ORTEP with 50% probability level.

catena-Poly[[(triphenylphosphane- κP)silver(I)]- μ -4,4'-bipyridine- $\kappa^2 N$:N'-[(triphenylphosphane- κP)silver(I)]-di- μ -chlorido]

Z = 2

F(000) = 972

 $\theta = 2.3 - 28.9^{\circ}$

 $\mu = 1.20 \text{ mm}^{-1}$ T = 296 K

 $R_{\rm int} = 0.018$

 $h = -10 \rightarrow 12$

 $k = -12 \rightarrow 19$

 $l = -15 \rightarrow 23$

 $D_{\rm x} = 1.571 {\rm Mg} {\rm m}^{-3}$

Block, light yellow

 $0.23 \times 0.17 \times 0.14$ mm

14039 measured reflections

9594 independent reflections

 $\theta_{\text{max}} = 29.2^{\circ}, \ \theta_{\text{min}} = 1.6^{\circ}$

6338 reflections with $I > 2\sigma(I)$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 4454 reflections

Crystal data

 $[Ag_{2}Cl_{2}(C_{10}H_{8}N_{2})(C_{18}H_{15}P)_{2}]$ $M_{r} = 967.36$ Triclinic, *P*I Hall symbol: -P 1 a = 9.1042 (16) Å b = 13.887 (2) Å c = 17.826 (3) Å a = 70.753 (3)° $\beta = 79.332$ (4)° $\gamma = 75.190$ (3)° V = 2044.5 (6) Å³

Data collection

Bruker SMART APEXII CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2001) $T_{\min} = 0.770, T_{\max} = 0.850$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.039$	Hydrogen site location: inferred from
$wR(F^2) = 0.092$	neighbouring sites
<i>S</i> = 1.01	H-atom parameters constrained
9594 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0251P)^2 + 1.3705P]$
487 parameters	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.59 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\min} = -0.44 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F², conventional R-factors R are based on F, with F set to zero for negative F². The threshold expression of $F^2 > 2sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Ag1	0.34094 (3)	1.07363 (2)	0.539814 (18)	0.05839 (9)	
Ag2	-0.34478 (3)	0.431910 (18)	0.960631 (16)	0.05064 (8)	

C11	0.59763 (10)	0.97839 (8)	0.59551 (5)	0.0607 (2)
Cl2	-0.60355 (9)	0.52295 (6)	0.90046 (5)	0.04829 (19)
P1	0.20766 (10)	1.25225 (6)	0.52007 (5)	0.0454 (2)
P2	-0.21810 (8)	0.25279 (6)	0.97259 (5)	0.03729 (17)
N1	0.1967 (3)	0.9471 (2)	0.62893 (17)	0.0524 (7)
N2	-0.2206(3)	0.5717 (2)	0.88543 (16)	0.0469 (6)
C1	0.0440 (4)	0.9661 (3)	0.6366 (2)	0.0638 (10)
H1	-0.0076	1.0305	0.6071	0.077*
C2	-0.0412 (4)	0.8954 (3)	0.6859(2)	0.0558 (9)
H2	-0.1473	0.9127	0.6886	0.067*
C3	0.0305 (3)	0.7994 (2)	0.73101 (18)	0.0416 (7)
C4	0.1897 (4)	0.7796 (3)	0.7233 (2)	0.0559 (9)
H4	0.2444	0.7161	0.7524	0.067*
C5	0.2660 (4)	0.8549 (3)	0.6722 (2)	0.0608 (10)
Н5	0.3723	0.8397	0.6680	0.073*
C6	-0.2807 (4)	0.6486 (3)	0.8242 (2)	0.0490 (8)
H6	-0.3798	0.6521	0.8155	0.059*
C7	-0.2039 (4)	0.7233 (2)	0.77318 (19)	0.0468 (8)
H7	-0.2510	0.7751	0.7313	0.056*
C8	-0.0565 (3)	0.7208 (2)	0.78454 (18)	0.0391 (7)
C9	0.0055 (4)	0.6417 (3)	0.8484 (2)	0.0530 (9)
H9	0.1040	0.6365	0.8589	0.064*
C10	-0.0804 (4)	0.5706 (3)	0.8963 (2)	0.0555 (9)
H10	-0.0366	0.5184	0.9390	0.067*
C11	0.2506 (4)	1.3467 (3)	0.42354 (19)	0.0480 (8)
C12	0.4036 (4)	1.3413 (3)	0.3919 (2)	0.0631 (10)
H12	0.4798	1.2891	0.4181	0.076*
C13	0.4405 (5)	1.4153 (4)	0.3205 (2)	0.0745 (12)
H13	0.5423	1.4133	0.2995	0.089*
C14	0.3284 (7)	1.4907 (3)	0.2812 (3)	0.0820 (14)
H14	0.3544	1.5396	0.2336	0.098*
C15	0.1790 (6)	1.4946 (3)	0.3112 (2)	0.0799 (13)
H15	0.1029	1.5451	0.2835	0.096*
C16	0.1408 (5)	1.4234 (3)	0.3828 (2)	0.0637 (10)
H16	0.0387	1.4275	0.4037	0.076*
C21	0.2366 (3)	1.3116 (3)	0.5928 (2)	0.0460 (7)
C22	0.2340 (5)	1.2515 (3)	0.6731 (2)	0.0629 (10)
H22	0.2216	1.1830	0.6877	0.075*
C23	0.2498 (5)	1.2930 (4)	0.7306 (2)	0.0761 (12)
H23	0.2447	1.2530	0.7840	0.091*
C24	0.2731 (5)	1.3926 (4)	0.7100 (3)	0.0721 (11)
H24	0.2849	1.4200	0.7491	0.087*
C25	0.2789 (5)	1.4516 (3)	0.6310 (3)	0.0729 (11)
H25	0.2951	1.5191	0.6165	0.087*
C26	0.2608 (4)	1.4113 (3)	0.5732 (2)	0.0577 (9)
H26	0.2649	1.4520	0.5200	0.069*
C31	0.0001 (4)	1.2669 (2)	0.52947 (19)	0.0445 (7)
C32	-0.0577 (4)	1.2105 (3)	0.4944 (2)	0.0605 (9)
H32	0.0088	1.1696	0.4651	0.073*

C33	-0.2136 (5)	1.2147 (4)	0.5027 (3)	0.0779 (12)
H33	-0.2515	1.1756	0.4803	0.093*
C34	-0.3120 (5)	1.2778 (4)	0.5448 (2)	0.0697 (11)
H34	-0.4167	1.2810	0.5507	0.084*
C35	-0.2569 (4)	1.3350 (3)	0.5774 (2)	0.0602 (9)
H35	-0.3240	1.3783	0.6046	0.072*
C36	-0.1008 (4)	1.3293 (3)	0.5703 (2)	0.0510 (8)
H36	-0.0640	1.3682	0.5935	0.061*
C41	-0.0208 (3)	0.2281 (2)	0.99274 (19)	0.0405 (7)
C42	0.0690 (4)	0.2968 (3)	0.9441 (2)	0.0515 (8)
H42	0.0294	0.3501	0.9007	0.062*
C43	0.2169 (4)	0.2874 (3)	0.9591 (3)	0.0659 (11)
H43	0.2756	0.3344	0.9262	0.079*
C44	0.2764 (4)	0.2080 (3)	1.0228 (3)	0.0658 (11)
H44	0.3754	0.2015	1.0334	0.079*
C45	0.1892 (4)	0.1383 (3)	1.0709 (2)	0.0639 (10)
H45	0.2300	0.0839	1.1134	0.077*
C46	0.0410 (4)	0.1492 (3)	1.0561 (2)	0.0509 (8)
H46	-0.0177	0.1025	1.0894	0.061*
C51	-0.2043 (3)	0.2094 (2)	0.88489 (18)	0.0390 (7)
C52	-0.0742 (4)	0.1461 (3)	0.8581 (2)	0.0512 (8)
H52	0.0140	0.1270	0.8834	0.061*
C53	-0.0759 (4)	0.1116 (3)	0.7940 (2)	0.0590 (9)
H53	0.0108	0.0685	0.7769	0.071*
C54	-0.2042 (5)	0.1402 (3)	0.7555 (2)	0.0654 (10)
H54	-0.2037	0.1174	0.7119	0.078*
C55	-0.3335 (5)	0.2025 (3)	0.7812 (2)	0.0658 (10)
H55	-0.4212	0.2207	0.7556	0.079*
C56	-0.3337 (4)	0.2382 (3)	0.8448 (2)	0.0524 (8)
H56	-0.4209	0.2817	0.8611	0.063*
C61	-0.3002 (3)	0.1526 (2)	1.05223 (18)	0.0392 (7)
C62	-0.3049 (4)	0.0577 (3)	1.0440 (2)	0.0542 (9)
H62	-0.2648	0.0424	0.9963	0.065*
C63	-0.3694 (5)	-0.0147 (3)	1.1068 (2)	0.0696 (11)
H63	-0.3700	-0.0789	1.1015	0.084*
C64	-0.4319 (4)	0.0076 (3)	1.1765 (2)	0.0632 (10)
H64	-0.4768	-0.0406	1.2180	0.076*
C65	-0.4280 (5)	0.1006 (3)	1.1847 (2)	0.0688 (11)
H65	-0.4692	0.1153	1.2325	0.083*
C66	-0.3637 (4)	0.1737 (3)	1.1232 (2)	0.0551 (9)
H66	-0.3631	0.2374	1.1296	0.066*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ag1	0.04979 (16)	0.03807 (14)	0.0748 (2)	-0.00268 (11)	0.00765 (13)	-0.01311 (13)
Ag2	0.04678 (15)	0.03340 (13)	0.06182 (17)	-0.00289 (10)	0.00090 (12)	-0.00901 (11)
Cl1	0.0483 (5)	0.0784 (6)	0.0510 (5)	-0.0104 (4)	-0.0062 (4)	-0.0153 (4)
Cl2	0.0403 (4)	0.0520 (5)	0.0485 (5)	-0.0089 (3)	-0.0058 (3)	-0.0095 (4)
P1	0.0429 (4)	0.0348 (4)	0.0514 (5)	-0.0040 (3)	0.0009 (4)	-0.0100 (4)

P2	0.0322 (4)	0.0296 (4)	0.0454 (5)	-0.0046 (3)	-0.0019 (3)	-0.0078 (3)
N1	0.0519 (17)	0.0442 (16)	0.0566 (18)	-0.0153 (13)	0.0060 (14)	-0.0115 (13)
N2	0.0563 (17)	0.0388 (14)	0.0472 (16)	-0.0181 (12)	-0.0025 (13)	-0.0104 (12)
C1	0.053 (2)	0.0410 (19)	0.077 (3)	-0.0055 (16)	0.0042 (19)	0.0007 (17)
C2	0.0427 (18)	0.0443 (19)	0.068 (2)	-0.0069 (15)	-0.0014 (16)	-0.0042 (16)
C3	0.0412 (16)	0.0386 (16)	0.0449 (18)	-0.0114 (13)	-0.0023 (14)	-0.0113 (13)
C4	0.0414 (18)	0.049 (2)	0.068 (2)	-0.0087 (15)	-0.0081 (17)	-0.0046 (17)
C5	0.0434 (19)	0.067 (2)	0.070 (2)	-0.0206 (18)	0.0038 (17)	-0.016 (2)
C6	0.0452 (18)	0.0458 (18)	0.056 (2)	-0.0146 (15)	-0.0048 (16)	-0.0110 (16)
C7	0.0448 (18)	0.0420 (17)	0.0492 (19)	-0.0092 (14)	-0.0151 (15)	-0.0024 (14)
C8	0.0414 (16)	0.0339 (15)	0.0425 (17)	-0.0083 (12)	-0.0048 (13)	-0.0115 (13)
C9	0.0489 (19)	0.0449 (19)	0.062 (2)	-0.0109 (15)	-0.0210 (17)	-0.0037 (16)
C10	0.068 (2)	0.0412 (18)	0.053 (2)	-0.0122 (17)	-0.0211 (18)	0.0005 (15)
C11	0.0536 (19)	0.0456 (18)	0.0419 (18)	-0.0091 (15)	0.0022 (15)	-0.0141 (14)
C12	0.058 (2)	0.078 (3)	0.055 (2)	-0.020 (2)	0.0035 (18)	-0.022 (2)
C13	0.079 (3)	0.093 (3)	0.063 (3)	-0.045 (3)	0.022 (2)	-0.034 (2)
C14	0.132 (4)	0.056 (3)	0.056 (3)	-0.036 (3)	0.020 (3)	-0.018 (2)
C15	0.111 (4)	0.051 (2)	0.053 (2)	0.002 (2)	0.008 (2)	-0.0067 (18)
C16	0.071 (2)	0.049 (2)	0.053 (2)	0.0042 (18)	0.0074 (18)	-0.0124 (17)
C21	0.0366 (16)	0.0446 (18)	0.052 (2)	-0.0065 (13)	-0.0017 (14)	-0.0108 (15)
C22	0.076 (3)	0.054 (2)	0.053 (2)	-0.0228 (19)	-0.0103 (19)	0.0001 (18)
C23	0.091 (3)	0.086 (3)	0.048 (2)	-0.024 (3)	-0.014 (2)	-0.007 (2)
C24	0.080 (3)	0.080 (3)	0.066 (3)	-0.019 (2)	-0.020 (2)	-0.026 (2)
C25	0.086 (3)	0.060 (2)	0.081 (3)	-0.020 (2)	-0.022 (2)	-0.020 (2)
C26	0.068 (2)	0.0422 (19)	0.057 (2)	-0.0104 (17)	-0.0109 (18)	-0.0065 (16)
C31	0.0426 (17)	0.0395 (17)	0.0458 (18)	-0.0078 (13)	-0.0025 (14)	-0.0072 (14)
C32	0.064 (2)	0.065 (2)	0.057 (2)	-0.0107 (19)	-0.0088 (19)	-0.0252 (19)
C33	0.075 (3)	0.089 (3)	0.081 (3)	-0.021 (3)	-0.033 (2)	-0.024 (3)
C34	0.049 (2)	0.088 (3)	0.065 (3)	-0.017 (2)	-0.0140 (19)	-0.007 (2)
C35	0.0456 (19)	0.065 (2)	0.059 (2)	-0.0056 (17)	-0.0021 (17)	-0.0114 (18)
C36	0.0433 (18)	0.0493 (19)	0.059 (2)	-0.0103 (15)	0.0003 (15)	-0.0168 (16)
C41	0.0366 (15)	0.0364 (15)	0.0501 (19)	-0.0047 (12)	-0.0034 (13)	-0.0181 (14)
C42	0.0432 (18)	0.0450 (18)	0.064 (2)	-0.0134 (14)	0.0007 (16)	-0.0131 (16)
C43	0.048 (2)	0.071 (3)	0.089 (3)	-0.0266 (19)	0.009 (2)	-0.035 (2)
C44	0.0371 (18)	0.085 (3)	0.089 (3)	-0.0070 (19)	-0.0128 (19)	-0.046 (3)
C45	0.050(2)	0.068 (3)	0.070 (3)	0.0022 (18)	-0.0215 (19)	-0.019 (2)
C46	0.0411 (17)	0.0444 (18)	0.065 (2)	-0.0060 (14)	-0.0097 (16)	-0.0128 (16)
C51	0.0378 (15)	0.0311 (14)	0.0425 (17)	-0.0092 (12)	-0.0017 (13)	-0.0035 (12)
C52	0.0418 (17)	0.051 (2)	0.057 (2)	-0.0059 (15)	-0.0044 (15)	-0.0155 (16)
C53	0.067 (2)	0.052 (2)	0.056 (2)	-0.0120 (18)	0.0065 (19)	-0.0201 (17)
C54	0.092 (3)	0.060 (2)	0.047 (2)	-0.024 (2)	-0.004 (2)	-0.0149 (18)
C55	0.069 (3)	0.068 (3)	0.061 (2)	-0.018 (2)	-0.024 (2)	-0.008 (2)
C56	0.0443 (18)	0.052 (2)	0.053 (2)	-0.0082 (15)	-0.0091 (16)	-0.0051 (16)
C61	0.0295 (14)	0.0334 (15)	0.0488 (18)	-0.0060 (11)	-0.0051 (13)	-0.0046 (13)
C62	0.063 (2)	0.0381 (17)	0.055 (2)	-0.0130 (15)	0.0066 (17)	-0.0100 (15)
C63	0.081 (3)	0.0387 (19)	0.079 (3)	-0.0216 (19)	0.008 (2)	-0.0071 (18)
C64	0.058 (2)	0.054 (2)	0.061 (2)	-0.0197 (18)	-0.0008 (18)	0.0072 (18)
C65	0.072 (3)	0.083 (3)	0.049 (2)	-0.030 (2)	0.0130 (19)	-0.017 (2)
C66	0.061 (2)	0.054 (2)	0.052 (2)	-0.0216 (17)	0.0071 (17)	-0.0181 (16)

Geometric parameters (Å, °)

Ag1—P1	2.4069 (9)	C22—H22	0.9300
Ag1—N1	2.430 (3)	C23—C24	1.371 (6)
Ag1—Cl1	2.5709 (10)	C23—H23	0.9300
Ag1—Cl1 ⁱ	2.6639 (10)	C24—C25	1.376 (6)
Ag2—P2	2.4162 (9)	C24—H24	0.9300
Ag2—N2	2.386 (3)	C25—C26	1.376 (5)
Ag2—Cl2	2.6111 (9)	C25—H25	0.9300
Ag2—Cl2 ⁱⁱ	2.6809 (10)	C26—H26	0.9300
Ag2—Ag2 ⁱⁱ	3.3292 (6)	C31—C36	1.373 (4)
Cl1—Ag1 ⁱ	2.6639 (11)	C31—C32	1.392 (5)
Cl2—Ag2 ⁱⁱ	2.6809 (10)	C32—C33	1.387 (5)
P1-C31	1.830 (3)	C32—H32	0.9300
P1—C11	1.833 (3)	C33—C34	1.384 (6)
P1—C21	1.836 (4)	С33—Н33	0.9300
P2—C41	1.821 (3)	C34—C35	1.355 (6)
P2—C51	1.825 (3)	C34—H34	0.9300
P2-C61	1.829 (3)	C35—C36	1.388 (5)
N1—C5	1.322 (5)	С35—Н35	0.9300
N1—C1	1.336 (4)	C36—H36	0.9300
N2-C10	1.321 (4)	C41—C46	1.378 (4)
N2—C6	1.336 (4)	C41—C42	1.387 (4)
C1—C2	1.381 (5)	C42—C43	1.386 (5)
C1—H1	0.9300	C42—H42	0.9300
C2—C3	1.375 (4)	C43—C44	1.378 (6)
С2—Н2	0.9300	C43—H43	0.9300
C3—C4	1.394 (4)	C44—C45	1.376 (5)
C3—C8	1.485 (4)	C44—H44	0.9300
C4—C5	1.384 (5)	C45—C46	1.384 (5)
C4—H4	0.9300	C45—H45	0.9300
С5—Н5	0.9300	C46—H46	0.9300
C6—C7	1.381 (4)	C51—C56	1.393 (4)
С6—Н6	0.9300	C51—C52	1.394 (4)
С7—С8	1.383 (4)	C52—C53	1.380 (5)
С7—Н7	0.9300	С52—Н52	0.9300
С8—С9	1.385 (4)	C53—C54	1.368 (5)
C9—C10	1.380 (5)	С53—Н53	0.9300
С9—Н9	0.9300	C54—C55	1.374 (6)
C10—H10	0.9300	C54—H54	0.9300
C11—C16	1.370 (5)	C55—C56	1.379 (5)
C11—C12	1.395 (5)	С55—Н55	0.9300
C12—C13	1.396 (5)	C56—H56	0.9300
C12—H12	0.9300	C61—C66	1.382 (4)
C13—C14	1.364 (6)	C61—C62	1.385 (4)
С13—Н13	0.9300	C62—C63	1.388 (5)
C14—C15	1.361 (6)	C62—H62	0.9300
C14—H14	0.9300	C63—C64	1.364 (5)
C15—C16	1.382 (5)	С63—Н63	0.9300
C15—H15	0.9300	C64—C65	1.357 (6)

C16—H16	0.9300	С64—Н64	0.9300
C21—C26	1.377 (5)	C65—C66	1.381 (5)
C21—C22	1.399 (5)	С65—Н65	0.9300
C22—C23	1.374 (6)	С66—Н66	0.9300
P1—Ag1—N1	114.03 (7)	C23—C22—C21	120.4 (4)
P1—Ag1—Cl1	130.08 (3)	C23—C22—H22	119.8
N1—Ag1—Cl1	95.47 (8)	C21—C22—H22	119.8
P1—Ag1—Cl1 ⁱ	112.23 (3)	C24—C23—C22	120.7 (4)
N1—Ag1—Cl1 ⁱ	103.72 (7)	C24—C23—H23	119.7
Cl1—Ag1—Cl1 ⁱ	97.37 (3)	С22—С23—Н23	119.7
N2—Ag2—P2	120.95 (7)	C23—C24—C25	119.3 (4)
N2—Ag2—Cl2	94.24 (7)	C23—C24—H24	120.3
P2—Ag2—Cl2	124.50 (3)	C25—C24—H24	120.3
N2—Ag2—Cl2 ⁱⁱ	96.68 (7)	C26—C25—C24	120.4 (4)
P2—Ag2—Cl2 ⁱⁱ	113.34 (3)	C26—C25—H25	119.8
Cl2—Ag2—Cl2 ⁱⁱ	102.05 (2)	C24—C25—H25	119.8
N2—Ag2—Ag2 ⁱⁱ	98.72 (7)	C25—C26—C21	121.1 (4)
P2—Ag2—Ag2 ⁱⁱ	139.76 (2)	С25—С26—Н26	119.5
Cl2—Ag2—Ag2 ⁱⁱ	51.96 (2)	C21—C26—H26	119.5
Cl2 ⁱⁱ —Ag2—Ag2 ⁱⁱ	50.090 (19)	C36—C31—C32	118.6 (3)
Ag1—Cl1—Ag1 ⁱ	82.63 (3)	C36—C31—P1	123.4 (3)
Ag2—Cl2—Ag2 ⁱⁱ	77.95 (2)	C32—C31—P1	118.1 (3)
C31—P1—C11	103.84 (15)	C33—C32—C31	120.7 (4)
C31—P1—C21	103.95 (15)	С33—С32—Н32	119.7
C11—P1—C21	103.26 (15)	С31—С32—Н32	119.7
C31—P1—Ag1	112.39 (11)	C34—C33—C32	119.3 (4)
C11—P1—Ag1	117.37 (11)	С34—С33—Н33	120.4
C21—P1—Ag1	114.55 (11)	С32—С33—Н33	120.4
C41—P2—C51	104.34 (14)	C35—C34—C33	120.4 (4)
C41—P2—C61	104.46 (14)	С35—С34—Н34	119.8
C51—P2—C61	102.45 (14)	C33—C34—H34	119.8
C41—P2—Ag2	111.14 (10)	C34—C35—C36	120.3 (4)
C51 - P2 - Ag2	116.42 (10)	С34—С35—Н35	119.8
C61—P2—Ag2	116.60 (10)	С36—С35—Н35	119.8
C5—N1—C1	116.4 (3)	C31—C36—C35	120.7 (3)
C5—N1—Ag1	121.4 (2)	С31—С36—Н36	119.6
C1—N1—Ag1	122.2 (2)	С35—С36—Н36	119.6
C10-N2-C6	116.2 (3)	C46—C41—C42	118.4 (3)
C10—N2—Ag2	121.3 (2)	C46—C41—P2	123.8 (2)
C6—N2—Ag2	122.1 (2)	C42—C41—P2	117.7 (2)
N1-C1-C2	123.6 (3)	C43—C42—C41	121.0 (3)
N1-C1-H1	118.2	C43—C42—H42	119.5
C2—C1—H1	118.2	C41—C42—H42	119.5
C3—C2—C1	120.1 (3)	C44—C43—C42	119.6 (4)
C3—C2—H2	119.9	C44—C43—H43	120.2
C1—C2—H2	119.9	C42—C43—H43	120.2
C2—C3—C4	116.3 (3)	C45—C44—C43	119.9 (3)
C2—C3—C8	122.0 (3)	C45—C44—H44	120.0
	× /		

C4—C3—C8	121.7 (3)	C43—C44—H44	120.0
C5—C4—C3	119.7 (3)	C44—C45—C46	120.0 (4)
C5—C4—H4	120.1	C44—C45—H45	120.0
C3—C4—H4	120.1	C46—C45—H45	120.0
N1—C5—C4	123.8 (3)	C41—C46—C45	121.0 (3)
N1—C5—H5	118.1	C41—C46—H46	119.5
C4—C5—H5	118.1	C45—C46—H46	119.5
N2—C6—C7	123.6 (3)	C56—C51—C52	118.6 (3)
N2—C6—H6	118.2	C56—C51—P2	117.7 (2)
С7—С6—Н6	118.2	C52—C51—P2	123.7 (2)
C6—C7—C8	119.7 (3)	C53—C52—C51	120.1 (3)
С6—С7—Н7	120.1	С53—С52—Н52	120.0
С8—С7—Н7	120.1	С51—С52—Н52	120.0
C7—C8—C9	116.7 (3)	C54—C53—C52	120.6 (4)
C7—C8—C3	121.6 (3)	С54—С53—Н53	119.7
C9—C8—C3	121.7 (3)	С52—С53—Н53	119.7
C10—C9—C8	119.4 (3)	C53—C54—C55	120.1 (4)
С10—С9—Н9	120.3	С53—С54—Н54	120.0
С8—С9—Н9	120.3	С55—С54—Н54	120.0
N2—C10—C9	124.4 (3)	C54—C55—C56	120.2 (4)
N2-C10-H10	117.8	С54—С55—Н55	119.9
С9—С10—Н10	117.8	С56—С55—Н55	119.9
C16—C11—C12	119.1 (3)	C55—C56—C51	120.5 (3)
C16—C11—P1	123.2 (3)	С55—С56—Н56	119.8
C12—C11—P1	117.7 (3)	С51—С56—Н56	119.8
C11—C12—C13	119.0 (4)	C66—C61—C62	118.5 (3)
C11—C12—H12	120.5	C66—C61—P2	118.3 (2)
C13—C12—H12	120.5	C62—C61—P2	123.1 (3)
C14—C13—C12	120.5 (4)	C61—C62—C63	120.1 (3)
C14—C13—H13	119.7	С61—С62—Н62	120.0
С12—С13—Н13	119.7	С63—С62—Н62	120.0
C15—C14—C13	120.5 (4)	C64—C63—C62	120.6 (4)
C15—C14—H14	119.8	С64—С63—Н63	119.7
C13—C14—H14	119.8	С62—С63—Н63	119.7
C14—C15—C16	119.7 (4)	C65—C64—C63	119.6 (3)
C14—C15—H15	120.1	С65—С64—Н64	120.2
C16—C15—H15	120.1	С63—С64—Н64	120.2
C11—C16—C15	121.2 (4)	C64—C65—C66	121.0 (4)
C11—C16—H16	119.4	С64—С65—Н65	119.5
C15—C16—H16	119.4	С66—С65—Н65	119.5
C26—C21—C22	118.1 (3)	C65—C66—C61	120.3 (3)
C26—C21—P1	124.1 (3)	С65—С66—Н66	119.9
C22—C21—P1	117.8 (3)	С61—С66—Н66	119.9

Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) -x-1, -y+1, -z+2.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H…A

supplementary materials

С9—Н9…С12 ^{ііі}	0.93	2.82	3.669 (4)	153	

Symmetry code: (iii) x+1, y, z.