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Objective. To study the longitudinal performance of fully automated cartilage segmentation in knees with radio-
graphic osteoarthritis (OA), we evaluated the sensitivity to change in progressor knees from the Foundation for the
National Institutes of Health OA Biomarkers Consortium between the automated and previously reported manual
expert segmentation, and we determined whether differences in progression rates between predefined cohorts can
be detected by the fully automated approach.

Methods. The OA Initiative Biomarker Consortium was a nested case–control study. Progressor knees had
both medial tibiofemoral radiographic joint space width loss (≥0.7 mm) and a persistent increase in Western
Ontario and McMaster Universities Osteoarthritis Index pain scores (≥9 on a 0–100 scale) after 2 years from baseline
(n = 194), whereas non-progressor knees did not have either of both (n = 200). Deep-learning automated algorithms
trained on radiographic OA knees or knees of a healthy reference cohort (HRC) were used to automatically segment
medial femorotibial compartment (MFTC) and lateral femorotibial cartilage on baseline and 2-year follow-up magnetic
resonance imaging. Findings were compared with previously published manual expert segmentation.

Results. The mean � SD MFTC cartilage loss in the progressor cohort was –181 � 245 μm by manual segmenta-
tion (standardized response mean [SRM] –0.74), –144 � 200 μm by the radiographic OA–based model (SRM –0.72),
and –69 � 231 μm by HRC-based model segmentation (SRM –0.30). Cohen’s d for rates of progression between
progressor versus the non-progressor cohort was –0.84 (P < 0.001) for manual, –0.68 (P < 0.001) for the automated
radiographic OA model, and –0.14 (P = 0.18) for automated HRC model segmentation.

Conclusion. A fully automated deep-learning segmentation approach not only displays similar sensitivity
to change of longitudinal cartilage thickness loss in knee OA as did manual expert segmentation but also effectively
differentiates longitudinal rates of loss of cartilage thickness between cohorts with different progression profiles.

INTRODUCTION

Knee osteoarthritis (OA) severely affects the quality of life in an
aging population and is responsible for substantial health care

utilization and cost (1). OA treatments that go beyond symptomatic
amelioration and modify the pathophysiology of the disease are an
unmet clinical need. Quantitative magnetic resonance imaging
(qMRI) had an important recent impact on the conduct of clinical
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trials on potential disease-modifying OA drugs (DMOADs) (2–4),

with longitudinal qMRI cartilage thickness change being increas-

ingly used as the primary structural end point for potential regula-

tory approval (2–4).
An (imaging) biomarker exhibiting near-term change that is

associated with longer-term, clinically important outcomes has
potential as a marker of the treatment efficacy of DMOADs. There-
fore, the Foundation for the National Institutes of Health (FNIH) OA
Biomarkers Consortium study was conducted to evaluate the
association of imaging and molecular biomarkers with structural
(radiographic) and symptomatic (pain) progression in knee OA
(5). Medial femorotibial compartment (MFTC) cartilage thickness
loss over 24 months was shown to be associated with combined
radiographic and symptomatic progression, and the association
was shown to be stronger for radiographic progression than for
pain progression (6). Use of imaging biomarkers in clinical trials
and eventually in clinical practice will be greatly facilitated by the
availability of fully automated measurement technology that can
be scaled to faster turnaround. With a potential DMOAD coming
to market, large-scale cartilage morphometric measuring in clini-
cal practice may become a high demand for monitoring individual

treatment response and the need for intermittent versus continu-
ous treatment.

Quantitative MRI of articular cartilage currently requires time-
consuming expert image segmentation. Various semiautomated
or fully automated analysis methods have been proposed to over-
come this limitation; among these are deep-learning convolutional
neural networks (CNNs) (7) and, specifically, U-Net architectures
(8). However, no CNN-based method has thus far tested the sen-
sitivity to longitudinal change or the ability to efficiently differentiate
rates of cartilage loss between progressor knees versus non-
progressor knees (5,6). Yet, this is of crucial importance, given
that quantitative measurement of cartilage is almost exclusively
used in longitudinal context in clinical research, with only small
changes being observed over time (2–4).

Recently, we examined the accuracy of U-Net–based auto-
mated cartilage segmentation in the OA Initiative (OAI) healthy ref-
erence cohort (HRC) and reported high correlations between
cartilage morphometry using automated versus expert manual
segmentation as well as similar test–retest precision between
both (9). The purpose of the current study was to examine the lon-
gitudinal performance of automated deep-learning U-Net–based
cartilage segmentation in knees with radiographic OA (OA). Spe-
cifically, we tested whether the sensitivity to change in knees with
combined radiographic and symptomatic progression from the
FNIH Biomarkers Consortium (5), and whether differences in rates
of progression between progressor and non-progressor knees
(5), are similar between the novel automated, and previously
reported (6), manual expert segmentation approach.

MATERIALS AND METHODS

Study Design. The FNIH Biomarker Consortium was a
nested case–control study (5,6) using data from theOAI (10). Eligible
participants had at least 1 knee with baseline Kellgren/Lawrence
(K/L) grade 1–3 from central radiographic readings, baseline and
24-month knee radiographs and knee MRI, serum and urine speci-
mens, and clinical data (5,6). Radiographs of the knee in fixed flexion
were assessed for K/L grade andOAResearch Society International
(OARSI) joint space narrowing (JSN) grades (5,6). Medial radio-
graphic progression was defined by a loss in minimum radiographic
joint space width (JSW) of ≥0.7 mm from baseline to 24, 36, or
48 months; knee pain was assessed using the Western Ontario
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characteristics of an automated, convolutional neural
network–based cartilage segmentation method
using magnetic resonance imaging, including the
sensitivity to change of cartilage thickness loss, and
the ability to efficiently differentiate rates of cartilage
loss between different strata (e.g., progressor knees
versus non-progressor knees).

• The fully automated segmentation approach not
only displayed similar sensitivity to change of longi-
tudinal cartilage thickness loss in knee osteoarthritis
(OA) for automated versusmanual expert segmenta-
tion but was also able to effectively differentiate lon-
gitudinal rates of cartilage thickness loss between
cohorts with different progression profiles.

• The method therefore shows great promise in
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methods of cartilage thickness loss in clinical trials
investigating the structural progression of knee OA.
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and McMaster Universities Osteoarthritis Index (WOMAC) pain sub-
scale, with progression defined as a persistent (≥2 time points)
increase of ≥9 points on a 0–100 normalized score from baseline
to 24, 36, 48, or 60 months (5,6).

In the FNIH Biomarker Consortium study, primary cases
were as follows: 1) knees that had both radiographic and pain
progression (progressor cohort; n = 194); 2) control knees that
did not have this combination and included knees with neither
radiographic nor pain progression (n = 200); 3) knees with radio-
graphic but not pain progression (n = 103); and 4) knees with pain
but not radiographic progression (n = 103) (5,6). For better covar-
iate balance, the knees selected for the 4 groups were frequency
matched, using K/L grade and body mass index. Cartilage thick-
ness and bone shape biomarkers were previously shown to be
strongly associated with radiographic (but not pain) progression
(6,11); therefore, only knees with neither radiographic nor pain
progression were used in this study as non-progressor controls.
Sensitivity analyses were conducted for partial progressors
(i.e., knees with minimum JSW or pain progression only).

Expert manual and automated deep-learning carti-
lage thickness measurement. Manual expert segmentation
of femorotibial cartilage thickness published in the FNIH Bio-
marker study had relied on double-echo steady-state (DESS)
imaging, with blinding to group assignment and order of acquisi-
tion (6). Segmentation encompassed the total medial and lateral
tibia and the weight-bearing (central) medial and lateral femoral
condyles. All segmentations had been quality controlled by an
expert (6), and a 75% femoral region of interest (ROI) (distance

between the trochlear notch and the posterior ends of the con-
dyles) was used (6).

The automated segmentation method used here was based
on a 2-D U-Net architecture (8,12) and was trained, validated, and
tested also using sagittal DESS images. The U-Net was trained
using a weighted cross entropy loss function with equal weights
for each of the foreground features (i.e., cartilages), and with the
background weight set to one-half of the one used for the fore-
ground, which was minimized, using Adam optimization (initial
learning rate 0.01), as published previously (9). The software was
implemented in Python (Python Software Foundation) using the
Tensorflow framework (Google) (9). Three algorithms were used:
one trained on 52 knees of the HRC of the OAI without radio-
graphic signs, symptoms, or risk factors of knee OA (9); one
trained on 86 OAI knees with radiographic OA (K/L grade 2, 3,
and 4 = 35%, 34%, and 31%, respectively); and one trained on
all of the above 138 knees (combined model). The training was
performed using full-resolution, full-sized MRI slices on an RTX
2080TI graphics processing unit (Nvidia) (9). The performance of
the algorithm trained on HRC knees was validated and tested in
21 of 21 HRC knees, with the automated segmentations display-
ing high agreement (Dice similarity coefficients), high accuracy,
and test–retest precision of cartilage thickness computations (9).

The algorithms trained on the HRC knees, radiographic OA
knees, or the combined set were then applied to the FNIH sample
(5,6), with none of the FNIH knees being including in the training
sets. Automated segmentations were neither quality controlled
nor manually corrected to explore the performance of the auto-
mated approach without manual intervention. Yet, some fully

Table 1. Demographic and baseline cartilage thickness data for the analyzed set of the Foundation for the National Institutes of Health cohort*

Characteristic
JSW + pain
progression

Non-
progression

JSW progression
only

Pain progression
only

Analyzed set, no. 192 200 103 102
Age, years 62.0 � 8.8 61.5 � 9.1 63.1 � 8.3 59.2 � 8.7
Female, no. (%) 109 (57) 130 (65) 46 (45) 66 (65)
BMI, kg/m2 30.7 � 4.8 30.5 � 4.8 30.7 � 4.7 31.0 � 5.0
K/L grade 1/2/3, no. 24/82/86 24/114/62 14/47/42 13/60/29
Medial JSN grade 0/1/2, no. 42/64/86 67/71/62 19/42/42 32/41/29
Lateral JSN grade 0/1/2, no. 188/4/0 196/4/0 102/1/0 99/3/0
Cartilage thickness
MFTC, mm
Expert manual 3.2 � 0.7 3.4 � 0.6 3.4 � 0.6 3.3 � 0.6
Auto ROA 3.5 � 0.6 3.6 � 0.5 3.7 � 0.6 3.6 � 0.6
Auto HRC 3.6 � 0.5 3.6 � 0.5 3.7 � 0.5 3.5 � 0.5
Auto ROA + HRC 3.5 � 0.6 3.6 � 0.5 3.7 � 0.5 3.5 � 0.6

LFTC, mm
Expert manual 3.9 � 0.6 3.8 � 0.6 4.0 � 0.6 3.8 � 0.6
Auto ROA 4.1 � 0.6 4.0 � 0.6 4.2 � 0.6 4.0 � 0.6
Auto HRC 4.0 � 0.6 3.9 � 0.5 4.0 � 0.5 3.9 � 0.5
Auto ROA + HRC 4.0 � 0.6 3.9 � 0.6 4.1 � 0.6 3.9 � 0.5

* Values are the mean � SD unless indicated otherwise. Auto HRC = automatic segmentation algorithm trained on a sample of healthy refer-
ence cohort knees; auto ROA = automatic segmentation algorithm trained on a sample of knees with radiographic osteoarthritis; auto ROA +
HRC = automatic segmentation algorithm trained on a sample of a combined set of ROA and HRC knees (only n = 101 knees in joint spacewidth
[JSW] progressors group); BMI = body mass index; expert manual = expert manual segmentation; JSN = joint space narrowing (according to
Osteoarthritis Research Society International Atlas); K/L = Kellgren/Lawrence; LFTC = lateral femorotibial compartment; MFTC = medial femor-
otibial compartment.
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automated postprocessing was applied, such as filling small
gaps by detecting enclosed unsegmented areas, removal of
implausible segmentations (e.g., fragments not connected to the
main segmentation and those sticking out of the cartilage sur-
face), and removal of femoral cartilage segmentations outside
the ROI (9). Cartilage thickness was computed from the automat-
ically segmented contours in the same way as from the manual
ones using Chondrometrics software (9).

Statistical analysis. The primary descriptive analytic end
point was the comparison of the standardized response mean
(SRM; the mean change from baseline to 24 months’ follow-up

divided by the SD of the change) for the automated radiographic
OA model versus expert manual analysis in the progressor
cohort in the MFTC (the sum of medial tibia and medial femoral
condyles). The SRMs and 95% confidence intervals (95% CIs)
were computed using bias-corrected and accelerated boot-
strapping (1,000 iterations). The primary analytic end point was
the difference in longitudinal MFTC cartilage thickness loss over
24 months between the progressor versus non-progressor
cohort and between the radiographic OA model and the expert
manual analysis. These were compared between the automated
and expert manual analysis using t-tests and Cohen’s d as
a measure of effect size, including their 95% CIs (13).

Table 2. Cartilage thickness loss over 24 months in the medial femorotibial compartment (MFTC) in the 4 Foundation for the National Institutes of
Health cohorts*

JSW + pain
progression

Non-
progression

JSW progression
only

Pain progression
only

MFTC, μm
Expert manual –181 � 245 –22 � 108 –184 � 252 –8 � 119
95% CI –216, –146 –37, –7 –233, –135 –32, 15
SRM (95% CI) –0.74 (–0.85, –0.63) –0.21 (–0.36, –0.07) –0.73 (–0.88, –0.55) –0.07 (–0.28, 0.13)

Auto ROA –144 � 200 –33 � 121 –151 � 251 –15 � 113
95% CI –172, –116 –49, –16 –200, –102 –38, 7
SRM (95% CI) –0.72 (–0.86, –0.57) –0.27 (–0.39, –0.12) –0.60 (–0.75, –0.44) –0.14 (–0.32, 0.07)

Auto HRC –69 � 231 –42 � 130 –96 � 227 –5 � 146
95% CI –102, –36 –60, –24 –140, –51 –34, 23
SRM (95% CI) –0.30 (–0.47, –0.05) –0.33 (–0.45, –0.19) –0.42 (–0.59, –0.23) –0.04 (–0.22, 0.17)

Auto ROA + HRC –116 � 284 –29 � 122 –150 � 245 12 � 134
95% CI –157, –76 –46, –12 –199, –102 –15, 38
SRM (95% CI) –0.41 (–0.72, –0.08) –0.24 (–0.37, –0.11) –0.61 (–0.77, –0.45) 0.09 (–0.11, 0.28)

MT, μm
Expert manual –55 � 100 –11 � 54 –48 � 97 –4 � 51
95% CI –70, –41 –18, –3 –67, –29 –14, 6
SRM (95% CI) –0.56 (–0.67, –0.43) –0.20 (–0.34, –0.06) –0.49 (–0.65, –0.32) –0.09 (–0.31, 0.09)

Auto ROA –31 � 79 –6 � 57 –27 � 91 –2 � 50
95% CI –42, –20 –14, 2 –45, –9 –12, 8
SRM (95% CI) –0.40 (–0.54, –0.25) –0.10 (–0.23, 0.04) –0.30 (–0.45, –0.13) –0.04 (–0.25, 0.17)

Auto HRC –2 � 158 –12 � 58 –8 � 91 0 � 60
95% CI –25, 21 –20, –4 –25, 10 –12, 12
SRM (95% CI) –0.01 (–0.19, 0.15) –0.21 (–0.33, –0.05) –0.08 (–0.26, 0.14) 0.00 (–0.20, 0.19)

Auto ROA + HRC –14 � 185 –7 � 62 –24 � 97 10 � 82
95% CI –41, 12 –16, 2 –44, –5 –6, 26
SRM (95% CI) –0.08 (–0.35, 0.11) –0.11 (–0.24, 0.02) –0.25 (–0.41, –0.05) 0.12 (–0.07, 0.28)

cMF, μm
Expert manual –126 � 175 –12 � 79 –136 � 184 –4 � 93
95% CI –151, –101 –23, –1 –172, –100 –22, 14
SRM (95% CI) –0.72 (–0.82, –0.61) –0.15 (–0.31, –0.01) –0.74 (–0.88, –0.58) –0.04 (–0.25, 0.16)

Auto ROA –113 � 148 –27 � 88 –124 � 185 –13 � 88
95% CI –134, –92 –39, –14 –160, –87 –31, 4
SRM (95% CI) –0.76 (–0.90, –0.56) –0.30 (–0.44, –0.16) –0.67 (–0.82, –0.51) –0.15 (–0.33, 0.06)

Auto HRC –67 � 136 –30 � 93 –88 � 166 –5 � 103
95% CI –86, –47 –43, –17 –121, –56 –25, 15
SRM (95% CI) –0.49 (–0.65, –0.34) –0.33 (–0.44, –0.19) –0.53 (–0.71, –0.35) –0.05 (–0.23, 0.15)

Auto ROA + HRC –102 � 145 –22 � 83 –126 � 181 2 � 82
95% CI –123, –82 –34, –11 –162, –90 –14, 18
SRM (95% CI) –0.71 (–0.85, –0.53) –0.27 (–0.41, –0.14) –0.70 (–0.84, –0.53) 0.02 (–0.17, 0.22)

* Values are the mean � SD unless indicated otherwise. Data shown for combined radiographic joint space width and pain (JSW + pain) pro-
gressors, non-progressors, radiographic JSW but not pain progressors (JSW progressors only), and pain but not JSW progressors (pain progres-
sors only). Analyzed by expert manual segmentation, by an automated algorithm trained on a radiographic osteoarthritis knee sample (auto
ROA), a healthy reference cohort (auto HRC) sample, and by a combined (auto ROA + HRC) sample. 95% CI = 95% confidence interval;
cMF = medial weight-bearing femoral condyle; MT = medial tibia; SRM = standardized response mean.
† ROA + HRC: 101 knees in the JSW progression only group.
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Furthermore, we determined the number (proportion) of individ-
ual progressors in both cohorts, defined by published thresh-
olds from OAI pilot study test–retest analyses (14).

RESULTS

From the 600 FNIH Consortium knees, automated computa-
tion was successful for 597: 192 (of 194) progressor, 200 (of 200)
non-progressor, 103 (of 103) partial JSW progressor, and
102 (of 103) partial pain progressor knees, of which 1 also did
not have manual expert segmentation due to insufficient image
quality. The computation time for the automated segmentation,

postprocessing, and morphometric analysis was <1 minute per
visit. Table 1 lists the demographic characteristics and baseline
cartilage thickness values of the analyzed set, obtained from
expert manual segmentation, radiographic OA model segmenta-
tion, and HRC model segmentation, respectively. The automated
algorithms somewhat overestimated the baseline cartilage thick-
ness in the MFTC and lateral femorotibial compartment (LFTC)
(Table 1).

The mean � SD MFTC cartilage loss in the progressor
cohort was –181 � 245 μm by manual expert segmentation
(SRM –0.74), –144 � 200 μm by radiographic OA–based model
segmentation (SRM –0.72), and –69 � 231 μm by HRC-based

Table 3. Cartilage thickness loss over 24 months in the lateral femorotibial compartment (LFTC) in the 4 Foundation for the National Institutes of
Health cohorts*

JSW + pain
progression

Non-
progression

JSW progression
only

Pain progression
only

LFTC, μm
Expert manual –16 � 124 –21 � 113 –18 � 111 –12 � 95
95% CI –34, 1 –37, –5 –40, 4 –30, 7
SRM (95% CI) –0.13 (–0.26, 0.02) –0.19 (–0.32, –0.04) –0.16 (–0.40, 0.04) –0.12 (–0.33, 0.07)

Auto ROA –60 � 175 –71 � 176 –51 � 188 –44 � 135
95% CI –85, –35 –96, –47 –88, –15 –71, –18
SRM (95% CI) –0.34 (–0.47, –0.20) –0.41 (–0.51, –0.28) –0.27 (–0.45, –0.06) –0.33 (–0.50, –0.12)

Auto HRC –73 � 209 –73 � 202 –72 � 201 –52 � 168
95% CI –103, –43 –102, –45 –111, –32 –85, –19
SRM (95% CI) –0.35 (–0.44, –0.25) –0.36 (–0.48, –0.23) –0.36 (–0.51, –0.18) –0.31 (–0.48, –0.08)

Auto ROA + HRC† –47 � 152 –45 � 130 –39 � 149 –27 � 100
95% CI –68, –25 –63, –27 –69, –10 –47, –7
SRM (95% CI) –0.31 (–0.42, –0.19) –0.35 (–0.47, –0.23) –0.26 (–0.43, –0.06) –0.27 (–0.49, –0.06)

LT, μm
Expert manual –26 � 61 –26 � 63 –24 � 65 –18 � 57
95% CI –34, –17 –34, –17 –36, –11 –29, –6
SRM (95% CI) –0.42 (–0.56, –0.26) –0.41 (–0.54, –0.27) –0.36 (–0.59, –0.13) –0.31 (–0.50, –0.12)

Auto ROA –43 � 96 –48 � 108 –33 � 104 –37 � 74
95% CI –57, –30 –63, –33 –54, –13 –51, –22
SRM (95% CI) –0.45 (–0.57, –0.33) –0.44 (–0.55, –0.33) –0.32 (–0.48, –0.10) –0.50 (–0.68, –0.32)

Auto HRC –37 � 104 –39 � 100 –30 � 92 –31 � 104
95% CI –52, –22 –53, –25 –48, –12 –51, –10
SRM (95% CI) –0.35 (–0.45, –0.23) –0.39 (–0.51, –0.26) –0.33 (–0.51, –0.12) –0.30 (–0.47, –0.03)

Auto ROA + HRC† –33 � 81 –30 � 75 –28 � 72 –23 � 55
95% CI –44, –21 –41, –20 –43, –14 –34, –12
SRM (95% CI) –0.40 (–0.51, –0.28) –0.40 (–0.53, –0.26) –0.39 (–0.59, –0.19) –0.42 (–0.62, –0.23)

cLF, μm
Expert manual 9 � 84 4 � 74 6 � 70 6 � 59
95% CI –3, 21 –6, 15 –8, 19 –6, 17
SRM (95% CI) 0.11 (–0.03, 0.27) 0.06 (–0.08, 0.20) 0.08 (–0.12, 0.27) 0.10 (–0.11, 0.29)

Auto ROA –16 � 101 –24 � 95 –18 � 106 –8 � 77
95% CI –31, –2 –37, –10 –38, 3 –23, 8
SRM (95% CI) –0.16 (–0.30, –0.01) –0.25 (–0.37, –0.11) –0.17 (–0.37, 0.02) –0.10 (–0.29, 0.11)

Auto HRC –36 � 124 –35 � 117 –41 � 134 –21 � 82
95% CI –54, –19 –51, –18 –67, –15 –37, –5
SRM (95% CI) –0.29 (–0.41, –0.18) –0.30 (–0.40, –0.18) –0.31 (–0.46, –0.14) –0.26 (–0.43, –0.06)

Auto ROA + HRC† –14 � 94 –15 � 81 –11 � 100 –4 � 65
95% CI –28, –1 –26, –4 –31, 9 –17, 9
SRM (95% CI) –0.15 (–0.28, –0.02) –0.18 (–0.31, –0.05) –0.11 (–0.29, 0.09) –0.06 (–0.25, 0.15)

* Values are the mean � SD unless indicated otherwise. Data shown for combined radiographic joint space width and pain (JSW + pain) pro-
gressors, non-progressors, radiographic JSW but not pain progressors (JSW progressors only), and pain but not JSW progressors (pain progres-
sors only). Analyzed by expert manual segmentation, by an automated algorithm trained on a radiographic osteoarthritis knee sample (auto
ROA), a healthy reference cohort (auto HRC) sample, and by a combined (auto ROA + HRC) sample. 95% CI = 95% confidence interval;
cLF = lateral weight-bearing femoral condyle; LT = lateral tibia; SRM = standardized response mean.
† ROA + HRC: 101 knees in the JSW progression only group.
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model segmentation (SRM –0.30) (Table 2). The SRMs in the non-
progressor cohort were –0.21, –0.27, and –0.33, respectively
(Table 2). Overall, the SRM was greatest for the medial femoral
condyles when applying the radiographic OA model algorithm
(–0.76) and was somewhat less for manual segmentation
(–0.72). The SRMs were less for the medial tibia (–0.40 for the
radiographic OA model and –0.56 for expert manual segmenta-
tion) than for the medial femoral condyles (Table 2). Interestingly,
the SRMs for the combined (radiographic OA plus HRC) model
revealed smaller sensitivity to change than for the radiographic
OA–based model but greater sensitivity than for the HRC-based
model (Table 2).

Cohen’s d for differences in rates of MFTC progression
between the progressor versus non-progressor cohort was
–0.85 (95% CI –1.05, –0.64; P < 0.001), for expert manual seg-
mentation, –0.68 (95% CI –0.88, –0.47; P < 0.001), for the radio-
graphic OA model, and –0.15 (95% CI –0.34, –0.05; P = 0.16),
for the HRC-model automated segmentation. For the medial fem-
oral condyles, these values were as follows: expert manual seg-
mentation –0.85 (95% CI –1.05, –0.64; P < 0.001); radiographic
OA model –0.71 (95% CI –0.91, –0.51; P < 0.001); and HRC-
model automated segmentation –0.32 (95% CI –0.52, –0.12;
P = 0.002); and for the medial tibia: expert manual segmentation
–0.55 (95% CI –0.75, –0.34; P < 0.001); radiographic OA model
–0.36 (95% CI –0.56, –0.16; P < 0.001); and HRC-model auto-
mated segmentation 0.09 (95% CI –0.11, 0.28; P = 0.41).
Results for the combined (radiographic OA plus HRC) model
revealed less discrimination compared with the radiographic
OA–based model but a larger effect size compared with the
HRC-based model algorithm (Table 2).

Application of test–retest thresholds identified 102 (53%)
MFTC progressors in the progressor cohort versus 41 (21%) in
the non-progressor cohort using expert manual segmentation,
and 102 (53%) versus 45 (23%), respectively, using the radio-
graphic OA model algorithm. Of the 102 progressor knees identi-
fied by expert manual segmentation, 78 (76%) were also detected
using the radiographic OA model algorithm.

Observations in the MFTC in the partial JSW progressor
cohort were consistent with those made in the progressor cohort,
whereas those made in the partial pain progressor cohort were
consistent with those made in the non-progressor cohort
(Table 2). Results for the LFTC are shown in Table 3, with the
automated algorithms producing higher SRMs than manual seg-
mentation in all 4 cohorts. No relevant or statistically significant dif-
ferences in the rates of LFTC cartilage thickness loss were
observed between both cohorts using either expert manual or
automated segmentation methods.

DISCUSSION

The current study evaluated the performance of deep-
learning algorithms for the longitudinal measurement of articular

cartilage thickness in knee OA and the ability of automated seg-
mentation methodology to discriminate longitudinal rates of carti-
lage thickness loss between 2 cohorts with different progression
profiles. The sensitivity to change of MFTC cartilage thickness
measurements in the progressor cohort of the FNIH biomarker
study was similar for the automated radiographic OA model algo-
rithm when compared to expert manual segmentation, with 95%
CIs of the SRM completely overlapping, whereas it was consider-
ably less for an algorithm trained on HRC data, with the 95% CIs
of the SRMs not overlapping at all. The discrimination of the rates
of MFTC cartilage loss between progressor versus non-
progressor knees (Cohen’s d) was only slightly less for the auto-
mated algorithm of the radiographic OA model than for expert
manual segmentation due to relatively greater sensitivity to
change in the non-progressor cohort observed with the auto-
mated algorithm compared with manual expert segmentation. A
high proportion of individual progressor knees identified by expert
manual segmentation also was identified by automated segmen-
tation. No satisfactory discrimination between progressor versus
non-progressor knees was observed for the algorithm trained on
HRC data. Furthermore, the discrimination was less for a com-
bined model trained on both radiographic OA and HRC data
together than for the one trained on radiographic OA knees alone.

Only 2 knees in the FNIH biomarker sample (0.3%) that had
expert manual segmentation could not be successfully analyzed
using the automated algorithm; one with extensive osteophytes,
and one in which automated segmentation included portions of
non-cartilage tissue that precluded successful thickness compu-
tation. This is encouraging, as the FNIH biomarker sample dis-
played a similar distribution of radiographic knee OA as do
clinical trials that test the efficacy of DMOADs (2–4). Dice similarity
coefficients and other (cross-sectional) performance metrics for
the algorithm used have been reported previously (9).

A limitation of the current study is that the results are specific
to the sagittal DESS MRI sequences, whereas clinical trials often
rely on spoiled gradient-recalled acquisition in the steady state
(SPGR), fast low-angle shoot (FLASH), and fast field echo (FFE)
MRI sequences. However, manual expert segmentation of the
coronal FLASH images was not available for the FNIH study, and
coronal FLASH MRIs are only available for right knees in the OAI
(11), whereas the FNIH biomarker study included a balanced mix
of left and right knees. Yet, future work should compare the differ-
ential sensitivity to change between different MRI protocols and
image orientations.

The strengths of the current study include the use of a radio-
graphic OA–based, HRC-based, as well as a combined model.
The results are interesting in that the larger (radiographic OA plus
HRC) model was less effective in detecting longitudinal change
than the radiographic OA model alone, suggesting that the spec-
ificity of the training set may be more important than its size.
Future work should explore whether training sets specific to K/L
grade or JSN perform better than a single model using various
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K/L and JSN grades. Another strength of the current study is that
the sensitivity to change of the automated algorithms was com-
pared with expert manual segmentation that had thorough expert
quality control in the relatively large FNIH biomarkers study, which
contained several cohorts with differential rates of progression,
and for which other biomarker results have been documented.

A recent study reported a sensitivity to change of –0.43
(SRM) over 2 years for medial femoral condyles in manual seg-
mentation and of –0.67 in fully automated segmentation relying
on a shape-based segmentation approach (15), whereas we
found an SRM of –0.76 for automated and –0.72 for manual seg-
mentation. Although these results cannot be directly compared
across different OAI samples, the previous study (15) did not
explore the performance of automated measurement technology
in differentiating subpopulations with different progression pro-
files. Given the limited space and references in this brief report,
semi- (rather than fully) automated approaches of cartilage seg-
mentation from MRI, as well as those including only local cartilage
measurements rather than the complete MFTC and/or LFTC, are
not included in this discussion, nor are the findings of studies that
have explored other (imaging) biomarkers than cartilage thickness
change in the FNIH Consortium.

In conclusion, we found that a fully automated segmentation
approach using deep learning not only displayed similar sensitivity
to change of longitudinal cartilage thickness loss in knee OA com-
pared with manual expert segmentation and expert quality control
but also effectively differentiated longitudinal rates of cartilage
thickness loss between cohorts with different progression pro-
files. These results are promising in that such automated mea-
surement technology can be scaled to large reading volumes in
clinical practice and in clinical trials testing the efficacy of DMOAD
therapy, where rates of progression of participants treated with
drugs versus placebo need to be tracked accurately.
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