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Abstract
Predicting the onset of psychosis in individuals at-risk is based on robust prognostic model building methods
including a priori clinical knowledge (also termed clinical-learning) to preselect predictors or machine-learning
methods to select predictors automatically. To date, there is no empirical research comparing the prognostic accuracy
of these two methods for the prediction of psychosis onset. In a first experiment, no improved performance was
observed when machine-learning methods (LASSO and RIDGE) were applied—using the same predictors—to an
individualised, transdiagnostic, clinically based, risk calculator previously developed on the basis of clinical-learning
(predictors: age, gender, age by gender, ethnicity, ICD-10 diagnostic spectrum), and externally validated twice. In a
second experiment, two refined versions of the published model which expanded the granularity of the ICD-10
diagnosis were introduced: ICD-10 diagnostic categories and ICD-10 diagnostic subdivisions. Although these refined
versions showed an increase in apparent performance, their external performance was similar to the original model. In
a third experiment, the three refined models were analysed under machine-learning and clinical-learning with a
variable event per variable ratio (EPV). The best performing model under low EPVs was obtained through machine-
learning approaches. The development of prognostic models on the basis of a priori clinical knowledge, large samples
and adequate events per variable is a robust clinical prediction method to forecast psychosis onset in patients at-risk,
and is comparable to machine-learning methods, which are more difficult to interpret and implement. Machine-
learning methods should be preferred for high dimensional data when no a priori knowledge is available.

Introduction
Under standard care, outcomes of psychosis are poor1.

While early interventions at the time of a first psychotic
episode are associated with some clinical benefits2, they
are not effective at preventing relapses2 or reducing the
duration of untreated psychosis (DUP)3; preventive
interventions in individuals at clinical high risk for psy-
chosis (CHR-P)4 may be an effective complementary

strategy. According to the World Health Organization,
preventive strategies for mental disorders are based on the
classification of the prevention of physical illness as uni-
versal, selective or indicated (targeted at the general
public, those with risk factors, and those with minimal
signs or symptoms of mental disorders respectively, as
described by by Gordon et al.) and on the classic public
health classification as primary, secondary or tertiary
(seeking to prevent the onset of a mental disorder, lower
the rate of established disorder or reduce disability and
relapses, respectively5). Universal, selective and indicated
preventive interventions are “included within primary
prevention in the public health classification” (page 17 in
ref. 5). Since CHR-P individuals show attenuated
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symptoms of psychosis coupled with help-seeking beha-
viour6 and functional impairments7, interventions in these
individuals are defined as indicated primary prevention of
psychosis. The conceptual and operational framework
that characterises the CHR-P paradigm has been reviewed
elsewhere8,9. The empirical success of the CHR-P para-
digm is determined by the concurrent integration of three
core components: efficient detection of cases at-risk,
accurate prognosis and effective preventive treatment10,11.
The underpinning methodology for each of these com-
ponents is based on risk-prediction models12. Unfortu-
nately, a recent methodological review concluded that
most of the CHR-P prediction modelling studies are of
low quality, largely because they employ stepwise variable
selection without proper internal and external valida-
tion13. These approaches overfit the data (i.e. the model
learns the noise instead of accurately predicting unseen
data14), inflate the estimated prediction performance on
new cases and produce biased prognostic models that
result in poor clinical utility14. Beyond stepwise model
selection, overfitting can also occur when the number of
events (e.g. number of at-risk patients who will develop
psychosis over time) per variable (e.g. degree of freedoms
of predictors of psychosis onset in at-risk patients) is low
(event-per-variable, EPV <2014,15). Low EPVs are fre-
quently encountered in the CHR-P literature because the
onset of psychosis in these samples is an infrequent,
heterogeneous event (cumulating to 20% at 2-years,
(eTable 4 in ref. 16; depending on the sampling strate-
gies)17–20.
A first approach to overcome these caveats is to use a

priori clinical-learning or knowledge to identify a few
robust predictors to be used in risk-prediction models13: it
may be possible to use umbrella reviews (i.e. reviews of
meta-analyses and systematic reviews that incorporate a
stratification of the evidence21) on epidemiological risk/
protective factors for psychosis22). Because the selection
of predictors would be limited in number (preserving the
EPV14) and independent of the data on which the model is
then tested, overfitting issues would be minimised13. For
example, a recent risk estimation model has used a priori
clinical-learning to select a few predictors of psychosis
onset in CHR-P individuals23. The prognostic model
developed was robust and has already received several
independent external replications24. A second, increas-
ingly popular approach is to bypass any clinical reasoning
and instead use machine-learning procedures to select the
predictors automatically25: machine-learning studies have
developed and internally validated models to stratify risk
enrichment in individuals undergoing CHR-P assess-
ment18 and functional outcomes in CHR-P samples26.
Machine-learning methods promise much to the CHR-P
field because of their potential to assess a large number of
predictors and to better capture non-linearities and

interactions in data; there is great confidence that they
will outperform model-building based on clinical learn-
ing25. Yet, modern machine-learning methods may not a
panacea27, particularly because of the lack of empirical
research comparing machine-learning vs clinical-learning
theory-driven methods for the prediction of psychosis.
The current manuscript advances knowledge by filling
this gap.
Here we use a transdiagnostic, prognostic model that

has been developed by our group using a priori meta-
analytical clinical knowledge (hereafter clinical-learn-
ing)28. The predictors used were collected as part of the
clinical routine: age, gender, ethnicity, age by gender and
ICD-10 index diagnostic spectrum. The model is cheap
and “transdiagnostic”29 because it can be applied at scale
across several ICD-10 index diagnoses to automatically
screen mental health trusts. This prognostic model has
been externally validated twice28,30, and is under pilot
testing for real-world clinical use11.
In the first experiment, we apply a machine-learning

method to the same transdiagnostic individualised prog-
nostic model and test the hypothesis that machine-
learning methods produce models with better prediction
accuracy than clinical-learning approach when the EPV is
adequate. In the second experiment, we expand the
granularity of the ICD-10 index diagnosis predictor and
test the hypothesis that the use of more specific diagnostic
specifications improves prognostic performance. In the
third experiment, we test the hypothesis that machine-
learning delivers better predicting prognostic models than
clinical-learning under different models’ specifications,
and in the specific scenario of low EPVs. Overall, this
study provides much needed empirical research to guide
prediction modelling strategies in early psychosis.

Materials and methods
Data source
Clinical register-based cohort selected through a Clin-

ical Record Interactive Search (CRIS) tool31.

Study population
All individuals accessing South London and Maudsley

(SLaM) services in the period 1 January 2008–31
December 2015, and who received a first ICD-10 index
primary diagnosis of any non-organic and non-psychotic
mental disorder (with the exception of Acute and Tran-
sient Psychotic Disorders, ATPDs) or a CHR-P designa-
tion (which is available in the whole SLaM through the
Outreach And Support In South-London -OASIS- CHR-P
service32), were initially considered eligible. The ATPD
group is diagnostically33 and prognostically34 similar to
the Brief Limited Intermittent Psychotic Symptom
(BLIPS) subgroup of the ARMS construct and to the Brief
Limited Psychotic Symptoms (BIPS) subgroup of the
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Structured Interview for the Psychosis-Risk Syndrome
(SIPS; for details on these competing operationalisation
see eTable 1 published in ref. 34) and previous publica-
tions on the diagnostic and prognostic significance of
short-lived psychotic disorders33,35,36.
Those who developed psychosis in the three months

immediately following the first index diagnosis were
excluded. As previously detailed, this lag period was
chosen to allow patients sufficient time after their index
diagnosis to meet the ICD-10 duration criterion for
ATPDs. Since we did not employ a structured assessment
at baseline (see limitation), this lag period was also used to
be conservative and exclude individuals who were
underreporting psychotic symptoms at baseline (false
transition to psychosis).
Ethical approval for the study was granted31.

Study measures
The outcome (risk of developing any ICD-10 non-

organic psychotic disorder), predictors (index ICD-10
diagnostic spectrum, age, gender, ethnicity, and age by
gender), and time to event were automatically extracted
using CRIS31.

Statistical analyses
The original study was conducted according to the

REporting of studies Conducted using Observational
Routinely-collected health Data (RECORD) Statement37.

Experiment 1: Machine-learning vs clinical-learning with
adequate EPV for the prediction of psychosis
Development and validation of the original model (M1,

diagnostic spectra) followed the guidelines of Royston
et al.38, Steyerberg et al.39 and the Transparent Reporting
of a multivariable prediction model for Individual Prog-
nosis Or Diagnosis (TRIPOD)40. The details of model
development and external validation have been presented
previously28. Briefly, predictors (ICD-10 diagnostic spec-
trum, age, gender, ethnicity, and age by gender interac-
tion) were preselected on the basis of meta-analytical
clinical knowledge41 as recommended13. The ICD-10
diagnostic spectrum was defined by all of the ten ICD-10
blocks (acute and transient psychotic disorders, substance
abuse disorders, bipolar mood disorders, non-bipolar
mood disorders, anxiety disorders, personality disorders,
developmental disorders, childhood/adolescence onset
disorders, physiological syndromes and mental retarda-
tion28), with the exclusion of psychotic and organic
mental disorders, and by CHR-P designation8. Accord-
ingly, the diagnostic predictor of M1 encompassed 11
different levels. All other predictors together contributed
7 degrees of freedom, for a total of 18 degrees of freedom.
Cox proportional hazards multivariable complete-case
analyses were used to evaluate the effects of preselected

predictors on the development of non-organic ICD-10
psychotic disorders, and time to development of psy-
chosis. Non-random split-sample by geographical loca-
tion was used to create a development and external
validation dataset40. Performance diagnostics of individual
predictor variables in the derivation dataset were explored
with Harrell’s C-index38, which can be interpreted as a
summary measure of the areas under the time-dependent
ROC curve42. A value of C= 0.5 corresponds to a purely
random prediction whereas C= 1 corresponds to perfect
prediction. The model was then externally validated in the
independent database from SLaM28, and subsequently in
another NHS Trust (Camden and Islington)30. In the
SLaM derivation database there were 1001 events (EPV
1001/18= 55.61), and in the SLaM validation database
there were 1010 events, both of which exceed the cut-off
of 100 events required for reliable external validation
studies43.
In experiment 1, we tested the hypothesis that even

when EPVs are above the recommended threshold and
predictors are the same, machine-learning would out-
perform clinical-learning methods. Machine learning
methods automate model building by learning from data
with minimal human intervention44; the best model is
typically selected by assessing the prediction accuracy of
unseen (hold-out) data for example using cross-validation
methods45. This is a key difference from classical statis-
tical inferential methods, where the quality of a model is
assessed by the sample used to estimate the model.
Machine-learning methods typically introduce a regular-
isation term into the model to avoid overfitting, and this
term usually imposes a penalty on complex models to
reduce sample variance45.
In our study we used regularised regression methods

(also called penalised or shrinkage regression methods) as
relatively simple, but often powerful machine learning
methods which compare competitively to more complex
machine learning methods like random forest or support
vector machines46–48. We chose regularised regression
methods to enhance interpretability of the final model, in
particular compared to models developed through clinical
learning. It is important for clinicians to interpret prog-
nostic models to gain knowledge and to detect their
potential biases and limitations in real-world use49. Reg-
ularised regression fits generalised linear models, for
which the sizes of the coefficients are constrained to
reduce overfitting. Two common regularised regression
approaches to be considered in this study are RIDGE50

and LASSO51. The primary difference between RIDGE
and LASSO is that RIDGE regression constrains the sum
of squares of the coefficients, whereas LASSO constrains
the sum of absolute values of the coefficients45. Unlike
RIDGE, LASSO shrinks the coefficient to zero and thus
performs an automatic selection of predictors. The degree
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of constraint (or penalty) is determined by automated
computer-intensive grid searches of tuning parameters.
Because constraints depend on the magnitude of each
variable, it is necessary to standardise variables. The final
tuning parameter is chosen as the one which maximises a
measure of prediction accuracy of unseen (hold-out) data
using, for example, cross-validation methods45.
Therefore, in experiment 1, we applied RIDGE and

LASSO to the original unregularized Cox regression
model in the same database to estimate their apparent and
external performance (Harrell’s C) in the derivation and
validation datasets respectively. Their difference was then
used to estimate the model’s optimism.

Experiment 2: Diagnostic subdivisions vs diagnostic cate-
gories vs diagnostic spectra for the prediction of psychosis
We developed two refined prognostic models, M2 and

M3, which differed from the original M1 model (diag-
nostic spectra, e.g. F30-F39 Mood [affective] disorders) by
employing two expanded definitions of the predictor ICD-
10 index diagnosis (the strongest predictor of the
model28,30). The model M2 (diagnostic categories)
expanded the M1 model by adopting the 62 ICD-10
diagnostic categories—excluding psychotic and organic
mental disorders—rather than the broader spectra (e.g.
F30 manic episode, F31 Bipolar affective disorders etc.).
The model M3 (diagnostic subdivisions) further expanded
the M2 model by including all of the 383 specific ICD-10
diagnostic subdivisions of non-organic and non-psychotic
mental disorder (e.g. F30.0 hypomania, F30.1 mania
without psychotic symptoms, F30.2 mania with psychotic
symptoms, F30.8 other manic episodes, F30.9 manic epi-
sode unspecified). From a clinical point of view, these
refined models reflect the potential utility of specific vs
block vs spectrum diagnostic formulations for the pre-
diction of psychosis onset in at-risk individuals. The two
previous independent replications of the original M1
model confirmed that the clinicians’ pattern recognition
of key diagnostic spectra is useful from a clinical predic-
tion point of view. Thus, experiment 2a tested the clinical
hypothesis that the use of more granular and specific
ICD-10 index diagnoses would eventually improve the
performance of the initial M1 model. The performance of
the M1, M2 and M3 models was first reported in the
derivation and validation dataset. In a subsequent stage,
the model’s performance (Harrell’s C) was compared
across each pair within the external validation dataset.

Experiment 3a and 3b. Machine-learning vs clinical-learning
under variable EPVs
From a statistical point of view, increasing the number

of levels of the ICD-10 diagnoses from M1 (n= 10) to M2
(n= 62) to M3 (N= 383) (plus the CHR designation),
decreases the EPV from M1 to M2 to M3 respectively,

increasing the risk of overfitting in unregularised regres-
sion models (in particular when the EPV is lower than
2052).
During experiment 3a, we tested the hypothesis that

machine-learning would increasingly outperform clinician
learning methods with decreasing EPVs. First, we com-
pared the apparent performance of M1, M2, M3 in the
whole dataset using RIDGE and LASSO versus unregu-
larised Cox regression. Second, we compared the internal
performance of M1, M2 and M3 in the whole dataset
using ten-fold cross-validation repeated 100 times and
taking the median Harrell’s C across the 100 repetitions,
again using RIDGE, LASSO versus unregularized Cox
regression. We used the whole dataset because the refined
M2 and M3 models have adopted different specifications
of the ICD-10 diagnoses that were not always present in
both derivation and validation datasets (in which case it
would not have been possible to test the same model). In
the light of the decreased EPVs we expected RIDGE and
LASSO to perform better for M3 than for M2 than for
M1, respectively45).
In experiment 3b, we further assessed the impact of

varied sample size and degree of EPV on the prognostic
performance of the model M1 under machine-learning vs
clinical-learning, without the confounding effect of
including more potentially informative predictors. We
randomly selected samples of different sizes from the
derivation dataset and then fitted the machine-learning vs
clinical-learning approaches to these samples. We then
assessed the prediction accuracy in the external validation
dataset. For each sample size, the results of ten repetitions
with different random samples were averaged, and the
median Harrell’s C reported for both the derivation
(apparent) and validation datasets. Samples sizes were
500, 1000, 2000 and 5000.
All analyses were conducted in STATA 14 and R 3.3.0.

using the user-written R packages “Coxnet” for the reg-
ularised Cox regression models and “Hmisc” to calculate
Harrell’s C. The difference between two C’s were calcu-
lated using the STATA package “Somersd” and the R
package “Rms”. Compute code is available from the
authors (DS) upon request.

Results
Sociodemographic and clinical characteristics of the
sample
91199 patients receiving a first index diagnosis of non-

organic and non-psychotic mental disorder within SLaM
in the period 2008–2015 fulfilled the study inclusion
criteria and were included in the derivation (33820) or
validation (54716) datasets. The baseline characteristics of
the study population, as well as the derivation and vali-
dation datasets, are presented in Table 128. The mean
follow-up was 1588 days (95% CI 1582–1595) with no
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significant differences between the derivation and vali-
dation datasets.

Experiment 1: Machine-learning vs clinical-learning and
adequate EPV for the prediction of psychosis
The first analysis compared M1 model performance

developed with clinician learning (a priori knowledge)

against RIDGE and LASSO in both the derivation and
validation dataset. Harrell’s C on derivation set was
virtually the same for all three methods on both deri-
vation (~0.8) and external validation data sets (~0.79,
Table 2).

Experiment 2: diagnostic subdivisions vs diagnostic cate-
gories vs diagnostic spectra for the prediction of psychosis
The database included the majority of the non-organic

and non-psychotic ICD-10 diagnostic categories (57 out
of 62, 92% in M2), and diagnostic subdivisions (353 out of
383, 92% in M2).
In the derivation dataset (apparent performance14),

the M3 model (Harrell’s C 0.833) seemed to perform
better, than the M2 model (Harrell’s C 0.811) and better
than the original M1 model (Harrell’s C 0.8). However,
this was due to overfitting of the M3 to the derivation
data, as confirmed by the external validation. In fact, in
the validation dataset, using all of the ICD-10 diagnostic
subdivisions (M3) yielded a comparable model perfor-
mance (about 0.79) to M1 and comparable to the model
with the diagnostic categories (M2). The latter model
(M2) showed statistically significant, superior perfor-
mance compared to M1. However, the magnitude of the
improvement of the Harrell’s C of 0.007 was too small to
be associated with meaningful clinical benefits (see
Table 3).

Experiment 3a and 3b. Prognostic performance using
machine-learning vs clinical-learning under variable EPVs
The results from experiment 3a showed that the

clinical-learning and machine-learning methods delivered
similar apparent prognostic performance (Table 4). After
internal validation, Harrell’s C slightly decreased, and M1,
M2 and M3 models were all similar (approximately 0.8).
There were again small differences between clinical-
learning and machine-learning methods, which were
more marked as EPV decreased.
In experiment 3b, Harrell’s C for M1 in the derivation

dataset increased with decreasing sample size. The
increase was larger for clinical-learning (unregularized
regression: from 0.8 to 0.9), and smaller for machine-
learning (RIDGE and LASSO: 0.79–0.83, Fig. 1). The
opposite pattern was then seen in the external validation
dataset, where Harrell’s C for M1 decreased with
decreasing sample size. Hence, optimism (the difference
between Harrell’s C in the apparent sample and with
internal validation) increased with smaller sizes. As sam-
ple size decreased, Harrell’s C decreased slightly more
when using clinical-learning (unregularized regression:
from 0.79 to 0.67 if N= 500) than when using machine-
learning (RIDGE regression: from 0.79 to 0.70 and LASSO
regression: from 0.79 to 0.69).

Table 1 Sociodemographic characteristics of the study
population, including the derivation and validation
dataset28

Derivation

dataset

Validation

dataset

Mean SD Mean SD

Age (years)c 34.4 18.92 31.98 18.54

Count % Count %

Gender

Male 17303 48.81 27302 49.9

Female 16507 51.16 27398 50.07

Missing 10 0.03 16 0.03

Ethnicity

Black 6879 20.34 7023 12.84

White 18627 55.08 35392 64.68

Asian 1129 3.34 2608 4.77

Mixed 1306 3.86 1957 3.58

Other 3466 10.25 2084 3.81

Missing 2413 7.13 5652 10.33

ICD-10 Index spectrum diagnosis

CHR-Pa 314 0.93 50 0.09

Acute and transient psychotic

disorders

553 1.64 725 1.33

Substance use disorders 7149 21.14 6507 11.89

Bipolar mood disorders 950 2.81 1526 2.79

Non-bipolar mood disorders 6302 18.63 8841 16.16

Anxiety disorders 8235 24.35 15960 29.17

Personality disorders 1286 3.8 2116 3.87

Developmental disorders 1412 4.18 3706 6.77

Childhood/adolescence onset

disorders

4200 12.42 9629 17.6

Physiological syndromes 2555 7.55 4424 8.09

Mental retardation 864 2.55 1232 2.25

aLambeth and Southwark, n= 33820
bCroydon and Lewisham, n= 54716
cNot an ICD-10 Index spectrum diagnosis
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Discussion
This study compared clinical-learning vs machine-

learning methods for the prediction of individuals at-
risk for psychosis. The first experiment indicated that
clinical-learning methods with a priori selection of pre-
dictors and adequate EPV produce robust prognostic
models that are comparable to those obtained through
regularised regression machine-learning methods. The
second experiment indicated that there is no improve-
ment in prognostic accuracy when specific ICD-10 diag-
noses are employed instead of broad diagnostic spectra.
The third experiment indicated that machine learning
methods can deliver more robust prognostic models that
clinical-learning methods when the sample size is small
and the EPV low, although the benefits are modest in
magnitude.
The first hypothesis of the current study was that

machine-learning methods would generally outperform
clinical-learning methods using the same set of predictors.

This was not verified in our study, because when RIDGE
and LASSO methods were applied to the previously
published transdiagnostic individualised risk estimation
model, there was no substantial difference in prognostic
performance. This suggests that when a prognostic model
is built on strong clinical knowledge, has a large sample
and an adequate EPV (in this case it was 56), the model
can perform very well without the use of machine-
learning methods. Machine-learning methods are not
always necessary to obtain an accurate prediction of
psychosis onset and do not necessarily improve the per-
formance of prognostic models developed on a priori
clinical knowledge. For example, a recently published
supervised machine-learning study failed to demonstrate
improved prediction of transition to psychosis when using
baseline clinical information with no a priori knowledge53,
suggesting that a priori clinical knowledge remains very
important for developing good prognostic models. Given
a comparable accuracy, models developed through
clinical-learning tend to be more straightforward and thus
more likely to be interpreted, assessed and accepted, and
implemented in clinical care (see below).
Our second hypothesis was that adding more infor-

mation to the model by expanding the granularity of the
ICD-10 index diagnosis would improve prognostic
performance. The results showed no prognostic benefit
to using specific ICD-10 diagnoses compared to broad
diagnostic spectra for the prediction of psychosis in
secondary mental health care. The diagnostic spectra
employed by the original version of the transdiagnostic
individualised risk calculator28 are robust because they
originate in prototypical descriptions containing a core
phenomenological structure (gestalt) of the disorder
and its polysymptomatic manifestations29. Examination
of overlaps of etiological factors between disorders
confirms that higher level broad diagnostic constructs
may be more valid and clinically useful categories than
specific diagnostic categories54. The prognostic utility
of the ICD-10 diagnostic spectra is also in line with
recent meta-analytical findings indicating that diag-
nostic spectra (e.g. psychosis) are relatively stable at the
time of a first episode of psychosis55. These diagnostic
spectra are certainly not optimal, yet they do not

Table 2 Experiment 1: prognostic accuracy (Harrell’s C) for the original model (M1, diagnostic spectra) developed
through Clinical-learning (a priori clinical knowledge) vs machine learning (LASSO and RIDGE). The EPV is >20 (55.6)

Method Derivation Data Set (N= 33,820) Validation Data Set (N= 54,716) Optimism

Harrell’s C SE 95% C.I. Harrell’s C SE 95% C.I.

Unregularized 0.800 0.008 0.784–0.816 0.791 0.008 0.775–0.807 0.009

Lasso 0.798 0.008 0.782–0.814 0.789 0.008 0.773–0.805 0.009

Ridge 0.810 0.008 0.794–0.826 0.788 0.008 0.772–0.804 0.022

Table 3 Experiment 2: prognostic performance of the
revised models in the derivation dataset and the
validation dataset, and their comparative performance

Model Type of clustering of

ICD-10 index

diagnoses

Harrell’s C SE 95% CI

Derivation dataset

M1 Diagnostic spectra 0.800 0.008 0.784 0.816

M2 Diagnostic categories 0.811 0.008 0.795 0.824

M3 Diagnostic subdivisions 0.833 0.008 0.821 0.847

Validation dataset

M1 Diagnostic spectra 0.791 0.008 0.776 0.807

M2 Diagnostic categories 0.797 0.008 0.782 0.812

M3 Diagnostic subdivisions 0.792 0.008 0.776 0.808

M2-M1 0.006 0.003 0.001 0.012

M3-M1 0.001 0.005 −0.009 0.011

M3-M2 −0.005 0.005 −0.015 0.004

All models include age, gender, age by gender, ethnicity and ICD-10 index
diagnosis (refined as specified in the methods)
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present an insuperable barrier to scientific progress56,
and in terms of scalability in secondary mental health
care57 have yet to be beaten by other predictors of
psychosis onset. Conversely, available clinical evidence
indicates that the specific ICD-10 diagnoses are unre-
liable and unstable, and this may explain why their use
is associated with overfitting problems and lack of

prognostic benefits55. It is also possible that the small
number of cases observed in some specific diagnostic
categories may interfere with the efficacy of machine
learning approaches.
The third hypothesis was that LASSO and RIDGE

would perform better in the presence of either unstable
(such as the specific ICD-10 diagnoses) or redundant

Table 4 Experiment 3a. Prognostic performance using machine-learning vs clinical-learning under variable EPVs

Unregularized

M1 (diagnostic spectra) M2 (diagnostic categories) M3 (diagnostic subdivisions)

Cox Regression LASSO RIDGE Cox Regression LASSO RIDGE Cox Regression LASSO RIDGE

Apparent performance

C index 0.800 0.793 0.790 0.811 0.799 0.803 0.827 0.812 0.813

SE 0.005 0.005 0.006 0.005 0.005 0.005 0.005 0.005 0.005

Internal validation performance

C index 0.799 0.794 0.790 0.804 0.795 0.795 0.805 0.793 0.797

SE 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017

Events 2011 2011 2011

Degrees of freedom of predictors 18 63 226

EPV 111.7 31.9 8.9

Upper part of the table: apparent performance of M1-M3 models in the whole dataset. Bottom part of the table: internal performance in the whole dataset using
nested 10-fold CV and taking median values with 100 repetitions
EPV events per variables, calculated as the number of transitions to psychosis over the degrees of freedom of predictors. Categorical predictors are counted as the
number of indicator categories they consist of (i.e. number of categories−7)
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sampling of varying sample sizes and decreasing EPV
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predictors, or infrequent events (low EPV); RIDGE is
generally better with a small number of unstable pre-
dictors, and LASSO with a large number. This hypothesis
was confirmed: the best performing model under low EPV
and unstable predictors was obtained through machine-
learning approaches13. However, the improvement in
prognostic performance was modest, indicating that if
strong predictors are known in advance through clinical-
learning, it may be difficult to improve the model by
adding many other variables which are more likely to be
interpreted as noise, even when using penalized regres-
sion machine-learning methods. Notably, our study tested
only two simple machine learning methods (RIDGE and
LASSO), so we cannot exclude the possibility that prog-
nostic improvements may have been larger if more
complex machine learning methods (such as random
forest or support vector machines for survival) have been
used58,59. However, Ploeg, Austin, and Steyerberg
demonstrated that the development of robust models by
machine-learning methods requires more cases-per-
candidate predictors than traditional statistical methods
when the dimensionality is not extremely high27. Inter-
estingly, even if large data sets are available, complex
machine learning methods (i.e. random forests) only
showed only minor improvement (at the expense of
reduced interpretability and no automatic variable selec-
tion) over simple statistical models27. This view was
pragmatically supported by a recent systematic review
which compared random forests, artificial neural net-
works, and support vector machines models to logistic
regression. Across 282 comparisons, there was no evi-
dence of superior performance of machine-over clinical-
learning for clinical prediction modelling60.
Not surprisingly, the prognostic tools used to date in the

real world clinical routine of CHR-P services are still
based on clinical-learning23,28. However, in the current
study, we could not test whether the addition of new
multimodal predictors - beyond the clinical and socio-
demographic ones—would improve the prognostic accu-
racy of psychosis onset. Some studies have suggested that
the combination of clinical information with structural
neuroimaging measures (such as gyrification and sub-
cortical volumes) could improve prognostic accuracy61.
However, available studies failed to provide convincing
evidence that multimodal predictors under machine
learning can substantially improve prognostic accuracy
for predicting psychosis onset in patients at risk62,63.
Furthermore, complex models based on multimodal
domains are constrained by logistical and financial chal-
lenges that can impede the ability to implement and scale
these models in the real world. A potentially promising
solution may be to adopt a sequential testing assessment
to enrich the risk in a stepped framework, as demon-
strated by our group with a simulation meta-analysis64.

Interestingly, a recent machine-learning study on patients
at-risk for psychosis confirmed that adding neuroimaging
predictors to clinical predictors produced a 1.9-fold
increase in prognostic certainty in uncertain cases of
patients at-risk for psychosis26.
Our study provides some conceptual and broad impli-

cations; although machine learning methods have attrac-
ted high expectations in the field25,65,66, the enthusiasm
may not be entirely substantiated in the field of psychosis.
First, we have demonstrated that if robust a priori clinical
knowledge is available, and if there are large sample sizes
and EPVs, clinical-learning is a valid method to develop
robust prognostic models. Clearly, a priori clinical
knowledge may not always be available, and high
dimensional databases with large sample sizes or strong
signal to noise ratio may be needed to address the com-
plexity of mental disorders. Under those circumstances,
machine-learning methods can produce more robust
prognostic models. Our study also provides support for
this situation where detailed clinical information is not
available; machine learning methods were able to identify
models of similar prediction accuracy.
Second, the methodological, empirical and conceptual

limitations of machine learning in psychiatry have not
been completely addressed. Overoptimistic views,
excessive faith in technology67 and lack of knowledge of
limitations of a specific methodology can lead to
unrealisable promises68. While machine learning meth-
ods can potentially achieve good predictive accuracy in
high dimensional data when there is poor a priori
knowledge, they tend to deliver “black-box” classifiers
that provide very limited explanatory insights into psy-
chosis onset69. This is a fundamental limitation: without
direct interpretability of a prognostic procedure, imple-
mentation in clinical practice may be limited68. To have
high impact and be adopted on a broader scale, a prog-
nostic model must be accepted and understood by
clinicians. Prediction models developed through clinical-
learning are traditionally better understood by clinicians
than machine learning models70, while machine-learning
models are challenging to evaluate and apply without a
basic understanding of the underlying logic on which
they are based71. A partial solution may be to incorpo-
rate a priori knowledge into machine-learning approa-
ches72. Because of these issues, some authors argue that
clinical-learning and reasoning will become even more
critical to distil machine-learning and data-driven
knowledge73, and preliminary studies suggest that the
combined use of theory-driven and machine learning
approaches can be advantageous74. There is a trend
towards converting “big data” into “smart data” through
contextual and personalised processing, allowing clin-
icians and stakeholders to make better decisions; our
study supports such an approach75.
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Third, an additional pragmatic limitation is that for
prediction models to ultimately prove useful, they must
demonstrate impact76—their use must generate better
patient outcomes70. Impact studies for machine-learning
approaches in patients at-risk for psychosis are lacking.
Rigorous tests on independent cohorts are critical
requirements for the translation of machine-learning
research to clinical applications77. To our knowledge,
the only study that has estimated the potential clinical
benefit associated with the use of a prognostic model in
secondary mental health care is our transdiagnostic
individualised risk calculator analysis, which was based on
clinical-learning28. A recent review observed that
although there are thousands of papers applying machine-
learning algorithms to medical data, very few have con-
tributed meaningfully to clinical care78. Another recent
empirical study focusing on the clinical impact of
machine-learning in early psychosis concluded that the
current evidence for the diagnostic value of these methods
and structural neuroimaging should be reconsidered
toward a more cautious interpretation79.

Conclusions
Developing prognostic models on the basis of a priori

clinical knowledge, large samples and adequate events
per variable is a robust clinical prediction method for
forecasting psychosis onset in patients at-risk. Under
these circumstances, the prognostic accuracy is com-
parable to that obtained through machine-learning
methods, which are more difficult to interpret and
may present additional implementation challenges. The
use of diagnostic spectra for transdiagnostic prediction
of psychosis in secondary mental health care offers
superior prognostic accuracy than the use of more
specific diagnostic categories. Machine-learning meth-
ods should be considered in cases of high dimensional
data when no a priori knowledge is available.
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