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ABSTRACT
Aims/Introduction: Obesity is characterized by disturbed adipocytokine expression
and insulin resistance in adipocytes. Growth arrest-specific 6 (GAS6) is a gene encoding
the Gas6 protein, which is expressed in fibroblasts, and its related signaling might be asso-
ciated with adipose tissue inflammation, glucose intolerance and insulin resistance. The
aim of this study was to investigate the associations among Gas6, adipocytokines and
insulin resistance in adipocytes.
Materials and Methods: Mature Simpson Golabi Behmel Syndrome adipocytes were
treatedwith high levels of insulin tomimic insulin resistance, andwere examined for the
expressions of Gas6, cytokines and adipocytokines frompreadipocytes in differentiation. In an
animal study, high-fat diet-induced obesemicewere used to verify the Gas6 expression in vitro.
Results: During the differentiation of adipocytes, the expression of Gas6 gradually
decreased, and was obviously downregulated with adipocyte inflammation and insulin
resistance. Gas6 levels were found to be in proportion to the expression of adiponectin,
which has been regarded as closely relevant to improved insulin sensitivity after met-
formin treatment. Similar results were also confirmed in the animal study.
Conclusions: Our results suggest that Gas6 might modulate the expression of adipo-
nectin, and might therefore be associated with insulin resistance in adipose tissues.

INTRODUCTION
Obesity and its comorbidities, including diabetes mellitus, insu-
lin resistance and cardiovascular diseases, are major global
health issues1. Over the past decade, there is increasing evidence
to indicate inflammation links between obesity, diabetes and
metabolic disease clusters2. The inflammation caused by obesity
is characterized by hypertrophy of adipocytes, accompanied by
angiogenesis and immune cell infiltration, resulting in overpro-
duction and prolongation of pro-inflammatory adipocytokines3.
In addition, adipose tissue has been shown to secrete various
adipokines, which exert biological roles in specific manners, to
put remarkable influence on pathophysiological progression
during the development of obesity-related complication3.
The TAM receptors (Tyro3, Axl and MerTK) play a pivotal

role in innate immunity, and their ligands are growth arrest-

specific protein 6 (Gas6), a secreted vitamin K-dependent pro-
tein4. The GAS6 gene was originally identified in fibroblasts,
and it has been shown to be increased expression due to serum
starvation and contact inhibition5. Therefore, Gas6 protein is
also associated with survival, proliferation, cell adhesion and
hemostasis, and is found in many tissues and various cells,
especially in adipocytes5. Several studies have identified a link
between Gas6, adipose tissue development and recruited macro-
phages into adipose tissue in vitro and in vivo6,7, suggesting
that Gas6/TAM plays an important role in the pathogenesis of
adipose tissue inflammation. In addition, preclinical research
has shown that Gas6 might regulate obesity-related inflamma-
tion and insulin resistance7. However, the clinical significance
of Gas6 in human adipose tissue inflammation and insulin
resistance has yet to be investigated.
Metformin, a drug for treatment of obesity and diabetes mel-

litus has been shown to ameliorate insulin resistance8. Recent
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studies have shown that metformin has a potential role in regu-
lating adipose tissue inflammation9. Therefore, in the present
study, we investigated whether the GAS6 gene modulates adipo-
nectin secretion in adipocytes, and in turn whether this miti-
gates adipose tissue insulin resistance. Furthermore, we
investigated whether metformin enhances Gas6 and adiponectin
expressions, and thereby regulates adipocyte insulin resistance.

METHODS
Differentiation of human preadipocytes in vitro
Human Simpson Golabi Behmel Syndrome was kindly provided
by the Graduate Institute of Physiology, National Defense Medi-
cal Center, Taipei, Taiwan. The Simpson Golabi Behmel Syn-
drome adipocytes growth and differentiation were carried out
using the standard protocol10. Typically, 5,000 cells/well are
grown in six-well plates for 3 days to near confluence in Dul-
becco’s modified Eagle’s medium/nutrient mixture F-12 contain-
ing 10% fetal calf serum. When the cells reach 80% confluence,
the differentiation process is started (day 0) by washing cells three
times with phosphate-buffered saline (PBS) and then changing to
a serum-free differentiation medium (Dulbecco’s modified Eagle’s
medium/nutrient mixture F-12 supplemented with 10 lg/mL
apo-transferrin, 20 nmol/L human recombinant insulin,
10 nmol/L hydrocortisone and 0.2 nmol/L tri-iodothyroxine).
After 4 days, medium is changed, and cells are further cultured in
Dulbecco’s modified Eagle’s medium/nutrient mixture F-12 sup-
plemented with 25 nmol/L dexamethasone, 500 lmol/L isobu-
tyl-1-methylxanthine and 2 lmol/L thiazolidinedione (TZD).

Oil Red O staining assay
To measure the cell oil droplet content, the cells were stained
with Oil Red O, rinsed with PBS and soaked in 10% formalin,
then stained with filtered 0.1% Oil Red O solution (Oil Red O
stock solution: dH2O = 3:2), rinsed with PBS and dried. Finally,
the stained cells were observed under a microscope. Quantifica-
tion was carried out with 100% isopropanol and measured at
500 nm using a spectrophotometer.

Quantitative polymerase chain reaction analysis
Ribonucleic acid (RNA) was extracted using Trizol (Invitrogen,
Oshima, NY, USA), followed by complementary DNA synthesis
using a SuperScript� III Reverse Transcriptase kit (Thermo,
Wilmington, DE, USA). Then, SYBR green dye (Thermo) was
separately added with the primer of the target genes. The pri-
mer sequences are listed in Table 1. Two-step polymerase chain
reaction using LC480 system (Roche, San Francisco, CA, USA)
was preheated at 95°C for 7 min and 40 cycles, each cycle was
set at denaturation step at 95°C for 10 s, and annealing step at
60°C for 30 s. The ratio of the target genes normalized to the
internal standard (glyceraldehyde 3-phosphate dehydrogenase).

Enzyme-linked immunosorbent assay
Expressions of Gas6 and adiponectin were determined using a
DuoSet ELISA kit (R&D, Minneapolis, MN, USA) according to

the manufacturer’s instructions. The following factors prepared
at 50 and 0.891 ng/mL were assayed, and showed no cross-re-
activity or interference. Each sample was tested in duplicate.

Western blotting
Proteins were extracted with lysis buffer containing radioim-
munoprecipitation assay buffer, protease inhibitor (Thermo)
and phosphatase inhibitor (Thermo) for 30 min. Protein con-
centration was quantified by bicinchoninic acid assay (Thermo,
Rockford, IL, USA) and bovine serum albumin was used as
standard protein. Equal amounts of proteins were loaded into
10% sodium dodecyl sulfate polyacrylamide gel electrophoresis,
electrophoretically separated and subsequently transferred onto
polyvinylidene difluoride membranes (Millipore, Bedford, MA,
USA). The membranes were blocked by using 5% non-fat milk
in 0.01% Tris-buffered saline Tween 20 for 1 h at room tem-
perature and subsequently probed overnight at 4°C with speci-
fic primary antibodies: Gas6 (G307; Bioworld, Minneapolis,
MN, USA), adenosine monophosphate-activated protein kinase
(AMPK; 3694-S; Abcam, Cambridge, UK), phospho-AMPK
(2802-S; Abcam), phospho-IRS-1 (Ser307; 2381; Cell Signaling,
Danvers, MA, USA), IRS-1 (3407; Cell Signaling), phospho-Akt
(9271; Cell Signaling), Akt (9272; Cell Signaling) and

Table 1 | Primer used for quantitative polymerase chain reaction
analysis

Genes Primer sequence (50 ? 30)

IRS-1
Forward primer GCAACCAGAGTGCCAAAGTAG
Reverse primer GGAGAAAGTCTCGGAGCTATGC

FASN
Forward primer CGGACATGGAGCACAACAGG
Reverse primer GCCATGGTACTTGGCCTTGG

PPAR-c
Forward primer ACCCAGAAAGCGATTCCTTCAC
Reverse primer CCACGGAGCTGATCCCAAAG

Gas6
Forward primer CTCGTGCAGCCTATAAACCCT
Reverse primer TCCTCGTGTTCACTTTCACCG

Adiponectin
Forward primer AAGGAGATCCAGGTCTTATTGG
Reverse primer ACCTTCAGCCCCGGGTAC

Leptin
Forward primer TTTGGCCCTATCTTTTCTATGTCC
Reverse primer TGGAGGAGACTGACTGCGTG

Resistin
Forward primer GCTGTTGGTGTCTAGCAAGAC
Reverse primer CATCATCATCATCATCTCCAG

RBP4
Forward primer GCCTCTTTCTGCAGGACAAC
Reverse primer GCACACGTCCCAGTTATTCA

GAPDH
Forward primer CCACATCGCTCAGACACCAT
Reverse primer TGACCAGGCGCCCAATA
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glyceraldehyde 3-phosphate dehydrogenase (ab8245; Abcam).
The next day, the membranes were washed with 0.01% Tris-
buffered saline Tween 20 and incubated with horseradish per-
oxidase-conjugated secondary antibody for 1 h at room tem-
perature. The reacted proteins were detected by
chemiluminescence ECL kit (Merck Millipore, Darmstadt, Ger-
many) and camera image systems.

Lentiviral short hairpin RNA transfection and adenoviral
infection
Lentiviral-based Gas6 and control short hairpin RNA were
obtained from the RNAi core of Academia Sinica, Taipei, Tai-
wan. The transfection process was based on experimental pro-
tocol11.

Animal experiments
C57BL/6J mice were provided from the National Laboratory
Animal Center, bred in-house and following the guidelines of
the Laboratory Animal Center of the National Defense Medical
Center. At 8 weeks-of-age, male C57BL6/J mice were fed a
high-fat diet (60% kcals from fat) or a chow diet (10% kcals
from fat) for 16 weeks (n = 10 in each group). After the final
administration, mice were fasted for 6 h, then arterial blood
was collected, and then plasma was obtained by centrifugation
(120 g, 15 min) at room temperature and stored at -20°C. Bio-
chemical analysis measures fasting plasma glucose and triglyc-
erides. Homeostasis model of assessment of insulin
resistance = glucose level 9 serum insulin level / 22.512.

Immunohistochemistry assay
Immunohistochemistry was carried out on 3 m-thick paraffin
embedded slides of fat depots. After deparaffinization and rehy-
dration, the slides were brought to a boil in 10 mmol/L sodium
citrate buffer pH 6.0, then maintained at a sub-boiling tempera-
ture for 10 min. Thereafter, the slides were cooled on a bench
top for 30 min, and subsequently, they were treated with dH2O
for three times for 5 min each for washing. After incubation in
3% hydrogen peroxide for 10 min and washing again, those
slides were rinsed with PBS and incubated in a 100-µL block-
ing solution for 1 h at room temperature. Thereafter, the tissue
slides were then incubated at 4°C overnight with the following
primary antibodies: Gas6 (G307; Bioworld) and adiponectin
(AHP1005; AbD Serotec, Hercules, CA, USA). After washing
in Tris-buffered saline Tween 20 three times, the slides were
incubated for 1 h with specific secondary antibodies at room
temperature. Signals were visualized by an improved chemilu-
minescence assay, and the tissues were photographed by
Inverted Fluorescence Microscope (Leica, Wetzler, Germany).

Statistical analysis
Results are expressed as the mean – standard error of the
mean. Student’s t-test with a two-tailed distribution was carried
out to test the statistical significance between the two groups.
Statistical significance was calculated using GraphPad Prism

6.01 software (GraphPad, La Jolla, CA, USA). Statistical signifi-
cance was considered to be at 5% alpha-error levels (P < 0.05).

RESULTS
Expression of Gas6 at different stages of adipogenesis
To quantify the differentiation efficiency and insulin resistance
state, we used human preadipocytes (day 0) that had differenti-
ated into mature adipocytes (day 7 and day 14). These cells
were treated with high insulin (1 µmol/L) for 48 h to mimic
insulin resistance conditions (day 16). Subsequently, we carried
out Oil Red O staining assay, and examined insulin resistance
and adipogenic markers (insulin receptor substrate, tumor
necrosis factor-a, fatty acid synthase and peroxisome prolifera-
tor-activated receptor gamma). Oil Red O staining showed the
gradual appearance of lipid droplets as the human preadipo-
cytes matured, and accounted for >60% of the adipocytes at
day 16 while they were in a hyperinsulinemic state (Figure 1a).
Both the expressions of insulin resistance markers (insulin
receptor substrate, tumor necrosis factor-a) and adipogenic
markers (fatty acid synthase, peroxisome proliferator-activated
receptor gamma) progressively increased during the differentia-
tion of the preadipocytes (Figure 1b; P for trend <0.01), with
the highest expressions noted in the adipocytes at day 16 (Fig-
ure 1b). To investigate the potential roles of Gas6 during the
differentiation of the adipocytes, we isolated both Gas6 messen-
ger RNA and protein from the adipocytes. The results showed
that the expression of Gas6 was higher in the adipocytes at
day 0 and day 7, but lower at day 16 (Figure 2a,b; P for trend
<0.01). Similar results were also found for the expression of cir-
culating Gas6 protein by enzyme-linked immunosorbent assay
(Figure 2c).

Gas6 modulated the expression of adiponectin in adipocytes
Previous studies have shown that many kinds of adipocytokines
are released during the differentiation and inflammation of adi-
pocytes. Therefore, we used effective shGas6 knockdown con-
structs in day-7 adipocytes (Figure 3a), and then examined the
adipocytokine gene expressions (adiponectin, leptin, resistin and
retinol-binding protein 4) in human adipocytes after successful
delivery of shGas6. The adiponectin expressions in messenger
RNA and protein were decreased when Gas6 knockdown was
established in day-7 adipocytes (Figure 3b,c), suggesting that
Gas6 facilitated the expression of adiponectin in the adipocytes.

Expression of Gas6 and adiponectin in insulin-resistant obese
mice
To evaluate the expressions of Gas6 and adiponectin, the mice
were fed with a high-fat diet (60% fat for 16 weeks) to induce
obesity to mimic obesity and insulin resistance conditions. The
average bodyweight, glucose level, homeostasis model of assess-
ment of insulin resistance and triglyceride level were increased
in these mice (Figure 4a). The expressions of Gas6 and adipo-
nectin in the adipocyte tissue of these animals and normal con-
trols were then analyzed by immunohistochemistry. In the
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high-fat diet group, the expressions of Gas6 and adiponectin
were decreased compared with the normal diet group (Fig-
ure 4b). These findings strongly suggested that the expression
of Gas6 might be associated with and modulate the expression
of adiponectin.

Metformin ameliorated insulin resistance by enhancing the
expression of Gas6
To examine how Gas6 influences adiponectin secretion during
adipocyte differentiation, we used metformin, a first-line drug

for the treatment of type 2 diabetes mellitus for the experiment,
as some studies have shown that metformin can enhance the
expression of Gas6 through AMPK activation. After treating
TZD day-16 adipocytes with metformin (2 mmol/L) for 6 h,
the Gas6 expression was increased (Figure 5a). We then exam-
ined adipocytokine gene expressions (adiponectin, leptin, resis-
tin and retinol-binding protein 4), and the results showed that
the expression of adiponectin was increased in the TZD only
treatment group, and metformin facilitated more expression of
adiponectin than the TZD only treatment day-16 adipocytes
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Figure 1 | The morphology and expression of insulin resistance markers during adipocytes differentiation. (a) Preadipocyte Simpson Golabi Behmel
Syndrome cells were induced to differentiate for the indicated times, and the morphology of day-0 (D0), day-7 (D7), day-14 (D14) and day-16 (D16)
adipocytes (magnification: 910 and 940). The quantification of lipid content by Oil Red O staining. (b) Insulin resistance markers (insulin receptor
substrate [IRS], fatty acid synthase [FASN], tumor necrosis factor-a [TNF-a], peroxisome proliferator-activated receptor gamma [PPAR-c]) expression
during differentiation of adipocyte by real-time polymerase chain reaction. Data are presented as the mean – standard deviation. All P for trend
<0.01 and *P < 0.05. mRNA, messenger ribonucleic acid.
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(Figure 5b,c). These results showed that metformin can amelio-
rate insulin resistance by inducing AMPK and Gas6, which in
turn enhances adiponectin secretion during adipocyte differenti-
ation.

DISCUSSION
Obesity increases chronic inflammation and causes obesity-re-
lated diseases, such as type 2 diabetes and atherosclerosis13.
The development of obesity arises from either hypertrophy of
individual adipose cells due to lipid accumulation or hyper-
plasia of adipocytes on differentiation of precursor cells into
mature adipocytes, followed by adipocyte inflammation and
insulin resistance14. Gas6, a gamma-carboxyglutamic acid
domain-containing protein, was first identified in 1988 by

Schneider et al.15 while screening for genes that had an
increased expression in mouse fibroblast cells under growth
arrest conditions. The functions of Gas6 include regulation of
cell proliferation, differentiation, migration and production of
related inflammatory factors. In addition, Gas6 also affects dif-
ferentiation of immune cells and oil droplet synthesis of adipo-
cytes, indicating that Gas6 is involved in various diseases5.
Lijnen et al.14 found that Gas6 was increased in 3T3-F442A

preadipocytes, and decreased with the degree of differentiation.
It was also found that adipogenic markers were increased,
whereas Gas6 was decreased during adipocytes differentiation.
Therefore, Gas6 might affect adipogenesis6. Furthermore, Gas6
is closely associated with impaired glucose tolerance, endothelial
dysfunction and kidney disease, and is even reported to be an
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independent risk factor for type 2 diabetes16. The average
amplitude of blood glucose and chronic inflammation in dia-
betes patients can also lead to the downregulation of Gas6 sig-
naling17, suggesting that Gas6 might play a potential role in the
regulation of insulin resistance. Furthermore, Gas6 has been
shown to be involved in the processes of proliferation, differen-
tiation and inflammatory responses in various tissues and
cells18,19. Although the role of Gas6 signaling in the inflamma-
tion of adipose tissue remains controversial, some studies
showed that Axl knockdown in adipocytes led to no significant
change in adipogenesis4, suggesting that Gas6 might interact
with adipocytes by other unknown mechanisms.

Previous clinical studies showed that Gas6 expression was
significantly reduced in elderly patients with type ] 2 diabetes
compared with healthy groups, whereas plasma C-reactive pro-
tein was significantly increased, suggesting that hyperglycemia
and insulin resistance might affect circulating Gas6 levels and
inflammation16,20. A recent study showed that fat tissue is an
endocrine organ that can produce and secrete a variety of
adipocytokines and adipokines21,22. In the present study, we
showed that Gas6 was associated with specific cytokine expres-
sions from adipocytes and that it altered insulin resistance. In
addition, we found that adiponectin played a crucial role in the
Gas6 modulation of insulin resistance. Increasing evidence also
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indicates that adiponectin modulates the resolution of inflam-
mation22. Furthermore, in the adiponectin knockout mouse
model, Takemura et al.23 found that the expression of pro-in-
flammatory cytokines were increased, whereas the expression of
anti-inflammatory cytokines were decreased, indicating that
high levels of adiponectin can increase the anti-inflammatory
response. This strategy can prevent types of obesity-related dis-
eases23. The results of the present in vitro experiments are also
consistent with the data of our animal study, and both Gas6
and adiponectin expressions from the adipocyte tissues of high-
fat diet-induced obese mice appeared to be lower compared
with the chow-fed group. Taken together, the present findings
showed adipocyte differentiation from preadipocytes to mature
adipocytes through Gas6 signaling of adipocytes with related
effects on adiponectin expression, and that this was more
prominent in insulin resistance. These results were also found
in the animal model.
Metformin is a first-line drug commonly used to treat diabetes

mellitus, and it has been shown tomitigate hyperglycemia through
many potential molecular mechanisms, one of which is activation
of AMPK. Due to the downregulation of AMPK in insulin resis-
tance and adiposopathy23, suppressedGas6 levelsmight play a role

in AMPK inactivation, particularly in conditions of obesity or
insulin resistance. Some recent studies have shown thatmetformin
can enhance Gas6 expression through AMPK activation24. Met-
formin might increase serum adiponectin levels in type 2 diabetes
mellitus patients25, and metformin is able to upregulate adiponec-
tin gene expression in subcutaneous adipocytes26. As shown in the
present study, metformin ameliorated insulin resistance through
the activation of AMPK and Gas6, which in turn enhanced adipo-
nectin expression. However, there was no experiment, such as
knockdown of Gas6 would lead to lesser amelioration of insulin
resistance induced bymetformin. This part requiresmore research
to confirm. This novel finding might further support the poten-
tially therapeutic role of Gas6 in adiposopathy of obesity and insu-
lin resistance in the future.
In the present study, we found that Gas6 facilitated the

expression of adiponectin in adipocytes, which then ameliorated
adipose tissue inflammation in conditions of obesity and insulin
resistance. However, a limitation of this study was that only
one role of Gas6 in the pathogenesis of adiposopathy in obesity
was elucidated, and further studies are warranted to investigate
the highly complex underlying pathophysiological mechanisms
of Gas6 and adipose tissue.
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