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Abstract

Champagne coat color in horses is controlled by a single, autosomal-dominant gene (CH). The phenotype produced by this
gene is valued by many horse breeders, but can be difficult to distinguish from the effect produced by the Cream coat color
dilution gene (CR). Three sires and their families segregating for CH were tested by genome scanning with microsatellite
markers. The CH gene was mapped within a 6 cM region on horse chromosome 14 (LOD = 11.74 for h= 0.00). Four candidate
genes were identified within the region, namely SPARC [Secreted protein, acidic, cysteine-rich (osteonectin)], SLC36A1 (Solute
Carrier 36 family A1), SLC36A2 (Solute Carrier 36 family A2), and SLC36A3 (Solute Carrier 36 family A3). SLC36A3 was not
expressed in skin tissue and therefore not considered further. The other three genes were sequenced in homozygotes for
CH and homozygotes for the absence of the dilution allele (ch). SLC36A1 had a nucleotide substitution in exon 2 for horses
with the champagne phenotype, which resulted in a transition from a threonine amino acid to an arginine amino acid
(T63R). The association of the single nucleotide polymorphism (SNP) with the champagne dilution phenotype was
complete, as determined by the presence of the nucleotide variant among all 85 horses with the champagne dilution
phenotype and its absence among all 97 horses without the champagne phenotype. This is the first description of a
phenotype associated with the SLC36A1 gene.
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Introduction

Many horse breeders value animals with variation in coat color.

Several genes are known which diminish the intensity of the

coloration and are phenotypically described as ‘‘dilutions’’. Two of

these are a result of the Cream (CR) locus and Silver (Z) locus. The

molecular basis for Cream is the result of a single base change in

exon 2 of the SLC45A2 (Solute Carrier 45 family A2, aka MATP for

membrane associated transport protein) on ECA21 [1,3]. This change

results in the replacement of a polar acidic aspartate with a polar

neutral asparagine in a putative transmembrane region of the

protein coded for by this gene [3,2]. CR has an incompletely

dominant mode of expression. Heterozygosity for CR dilutes only

pheomelanin (red pigment) whereas homozygosity for CR results in

extreme dilution of both pheomelanin and eumelanin (black

pigment) [4].

The Silver dilution is the result of a missense mutation of PMEL17

(Premelanosomal Protein) on ECA6. The base change causes

replacement of a cytosolic polar neutral arginine with non-polar

neutral cysteine in PMEL17 [2]. In contrast to CR, the Z locus is fully

dominant and affects only eumelanin causing little to no visible

change in the amount of pheomelanin regardless of zygosity. The

change in eumelanin is most apparent in the mane and tail where the

black base color is diluted to white and gray [5].

The coat color produced by the CH locus is similar to that of the

CR locus in that both can cause dilution phenotypes affecting

pheomelanin and eumelanin. However, the effect of CH differs from

CR in that; 1) CH dilutes both pheomelanin and eumelanin in its

heterozygous form and 2) heterozygotes and homozygotes for CH

are phenotypically difficult to distinguish. The homozygote may

differ by having less mottling or a slightly lighter hair color than the

heterozygote. Figure 1 displays images of horses with the three base

coat colors chestnut, bay and black and the effect of CH upon each.

Figure 2 shows that champagne foals are born with blue eyes, which

change color to amber, green, or light brown and pink ‘‘pumpkin

skin which acquires a darker mottled complexion around the eyes,

muzzle, and genitalia as the animal matures [6]. Foals with one copy

of CR also have pink skin at birth but their skin is slightly darker and

becomes black/near black with age. The champagne phenotype is

found among horses of several breeds, including Tennessee Walking

Horses and Quarter Horses. Here we describe family studies that

led to mapping the gene and subsequent investigations leading to

the identification of a genetic variant that appears to be responsible

for the champagne dilution phenotype.

Results

Linkage Analyses
Table 1 summarizes the evidence for linkage of the CH gene to a

region of ECA14. The linkage phase for each family was apparent

based on the number of informative offspring in each family.

Recombination rates (h) were based on the combined recombina-

tion rate from all families. Four microsatellites showed significant

linkage to the CH locus: VHL209 (LOD = 6.03 for h= 0.14),
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TKY329 (LOD = 3.64 for h= 0.10), UM010 (LOD = 5.41 for

h= 0.04) and COOK007 (LOD = 11.74 for h= 0.00).

Figure 3 identifies the haplotypes for offspring of a single sire

showing recombination between the genetic markers and the CH

locus. Pedigrees of the three sire families and haplotype

information are provided in Figure S1 and Table S1 respectively.

The CH locus maps to an interval between UM010 and TKY329

with microsatellite. No recombinants were detected among 39

informative offspring between the CH and COOK007 locus.

Candidate Genes
Candidate genes were selected on the basis of proximity to the

marker COOK007 and as genes previously characterized in other

species as influential in the production or migration of pigment

cells.

SPARC was located closest at ,90 kb downstream from

COOK007 and is coded for on the plus strand of DNA. It has

been implicated in migration of retinal pigment epithelial cells in

mice [7].

SLC36A family members are solute carriers and other solute

carrier families have been found to play a role in coat color.

SLC36A1 is located ,250 kb downstream from COOK007. It is the

first and most proximal to COOK007 of three genes in this family

and is coded for on the minus strand of DNA.

SLC36A2 and SLC36A3 are coded for on the plus strand of DNA

and are approximately 350 k and 380 k downstream from

COOK007 respectively. A2 and A3 have been found to be

expressed in a limited range of tissues in humans and mice [8].

RT-PCR
RT-PCR (reverse transcription-polymerase chain reaction) was

used to determine if SLC36A1, SLC36A2 or SLC36A3 were expressed

in skin. SLC36A1 and SLC36A2 were expressed in skin and their

genomic exons were sequenced. SLC36A3 was not detected in skin

and therefore not investigated for detection of SNPs. Results for RT-

PCR of these three genes are shown in Figure 4.

Sequencing
All 9 exons of SPARC were sequenced. Three SNPs were found

in exons but none showed associations with the champagne

phenotype and are shown in Table S2.

SLC36A2 was sequenced with discovery of 9 SNPs in exons.

None of the SNPs showed associations with CH. These SNPs and

all other variations detected are described in Table S2.

SLC36A1 was sequenced. Only one SNP was found, a missense

mutation involving a single nucleotide change from a C to a G at

base 76 of exon 2 (c.188C.G) (Figure 5). These SLC36A1 alleles

were designated c.188[C/G], where c.188 designates the base pair

location of the SNP from the first base of SLC36A1 cDNA, exon 1.

Sequencing traces for the partial coding sequence of SLC36A1

exon 2 with part of the flanking intronic regions for one non-

champagne horse and one champagne horse were deposited in

GenBank with the following accession numbers respectively:

EU432176 and EU432177. This single base change at c.188 was

predicted to cause a transition from a threonine to arginine at

amino acid 63 of the protein (T63R).

Protein Alignment
Figure 6 shows the alignment of the protein sequence for exons

1 and 2 of SLC36A1 for seven mammalian species with sequence

information from Genbank (horse, cattle, chimpanzee, human,

dog, rat and mouse). Alignment was performed using AllignX

function of Vector NTI Advance 10 (Invitrogen Corp, Carlsbad,

California). The alignment demonstrates that this region is highly

conserved among all species. At position 63, the amino acid

sequence is completely conserved among these species, with the

exception of horses possessing the champagne phenotype. This

replacement of threonine with arginine occurs in a putative

transmembrane domain of the protein [9].

Population Data
The distribution of c.188G allele among different horse breeds

and among horses with and without the champagne phenotype

was investigated. Table 2 is a compilation of the population data

collected via the genotyping assay. All dilute horses (85) which did

not have the CR gene, tested positive for the c.188G allele with

genotypes c.188C/G or c.188G/G. No horses in the non-dilute

control group (97) possessed the c.188G allele. The horses used for

the population study were selected for coat color and not by

random selection; therefore measures of Hardy-Weinberg equi-

librium are not applicable and were not calculated.

Discussion

Family studies clearly showed linkage of the gene for the

champagne dilution phenotype within a 6 cM region on ECA14

[10] (Table 1). Based on the Equine Genome Assembly V2 as

viewed in ENSEMBL genome browser (http://www.ensembl.org/

Equus_caballus/index.html) this region spans approximately

2.86 Mbp [11]. Within that region, four candidate genes were

investigated; one based on known effects on melanocytes (eg.

SPARC) and three for their similarity to other genes previously

shown to influence pigmentation (eg, SLC36A1, A2, and A3). While

SNPs were found within the exons of SPARC, none were

associated with CH. Of the other 3 candidate genes, only SLC36A1

and SLC36A2 were found to be expressed in skin cells. Therefore,

the exons of those two genes were sequenced. A missense mutation

in the second exon of SLC36A1 showed complete association with

the champagne phenotype across several breeds. While SNPs were

found for SLC36A2, none showed associations at the population

level for the champagne dilution phenotype.

This observation is the first demonstration for a role of SLC36A1

in pigmentation. Orthologous genes in other species are known to

affect pigmentation. For example, the gene responsible for the

cream dilution phenotypes in horses, SLC45A2 (MATP), belongs to

a similar solute carrier family. In humans, variants in SLC45A2

have been associated with skin color variation [12] and a similar

missense mutation (p.Ala111Thr) in SLC24A5 (a member of

potassium-dependent sodium-calcium exchanger family) is impli-

cated in dilute skin colors caused from decreased melanin content

Author Summary

The purpose of this study was to uncover the molecular
basis for the champagne hair color dilution phenotype in
horses. Here, we report a DNA base substitution in the
second exon of the horse gene SLC36A1 that changes an
amino acid in the transmembrane domain of the protein
from threonine to arginine. The phenotypic effect of this
base change is a diminution of hair and skin color intensity
for both red and black pigment in horses, and the resulting
dilution has become known as champagne. This is the first
genetic variant reported for SLC36A1 and the first evidence
for its effect on eye, skin, and hair pigmentation. So far, no
other phenotypic effects have been attributed to this
gene. This discovery of the base substitution provides a
molecular test for horse breeders to test their animals for
the Champagne gene (CH).

SLC36A1 Variant Responsible for Champagne Horses
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among people of European ancestry [13]. The same gene,

SLC24A5 is responsible for the Golden (gol) dilution as mentioned

in the review of mouse pigment research by Hoekstra (2006) [14]

It is proposed, here, that the missense mutation in exon 2 of

SLC36A1 is the molecular basis for champagne dilution pheno-

type. While this study provides evidence that this is the mutation

responsible for the champagne phenotype, the proof is of a

statistical nature and a non-coding causative mutation can not be

ruled out at this point. SLC36A1, previously referred to by the

name PAT1 (proton/amino acid transporter 1) in human and

mouse [15], is a proton coupled small amino acid transporter

located and most active in the brush border membranes of

intestinal epithelial cells. This protein has also been characterized

in rats under the name LYAAT1 (lysosomal amino acid transporter 1).

LYAAT1 is localized in the membrane of lysozomes in association

with LAMP1 (lysosomal associated protein 1) and in the cell

membrane of post-synaptic junctions. In lysozomes it allows

outward transport of protons and amino acids from the lysozome

to the cytosol [16]. During purification and separation of early-

stage melanosomes LAMP1 is found in high concentrations in the

fraction containing stage II melanosomes [17],. Perhaps SLC36A1

plays a role in transitions from lysozome-like precursor to

melanosome. Since organellular pH affects tyrosine processing

and sorting [18], an amino acid substitution in this protein may

affect pH of the early stage melanosome and the ability to process

tyrosine properly. There must be an increase in pH, before the

tyrosinase can be activated. The cytosolic pH gradient must also

be maintained for proper sorting and delivery of the other proteins

required for melanosome development [19]. Thus, the pH

gradient of the cell may be altered by this mutation.

Figure 1. Effect of Champagne gene action on base coat colors of horses (chestnut, bay, and black). A) Chestnut – horse only produces
red pigment. B) Chestnut diluted by Champagne = Gold Champagne. C) Bay – black pigment is limited to the points (e.g. mane, tail, and legs)
allowing red pigment produced on the body to show. D) Bay diluted by Champagne = Amber Champagne. E) Black – red and black pigment
produced, red masked by black. F) Black diluted by Champagne = Classic Champagne.
doi:10.1371/journal.pgen.1000195.g001

SLC36A1 Variant Responsible for Champagne Horses
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Figure 2. Champagne Eye and Skin traits. A, B and C) Eye and skin color of foals. D and E) Eye color and skin mottling of adult horse.
doi:10.1371/journal.pgen.1000195.g002

Table 1. Linkage Analysis between the Champagne Dilution and Microsatellite Markers; UM010, COOK007, TKY329 and VHL209.

alleles Sire contribution Statistics

Sire Family (CH) microsatellite a/b N a+ a2 b+ b2 LOD score H

3 (+/2) UM010 124/108 23 12 0 0 11 5.41

S = 5.41 0

1 (+/2) COOK007 332/334 14 10 0 0 4 4.21

2 (+/2) COOK007 332/334 8 4 0 0 4 2.41

3 (+/2) COOK007 332/324 17 8 0 0 9 5.12

S = 11.74 0

1 (+/2) TKY329 117/139 15 10 2 0 3 1.92

2 (+/2) TKY329 111/137 9 5 1 0 3 1.34

3 (+/2) TKY329 117/139 18 7 0 1 10 3.64

S = 6.9 0.1

1 (+/2) VHL209 95/93 13 4 1 1 7 1.49

2 (+/2) VHL209 91/93 12 4 2 1 5 0.46

3 (+/2) VHL209 95/93 24 10 1 1 12 4.08

S = 6.03 0.14

N = the number of informative meiosis.
H= recombination frequency between that microsatelite and the champagne gene for all families combined.
S= LOD score for which 1/10S = the odds the association between the phenotype and the marker is due to chance.
doi:10.1371/journal.pgen.1000195.t001

SLC36A1 Variant Responsible for Champagne Horses
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This variant, discovered in association with a coat dilution in the

horse, is the first reported for the SLC36A1 gene. The phenotype

resulting from this mutation, a reduction of pigmentation in the

eyes, skin and hair, illustrates previously unknown functions of the

protein product of SLC36A1. Furthermore, now that a molecular

test for champagne dilution is established, the genotyping assay

can be used in concert with available tests for cream dilution and

silver dilution to clarify the genetic basis of a horse’s dilution

phenotype. This will give breeders a new tool to use in developing

their breeding programs whether they desire to breed for these

dilutions or to select against them.

Materials and Methods

Horses
Three half-sibling families, designated 1, 2 and 3, were used for

mapping studies. Family 1 consisted of a Tennessee Walking Horse

(TWH) stallion, known heterozygous at the Champagne locus (CH/ch),

and his 17 offspring out of non-dilute mares (ch/ch). Family 2

consisted of an American Paint Horse stallion (CH/ch) and his 10

offspring out of non-dilute (ch/ch) mares. Family 3 consisted of a

TWH stallion (CH/ch), 23 offspring and their 12 non-dilute dams

(ch/ch) and 1 dilute (buckskin) dam (ch/ch, CR/cr).

To investigate the distribution of the gene among dilute and

non-dilute horses of different horse breeds, 97 non-champagne

horses were chosen from stocks previously collected and archived

at the MH Gluck Equine Research Center. These horses were

from the following breeds: TWH (20), Thoroughbreds (TB, 35),

American Paint Horses (APHA, 32), Pintos (5), American

Saddlebreds (ASB, 2), one American Quarter Horse (AQHA),

one pony, and one American Miniature (AMH) Horse.

Hair and blood samples from horses with the champagne

dilution phenotype were submitted by owners along with pedigree

information and photographs showing the champagne color and

characteristics of each horse. Samples were collected from the

following breeds (85 total): American Miniature Horse (9),

American Cream Draft cross (1), American Quarter Horse (27),

American Paint Horse (13, in addition to the family), American

Saddlebred (2), Appaloosa (1), ASB/Friesian cross (1), Arabian

crossed with APHA or AQHA horses (3), Missouri Foxtrotter(4),

Mule (2), Pony (1), Spanish Mustang 1), Spotted Saddle Horse (1),

Tennessee Walking Horse (20, in addition to the families).

Color Determination
To be characterized as possessing the champagne phenotype,

horses exhibited a diminished intensity of color (dilution) in black

or brown hair pigment and met at least two of the three following

criteria: 1) mottled skin around eyes, muzzle and/or genitalia, 2)

amber, green, or light brown eyes, or 3) blue eyes and pink skin at

birth [6]. This was accomplished by viewing photo evidence of

these traits or by personal inspection. Due to potential confusion

between phenotypes of cream dilution and champagne dilution, all

DNA samples from horses with the dilute phenotype were tested

for the CR allele and data from those testing positive were not

included in the population data.

DNA Extraction
DNA from blood samples was extracted using Puregene whole

blood extraction kit (Gentra Systems Inc., Minneapolis, MN)

according to its published protocol. Hair samples submitted by

owners were processed using 5–7 hair bulbs according to the

Figure 3. Example of Recombinant Haplotypes. Linear relationship from top to bottom between the microsatellites, phenotype, and genotype
of recombinant offspring for study sire #3. Phenotype is noted in top row with offspring’s ID #.
doi:10.1371/journal.pgen.1000195.g003

SLC36A1 Variant Responsible for Champagne Horses

PLoS Genetics | www.plosgenetics.org 5 September 2008 | Volume 4 | Issue 9 | e1000195



method described by Locke et al. (2002). The hair bulbs were

placed in 100 ml lysis solution of 16 FastStart Taq Polymerase

PCR buffer (Roche, Mannheim, Germany), 2.5 mM MgCl2
(Roche), 0.5% Tween 20 (JT Baker, Phillipsburg, NJ) and

0.01 mg proteinase K (Sigma-Aldrich, St Louis, MO) and

incubated at 60uC for 45 minutes, followed by 95uC for 45 min

to deactivate the proteinase K.

Microsatellite Genome Scan
The genome scan was done in polymerase chain reaction (PCR)

multiplexes of 3 to 6 microsatellites per reaction. The 102

microsatellite markers used are listed in Table S3. Primers for these

microsatellites were made available in connection with the USDA-

NRSP8 project [20]. Two additional microsatellites were used;

TKY329 [21] was selected based on its map location between two

microsatellites used for genome scanning (UM010 and VHL209) and

COOK007 was developed in connection with this study based on

DNA sequence information from the horse genome sequence

viewed in the UCSC genome browser [8] in order to investigate

linkage within the identified interval. Primers for COOK007 were

designed using Primer 3 software accessed online (Forward, 59-

6FAM-CATTCCAAACACCAACAACC - 39), (Reverse, 59 –

GGACATTCCAGCAATACAGAG – 39) [22]. The initial scan

was conducted on a subset of samples from Family 3; including sire

3, five non-champagne offspring and five champagne offspring.

When the microsatellite allele contribution from the sire was not

informative, (e.g. the sire and offspring had the same genotype),

dams from family 3 were typed to determine the precise

contribution from the sire. When the inheritance of microsatellite

markers in family 3 appeared to be correlated with the inheritance

of the CH allele, then the complete families A, B and C were typed

and the data analyzed for linkage by LOD score analysis [23].

Amplification for fragment analysis was done in 10 ml PCR

reactions using 16 PCR buffer with 2.0 mM MgCl2, 200 mM of

each dNTP, 1 ml genomic DNA from hair lysate, 0.1 U FastStart

Taq DNA polymerase (Perkin Elmer, Waltham, MA) and the

individual required molarity of each primer from the fluorescently

labeled microsatellite parentage panel primer stocks at the MH

Gluck Equine Research Center. Samples were run on a PTC-200

thermocycler (MJ research, Inc., Boston, MA) at a previously

determined optimum annealing temperature for each multiplex.

Capillary electrophoresis of product was run on an ABI 310

genetic analyzer (Applied Biosystems Inc. ABI, Foster City, CA).

Results were then analyzed using the current version of STRand

microsatellite analysis software (http://www.vgl.ucdavis.edu/

informatics/STRand/).

Figure 4. RT-PCR product results for SLC36A1, A2 and A3. A) RT-PCR results for SLC36A1. B) RT-PCR results for SLC36A2. C) RT-PCR results for
SLC36A3. (Faint bands observed above 400 bp on gel C were sequenced and did not show homology to SLC36A3.)
doi:10.1371/journal.pgen.1000195.g004

SLC36A1 Variant Responsible for Champagne Horses
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Sequencing
PCR template for sequencing was amplified in 20 ml PCR

reactions using 16 PCR buffer with 2.0 mM MgCl2, 200 mM of

each dNTP, 1 ml genomic DNA from hair lysate, 0.2 U FastStart

Taq DNA polymerase (Perkin Elmer) and 50 nM of each primer.

Exon 2 of SLC36A1 was sequenced with the following primers:

Forward (59-CAG AGC CTA AGC CCA GTG TC-39) and

Reverse (59-GGA GGA CTG TGT GGA AAT GG-39) at an

annealing temperature of 57uC. Primers used to sequence the

other SLC36A1 exons and primers for sequencing genomic exons

of SLC36A2 are provided in parts 1 and 2 respectively of Table

S4. Template product was quantified on a 1% agarose gel, then

amplified with BigDye Terminator v1.1 cycle sequencing kit

according to manufacturer’s instructions (Applied Biosystems),

cleaned using Centri-Sep columns (Princeton Separations Inc.,

Adelphia, NJ), and run on and ABI 310 genetic analyzer (Applied

Biosystems). Six samples were initially sequenced: 2 suspected

homozygous champagnes (based on production of all champagne

dilution offspring when bred to at least 10 non-dilute dams), 2

heterozygotes, and 2 non-dilute horses. The results were analyzed

and compared by alignment using ContigExpress from the Vector

NTI Advance 10.3 software package (Invitrogen Corporation,

Carlsbad, California).

Reverse Transcription (RT-PCR)
RT-PCR was performed in 25 ml reactions a Titan One Tube

RT-PCR Kit (Roche) according to enclosed protocol with the

primers listed in part 3 of Table S4. RNA from different tissues of

non-dilute horses was used to acquire partial cDNAs containing

the first two exons for SLC36A1, first three exons SLC36A2 and

first 4 exons of SLC36A3. The cDNA acquired was sequenced and

the resulting sequences were verified for their respective genes with

a BLAT search using the equine assembly v2 in ENSEMBL

(http://www.ensembl.org/Equus_caballus/index.html) genome

browser. RT-PCR was also performed utilizing RNA extracted

from skin, kidney and testes of non-dilute animals currently in lab

Figure 5. Sequence Alignment and Gene Diagram. Alignment is between homozygous champagne, non-dilute, and horse genome assembly.
Reading frame is marked by alternating colors of codons. Bottom is diagram of SLC36A1 with the identified SNP in exon 2. Sequence and gene layout
have been verified on Ensembl genome browser equine assembly v2. Blue blocks of gene layout are exons and red boxes are the 59 and 39 UTRs.
doi:10.1371/journal.pgen.1000195.g005

Figure 6. Seven Species Protein Sequence Alignment for SLC36A1 exons 1 and 2. The R highlighted in red is the amino acid replacement
associated with the champagne phenotype.
doi:10.1371/journal.pgen.1000195.g006

SLC36A1 Variant Responsible for Champagne Horses
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stocks. SLC36A1 cDNA was produced from the skin and blood

using 50 ng RNA per reaction. SLC36A2 cDNA was produced

from testes using 1 mRNA per RT-PCR reaction then following

up with a nested PCR for shorter product. SLC36A2 cDNA was

produced from skin using 50 ng mRNA per RT-PCR reaction.

Nested PCR was not necessary. SLC36A3 cDNA was produced

from testes using 1 ug mRNA per reaction. 9 ml of initial reaction

was visualized on a 2% agarose gel to check for visible bands of

product. When product was not initially detected an additional

20 ml PCR was performed in reactions as outlined above using

5 ml of RT product in the place of hair lysate per reaction.

Detected product was then sequenced with the protocol listed

above. Sequences were then used in a BLAST search using equine

genome assembly 2 on ENSEMBL genome browser to verify the

correct cDNA was amplified.

Custom TaqMan Probe Assay
A Custom TaqMan SNP Genotyping Assay (Applied Biosys-

tems) was designed for c.188C/G SNP in filebuilder 3.1 software

(Applied Biosystems) to test the population distribution of the

SLC36A1 alleles. A similar assay was also designed to test for the

cream SNP. These assays were run on a 7500HT Fast Real Time-

PCR System (Applied Biosystems). All dilute horses tested for

SLC36A1 variants were concurrently tested for SLC45A variants.

Horses testing positive for CR alleles were not used in the dataset

to avoid any confusion over the origin of their dilution phenotype.

Supporting Information

Figure S1 Pedigrees of Three Sire Families used in Genome

Scan.

Found at: doi:10.1371/journal.pgen.1000195.s001 (0.55 MB TIF)

Table S1 Haplotype Data for Three Sire Families.

Found at: doi:10.1371/journal.pgen.1000195.s002 (0.25 MB

DOC)

Table S2 Sequence Variants Detected in SPARC, SLC36A1, and

SLC36A2.

Found at: doi:10.1371/journal.pgen.1000195.s003 (0.14 MB

DOC)

Table S3 Microsatellite Markers used For Genome Scan.

Found at: doi:10.1371/journal.pgen.1000195.s004 (0.20 MB

DOC)

Table S4 Sequencing and RT-PCR Primers.

Found at: doi:10.1371/journal.pgen.1000195.s005 (0.07 MB

DOC)
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