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A key goal of cognitive neuroscience is to better understand how

dynamic brain activity relates to behavior. Such dynamics, in terms of

spatial and temporal patterns of brain activity, are directly measured with

neurophysiological methods such as EEG, but can also be indirectly expressed

by the body. Autonomic nervous system activity is the best-known example,

but, muscles in the eyes and face can also index brain activity. Mostly parallel

lines of artificial intelligence research show that EEG and facial muscles both

encode information about emotion, pain, attention, and social interactions,

among other topics. In this study, we examined adults who stutter (AWS) to

understand the relations between dynamic brain and facial muscle activity

and predictions about future behavior (fluent or stuttered speech). AWS can

provide insight into brain-behavior dynamics because they naturally fluctuate

between episodes of fluent and stuttered speech behavior. We focused on

the period when speech preparation occurs, and used EEG and facial muscle

activity measured from video to predict whether the upcoming speech would

be fluent or stuttered. An explainable self-supervised multimodal architecture

learned the temporal dynamics of both EEG and facial muscle movements

during speech preparation in AWS, and predicted fluent or stuttered speech

at 80.8% accuracy (chance=50%). Specific EEG and facial muscle signals

distinguished fluent and stuttered trials, and systematically varied from early

to late speech preparation time periods. The self-supervised architecture

successfully identified multimodal activity that predicted upcoming behavior

on a trial-by-trial basis. This approach could be applied to understanding

the neural mechanisms driving variable behavior and symptoms in a wide

range of neurological and psychiatric disorders. The combination of direct

measures of neural activity and simple video datamay be applied to developing

technologies that estimate brain state from subtle bodily signals.

KEYWORDS

self-supervised, multimodal, deep learning, machine learning, stuttering, EEG, facial

expression, disfluency
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1. Introduction

For the brain, as in life, change is a constant. The main

goal of cognitive neuroscience is to reveal the mechanisms of

how brain dynamics, in terms of spatial and temporal activity

patterns, relate to behavior. The problem of understanding

brain dynamics has been approached from multiple directions,

including neural recordings at the levels of single units and

local field potentials (Buzsáki et al., 2012), and macro-level

far field recordings using EEG and MEG (Makeig et al., 2004;

Stam, 2005). Epilepsy patients with intracranial electrodes have

provided detailed information about human neural dynamics

that is unavailable from non-invasive methods (Mukamel and

Fried, 2012). Neuroimaging studies have revealed the slow

resting dynamics of large neural networks at rest that are

recapitulated, to some degree, during behavioral tasks (Smith

et al., 2009; Laird et al., 2011). Lastly, computational modeling

draws connections between brain activity at different spatial and

temporal scales and tests general principles that may account for

patterns of activity and their relations to behavior (Sejnowski

et al., 1988; Kelso, 1995).

With the exception of epilepsy, studies of patients

with neurological disorders have not played a major part

in understanding brain dynamics. In many other areas,

neuroscientists have learned much from neurological patients,

particularly when the disorder causes exaggerated instances of

typical behavior. Patient HM is a classic example. Following

neurosurgery to treat epilepsy, HM lost the ability to remember

his personal experiences—a tragedy that helped researchers

understand the crucial role of the hippocampus in episodic

memory (Scoville and Milner, 1957). In the realm of language,

the aphasic patient “Tan” provided the first convincing evidence

that an intact left inferior prefrontal cortex is vital for normal

speech production (Broca, 1861). Such patients cast normal

behavior into sharper relief. However, in most neurological

patients, the extreme impairment is consistent—HM’s amnesia

and Tan’s aphasia were unrelenting. This poses a challenge

for using neurological disorders to understand brain-behavior

dynamics because the behavioral impairment is generally static

(i.e., exists within a small range of variability).

One common neurological problem with a behavioral

impairment that is both extreme and dynamic is persistent

developmental stuttering (Bloodstein et al., 2021). People

diagnosed with persistent developmental stuttering are adults

who began to stutter as children with no known neurological

or emotional trauma preceding stuttering onset (Bloodstein

et al., 2021). There are several reasons why adults who

stutter (AWS) present a good opportunity to study relations

between brain dynamics and behavior. First, unlike most

brain disorders, AWS is within the normal range in terms

of cognition, emotion, socialization, education, professional

and socioeconomic achievement, and quality of life (Craig

et al., 2009; McAllister et al., 2013; Guitar, 2014). Stuttering

is also a highly selective behavioral impairment, which avoids

confounds that would need to be controlled in other brain

disorders such as general impairments in attention, memory,

lucidity, and intellect. Although at the group level, there are

subtle anatomical differences in AWS relative to matched

controls (Cai et al., 2014; Chow and Chang, 2017; Chang

et al., 2019), the brains of individual AWS are clinically in

the normal range. Against a backdrop of near-normalcy, AWS

sometimes has obvious behavioral abnormalities when speaking.

The stark contrast between fluent and stuttered speech is useful

for defining neural mechanisms of dynamic behavior if one

assumes proportionality between the magnitude of behavioral

differences and the magnitude of differences in the neural

signals driving the behaviors. Lastly, speech outcomes in AWS

vary on a time scale of seconds—fluent speech is occasionally

punctuated by stuttering, which then reverts back to fluent

speech. The relatively brief episodes of stuttered speech act as an

internal control for general states that change over longer time

periods (minutes to hours), such as fatigue or anxiety. That is,

continuous speech output in AWS can alternate between fluent

and stuttered on the order of seconds, while states such as fatigue

and anxiety last much longer, on the order of minutes to hours.

In prior studies, EEG that was recorded when AWS and

fluent controls prepared to speak had group differences in

specific evoked responses to stimuli and ongoing oscillations

differed among groups (Maxfield et al., 2012; Mock et al., 2015,

2016). EEG activity during speech preparation also strongly

predicted individual differences in stuttering severity among

AWS (Daliri andMax, 2015;Mock et al., 2015, 2016). Identifying

neural correlates of individual differences at the levels of group

(AWS vs. fluent controls) and individuals (within AWS) are the

first steps to understanding brain-behavior dynamics in AWS.

This project takes the next step by examining how trial-by-

trial brain dynamics within the same person relate to upcoming

speech that is either fluent or stuttered. To achieve this goal,

we will apply multimodal AI methods that use EEG and facial

video data.

A deep learning model named AlexNet (Krizhevsky

et al., 2012), introduced in 2012, achieved state-of-the-art

performance in the 1,000-class ImageNet image classification

problem. This led to a paradigm shift in deep learning

parallel computation relative to the “AI winter” of 1990s and

early 2000s. Ever since, the phrase “ImageNet moment” is

used to describe the success of deep learning algorithms and

the rapid adoption of deep learning algorithms in a variety

of applications in the sciences, engineering, and healthcare.

Jirayucharoensak et al. (2014) introduced fully connected neural

network architectures to EEG analysis, and they discovered

feature correlations to emotions experienced by participants

watching music videos. By classifying non-stationary EEG

states in terms of valence (negative, neutral, positive) and

Frontiers inNeuroscience 02 frontiersin.org

https://doi.org/10.3389/fnins.2022.912798
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Das et al. 10.3389/fnins.2022.912798

arousal metrics, Jirayucharoensak et al. explored how EEG-

based deep-learning algorithms can improve automatic emotion

recognition. Recent deep learning algorithms improve upon

previous blind classifiers, which are designed to be robust and

informative, and often focus on patient specific information

(Dissanayake et al., 2021) and online decision-making (Cho

et al., 2021) to improve real-world implementations.

Binary classification of brain states using deep learning

algorithms has been used to learn the small nuances in EEG

data to predict the sex of subjects (Van Putten et al., 2018),

which is trivial for humans with visual or auditory information

but extremely hard without them. With the proper cognitive

experimental design, researchers have introduced deep learning

algorithms that can predict future brain states from pre-event

sensory data. In Idowu et al. (2021), the authors introduced an

LSTM-SAE model to predict the future motor intention of users

undergoing visual stimuli. However, neuroscience problems are

inherently multimodal, relying on unimodal information could

skew results (Abrol et al., 2019).

The face is awash in useful information about cognitive

and emotional states. This includes various voluntary and

involuntary muscle movements due to facial expressions

(Barrett et al., 2019), eye movements and direction of gaze

(Grossmann, 2017), blinking (Stern et al., 1984; Jongkees and

Colzato, 2016), and pupil dilation controlled by muscles within

the eye (Bradley et al., 2008). Emerging work suggests that

voluntary behaviors, such as speaking, are accompanied by

subtle micro movements in the face (Aouayeb et al., 2019;

Rundo et al., 2019; Yang et al., 2021) and body (Cho et al.,

2021). Micromovements in the body are subtle changes in

individual muscle groups and have been used to study speech

and behavior since the 1970s (Condon and Sander, 1974).

Micromovement data from external body sensors enables

fined-grained decision-making and superior understanding of

disorders by using external body sensors (Bifulco et al., 2011),

RFID tags (Colella et al., 2021), etc. However, micromovements

are often overlooked in clinical research because they are

difficult to identify and measure and are challenging to interpret

because the neural mechanisms and accompanying information

processing are unclear.

Relatedly, facial microexpressions are brief, subtle

involuntary muscle movements from the upper and lower facial

regions (Ekman, 2009; Verma et al., 2019). Microexpressions

convey descriptive information that may vary among different

emotional states (Ekman et al., 1983) and cultural differences

(Ekman, 1992). Note, however, that the facial expressions have

a rich and controversial history of indexing emotions (Darwin,

1872; Barrett et al., 2019). The successful encoding of facial

muscle movement patterns as facial Action Units (AU) is based

on the Facial Action Unit Coding System (FACS) (Ekman

et al., 1983; Ekman and Rosenberg, 2005). Recent research have

shown the ability to use FACS as a way to quantify human

attention and affect (Lints-Martindale et al., 2007; Hamm et al.,

2011), and pain (Kunz et al., 2019). Relatedly, AI algorithms

using EEG signals as inputs can distinguish among cognitive

states and are relevant to understanding neurological disorders

such as Alzheimer’s disease (Zhao et al., 2019) and Parkinson’s

disease (Oh et al., 2018).

In this work, we present a multimodal deep learning

algorithm capable of relating brain activity (EEG) and facial

microexpressions to predict future stuttering events from pre-

speech multimodal data. Earlier studies explored either facial

expression data (Das et al., 2021) or EEG signal information

(Myers et al., 2019) to predict future stuttering events.

However, no studies have examined EEG and video (facial

movement) modalities together. We believe that using facial

muscle activity and EEG data for interpretable machine learning

models will provide insight into how peripheral measures of

microexpressions relate to internal neurocognitive states. Here,

we trained the deep model on a controlled experimental study

dataset. The goal of this study was to detect EEG and facial

muscle activity signals that precede vocalizations and can jointly

predict fluent vs. stuttered speech outcomes.

To achieve this goal, we built a novel neural network

capable of faithfully classifying trial-by-trial dynamics of EEG

and facial activity that can predict upcoming speech behavior. To

evaluate the method, we explore the dynamics of differing EEG

states during speech preparation and facial muscle movements

of AWS. We propose to use self-supervised multimodal

architectures that can learn the temporal dynamics of both

EEG and facial muscle movements during speech preparation.

We show that our proposed algorithm can learn to predict

upcoming fluent vs. stuttered speech from a small amount

of labeled data from AWS who perform several variations

of a speech preparation task. By using a multimodal Shapley

deep learning model explainer, we found that left temporal

and right frontal brain activity, as well as upper and lower

facial microexpression at both early and late stages of speech

preparation anticipate stuttering.

2. Materials and methods

2.1. Related work

2.1.1. AWS studies using EEG and facial activity
data

Prior EEG work found a host of differences in EEG signals

during speech preparation in groups of AWS vs. fluent controls

(Maxfield et al., 2012; Mock et al., 2015, 2016). Moreover,

EEG activity during speech preparation covaries with individual

differences in stuttering severity (Daliri and Max, 2015; Mock

et al., 2015, 2016). In a pioneering work on stuttering, Kelly

et al. (1995) used electromyography to describe atypical tremor-

like facial activity patterns in children who stutter. Multimodal

facial and EEG data have been later used to summarize the
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vigilance and empathetic nature of infants (Field et al., 1998).

More recently, machine learning based algorithms have started

to fuse multimodal data including EEG and spontaneous facial

expressions to predict affective states (Sun et al., 2020).

2.1.2. Multimodal deep learning

In multimodal deep learning, neural networks are used

to integrate, fuse, and learn complementary representations

from multiple input domains (Ngiam et al., 2011). Recent

work has successfully fused images and text (Abavisani et al.,

2020), detected adverse weather by combining different types

of sensor information (Bijelic et al., 2020), estimated the 3-

D surface of faces (Abrevaya et al., 2020), and combined

information from multiple drug and diagnosis domains

(Linden et al., 2021).

2.1.3. Self-supervised learning

Self-supervised learning algorithms learn meaningful

representations from unlabeled data by creating pretext tasks

based on pseudo-labels (Sheng et al., 2020). After defining a

custom pretext task, a deep learning model is then optimized to

predict the pseudo-labels. After successful pretext task training,

the final downstream task is carried out on the available

labeled data. Currently, self-supervised learning is used to learn

temporal correspondences in videos (Tschannen et al., 2020),

disfluency detection from text to improve annotation (Wang

et al., 2019), and has many applications to reduce the time

needed to label data.

2.1.4. Estimating brain and facial muscle
activity using deep learning

Human brain activity can be monitored in real time

with EEG, which allows researchers to better understand how

humans see (Spampinato et al., 2017) and think from facial

behavior (Pilz et al., 2020), emotions, and whether what we are

thinking is deceptive or not (Gupta et al., 2019). The human

face exhibits both voluntary and involuntarymuscle activity, and

analysis of facial movements can be used to assess and diagnose

various diseases (Jiang et al., 2020). A common way to define

facial muscle movements is by encoding their activity as facial

action unit (AU) patterns (Friesen and Ekman, 1978).

Research shows that people who stutter often have

“secondary behaviors” such as eye-blinking, sudden jaw

movements, or other involuntary movements of the head

or limbs while speaking (Prasse and Kikano, 2008). We

hypothesized that AWS may demonstrate more subtle

microexpressions before speech onset. Numerous studies

describe relationships between upper and lower facial muscle

movements and affect (Ross et al., 2007; Wang et al., 2013),

as well as relations to concurrent audio recordings of speech

(Meng et al., 2017).

2.1.5. Automated estimation of stuttering
disfluency

Stuttering is a neurological speech disorder which affects

the normal flow of speech with word or syllable prolongations,

silent blocks, and/or part-word repetitions. The neuronal speech

networks of AWS fluctuate between brain states that are

conducive to either fluent or stuttered speech output. When

stuttered speech occurs, it appears on the initial sound/syllable

90% of the time (Sheehan, 1974). Hence, speech preparation is

an important time period that is both free of speech artifacts and

should contain signals that can distinguish upcoming speech as

either fluent or stuttered.

Recent work found that pre-speech EEG data can be used

to classify stuttering events (Myers et al., 2019). Prediction of

stuttering using pre-speech facial muscle movements has been

explored by Das et al. (2021). In Das et al. (2020)’s study, the

authors did not address the interplay between facial expressions

and cognitive states and ignored the multimodal nature of

neuroscience research. To the best of our knowledge, there are

no published studies that used both facial muscle movements

and EEG activity as inputs for predicting stuttering.

2.2. Problem formulation

One of the main goals of deep learning optimizations is to

learn a function f :X → Z
D to represent inputs x as feature

representations z = f (x). Previous research studies have shown

the successful use of deep learning algorithm to predict the

cognitive states of AWS by inputting facial action units (Das

et al., 2021) or EEG signals (Myers et al., 2019). However, in

domains such as neuroscience, studies involving behavior often

require a temporal understanding of multiple modalities. Hence,

feature representations of individual modalities might not be

beneficial to understand certain neurological disorders. There is

a need to expand the input space X such that representations

are now f (X ) whereX = x1, x2, · · · , xm formmodalities. Here,

independent features from each modality could benefit from

each other during optimization.

To improve the decision-making accuracy and robustness of

existing stuttering classifiers and to demonstrate the importance

of multimodal deep neural networks in neuroscience problems,

we plan to combine facial AU data representations presented

in Das et al. (2021) and EEG data representations presented in

Myers et al. (2019) under a common multimodal deep learning

framework. Here, we learn a multimodal function f :X → Z
D,

where X = {xau, xeeg} and Z = {ZAU ,ZEEG}. Deep learning

algorithms require large number of labeled data to optimize
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FIGURE 1

A high-level architecture of the proposed explainable multimodal self-supervised approach is presented. Two CNN models are pre-trained with

self-supervision and latent space combined to form a multimodal architecture for feature-wise ensemble fusion. Multimodal explanations are

generated (one explanation map for each input) using the proposed multimodal shapley explanation method and the highest attributing features

are presented.

the model parameters. Recently, self-supervised deep learning

algorithms are being used to mitigate the big-data requirements

of deep learning algorithms by pre-training these large networks

by defining pretext tasks. Hence, to learn the multimodal

representations from limited labeled data available, we explore

a self-supervision method to learn facial muscle dynamics and

internal cognitive states from unlabeled data of AWS (Figure 1)

such that embeddings ZAU and ZEEG learns dense feature

representations of the corresponding inputs. These pre-trained

networks can then be combined to learn Z = {ZAU ,ZEEG}

under a multimodal framework to detect neurological diseases

by sharing features from both modalities, ultimately improving

the robustness and accuracy of model predictions.

2.3. Self-supervised multimodal
explanations

Inputs to multimodal networks often have correlations

which also helps the network to learn features between the

inputs, for example, an image and a related caption (Park et al.,

2018). As stated above, to learn the dynamics of the internal

cognitive states and external muscle movements, we extend the

work done in Myers et al. (2019) and Das et al. (2021) and plan

to learn meaningful representations from both modalities in

a combined multimodal training paradigm. Figure 1 illustrates

a high-level diagram of the multimodal architecture. Here, we

develop two Convolutional Neural Networks (CNNs)HEEG and

HAU parallel to each other. This creates dense representations

of corresponding EEG and AU trial inputs which are influenced

by each other. We then pre-train this multimodal network using

self-supervised training methods. Before proceeding further, we

will introduce the cognitive experimental study as the basis of

future explanations.

2.3.1. AWS speech study dataset

A multimodal behavioral dataset from a group of AWS

subjects was introduced in Das et al. (2020) based on an ongoing

study with a unique, longitudinal data set of speech, EEG, and

video data in adults who have stuttered since childhood. We

requested the authors and gained access to the dataset which was

being collected during a 3-year NIH grant study. Every subject

(n=7) came to the laboratory over the course of 2months for 3–5

sessions (400 trials/session) of data collection. Both facial videos

and EEG were collected from individual subjects, while they

read the experimental stimuli, for each study day. Facial muscle

movement information was quantified by extracting facial AU

vectors from the collected facial videos. Hence, facial EMG

sensors were not required to study facial muscle movements

and EMG signals are not used in this study. Pre-processing of

collected facial videos and EEG signals are detailed in Section 3.

All studies were done under strict protocols of the Institutional

Review Board and the Declaration of Helsinki. All subjects were

self-reported to have developmental stuttering prior to the study

and were diagnosed by a Speech-Language Pathologist (SLP) for

verification.

2.3.1.1. Speech-motor experiment paradigms

The subjects were seated in a sound isolating booth 50 cm

away from a monitor in front of them. A small delay (“S1-S2”

paradigm) between speech preparation and speech execution

allowed researchers to study the brain activity that preceded

a stuttered or fluent speech vocalization and correlate it with

corresponding facial movements, as illustrated in Figure 2. S2
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FIGURE 2

Experimental paradigms and their timing diagram is illustrated. Here, S1 represents the Cue where the trial begins. S2 represents the Target

where a vocal response from subject is requested. The EEG and facial activity inputs to our proposed machine learning model are strictly limited

to between S1 and S2 during the speech preparation phase. The speech vocalization phase is immediately after S2, and speech usually happens

1–2.5 s after S2 based on the individuals stuttering severity. Changes in the facial muscles of the first author are illustrated as an example, shared

after approval and consent.

onset always occurs 1,500 ms after S1 onset. Both facial video

and EEG data were simultaneously collected. Facial videos

are converted to facial muscle movements by quantifying the

small changes in facial muscles as facial AU vectors. The

machine learning model utilizes this synchronized AU and EEG

pair during the speech preparation phase, clipped between S1

and S2 (1,500 ms in total), to learn multimodal pre-speech

representations that could predict future stuttering behavior. As

seen in Figure 2, speech vocalization phase beings only after S2,

and the speech output of AWS typically start between 1 to 2.5 s

from the onset of S2. This ensures that the facial activity does not

overlap with stuttering or speech events.

Four different variations of the S1-S2 paradigm were used to

study the impact on predictability when the subject either has a

specific speech plan in memory or does not. In the “Word-Go”

(WG) paradigm, the subject is shown a “pseudoword pair” on

the monitor at S1 and a “!!!” symbol at S2. S1 tells the subject

exactly what needs to be spoken after S2 (“!!!”) onset. This

paradigm adds extra phonological information between S1-S2

and is called the “memory task.”

In the “Cue-Word” (CW) paradigm, the subject is shown

the “+” symbol at S1 and the pseudoword pair at S2. Here,

the subject does not know the word to speak until S2 onset.

Hence, we call this variation the “non-memory task.” To study

the impact of auditory cues in the speech-motor plan, we also

presented a 1,000 Hz pure tone beep at 600 ms after S1 for both

the WG and CW paradigms. We called these paradigms ‘Word-

Auditory-Go’ (WAG) and ‘Cue-Auditory-Word’ (CAW). The

four paradigms are further summarized in Table 1.

2.3.1.2. Stimuli for speech trials

Participants were presented with a random combination

of two non-words as stimuli to be read aloud. All non-words

phonetically mimicked English words did not have any meaning

and started with a consonant-vowel. Non-word pairs were used

because preliminary work found them useful for attaining an

equal ratio of fluent and stuttered trials (Myers et al., 2019).

For each session a custom MATLAB script randomly selected

400 non-word pairs for presentation, ensuring that the first

and second non-words in the pair did not begin with the

same consonant.

2.3.1.3. Coding of speech trials

Video recordings of each trial were coded as either

fluent, stuttered, normal disfluency, or missed. A trial was

labeled as stuttered if the participant produced a stuttering-like

disfluency (Bloodstein et al., 2021) on either (or both) non-

words. Stuttering-like disfluencies include repetition of a sound,

syllable, or part of the word (e.g., c-c-c-cookie); prolongation

of a sound (e.g., lllllllllight); or a silent block. (e.g., T- - - - - -

all). Trials with any other type of disfluency (i.e., hesitation or

interjection) or trials where the participant did not attempt were

excluded from the analysis.

2.3.2. Self-supervised pre-training of HAU and
HEEG

Self-supervised learning algorithms have grown in interest

as a way to learn meaningful representations from unlabeled

data by creating pretext tasks based on pseudo-labels. Once

an auxiliary learning task is defined, called a pretext task, self-

supervised training can force the network to learn data features

without human-annotated labels. These learned features could

be useful for further downstream optimization on a small

number of human-labeled data. In our case, self-supervision

could dramatically reduce the need to label individual facial

AU and EEG trials as fluent or stuttered while also learning

meaningful representations related to stuttering disfluency.

Self-supervision of facial AU data carried out by Das et al.

(2020) focused solely on the facial microexpressions. However,

the cognitive states leading to the facial microexpressions have

equal, if not more, impact on learning rich representations.

Hence, we propose to force the latent representation ZAU of

the facial encoder to be closer to latent representations of

EEG encoder ZEEG using Kullback Leibler (KL) Divergence

loss LKLD during optimization. Now, to learn meaningful
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representations, we design the EEG pretext task based on

existing experimental metadata such that the ZAU learn not only

about the facial microexpressions but also about the different

cognitive contexts based on whether a word is in memory or not

and the impact of the auditory stimulus.

2.3.2.1. Pre-training of HEEG

Our cognitive experimental design generates experimental

metadata which holds information about the different cognitive

experiments conducted as summarized in Table 1. We use this

metadata information as pseudo-labels for pre-training HEEG

to distinguish between the different cognitive experiments. This

reinforces the latent space with cognitive states associated with

having a word in memory and the impact of hearing an auditory

stimulus during the phonological phase and attention. Now the

goal of HEEG during pre-training is to predict the paradigm

information Ypara successfully. Loss function for the training,

using cross entropy, now becomes

Lpara = −

4
∑

para=1

ypara log(ppara) (1)

where ypara is the true paradigm label and ppara is the predicted

output by HEEG.

2.3.2.2. Pre-training of HAU

Building upon the work done by Das et al. (2021), to

improve the learning performance by including representations

for sudden jerks, partial or full occlusions, we apply signal

transformations on a small 100 ms time-window w. Gaussian

noise, scaling, and zero-filling with predefined parameters of

augmentation are explored. Here, each transformation, as in

Table 1, has a neurological relation. For example, Gaussian noise

can model partial occlusions and scaling can model sudden

jerks. Now, we define two loss functions, first Lst(w, θst) to find

the correct signal transformation st applied with a parameter θst

to windoww, and secondLwin(w) to find the windoww in which

the transformation was applied. To learn disentangled features

from the upper and lower face, we always chose either the upper

or lower facial regions for w and never both together.

Lst(w, θst) = − log P(s̃t = st|m(w, θst)) (2)

Lwin(w) = − log P(ỹwin = ywin|w) (3)

where ywin is the label for window w, ỹwin is the prediction, and

Pwin is the probability of picking the correct window.

2.3.2.3. Total loss function

Total loss for the self-supervised pre-training of multimodal

representations now becomes

L = Lpara + α · Lwin(w)+ β · Lst(w, θst)+

LKLD(ZAU ,ZEEG)
(4)

TABLE 1 Design considerations for the self-supervised pretext tasks

for AU transformations and EEG cognitive tasks.

Cognitive experiment pretext task

Cognitive experiment

pretext task

Label Description

Word in memory (WG) 0 Word at S1 (0 ms), “!!!” at S2 (1,500 ms).

Word not in memory (WAG) 1 Word at S1 (0 ms), Tone at 600 ms, “!!!”

at S2 (1,500 ms).

Word not in memory (CW) 2 “+” at S1 (0 ms), Word at S2 (1,500 ms).

Word not in memory + audio

cue (CAW)

3 “+” at S1 (0 ms), Tone at 600 ms, Word

at S2 (1,500 ms).

Signal transformation pretext task

Signal transformation Parameters θst

Scaling {0.25, 0.5, 1.25, 1.75}

Gaussian noise {0.1, 0.25, 0.5, 0.75, 0.9}

Zero fill -

None -

where α and β are used to balance the loss term. Together,

the optimization helps to learn spatio-temporal relationships

in time-series AU and EEG features, which is fundamentally

different from other image-based self-supervision algorithms.

2.3.3. Multimodal downstream task
optimization

For the final task of predicting near future stuttering,

embeddings ZEEG and ZAU can be combined using a weighted

ensemble method using non-parametric multipliers δ and γ .

Here, the final result will be a Sigmoid threshold on the weighted

classifier results of both HEEG and HAU .

y = Sigmoid(δ ∗ ỹeeg + γ ∗ ỹau) (5)

where ỹeeg and ỹau are predicted stuttered vs. fluent labels of xeeg

and xau inputs.

2.3.3.1. Multimodal shapley explanations

To explain the cognitive states and facial muscle movements

with the highest correlations to stuttering events, we formulate

the explainability analysis to generate one explanation map each

for individual modality (EEG and AU) and find dependencies

between the highest attributing features from both modalities as

illustrated in Figure 3.

Consider the original multimodal prediction model as

f . The task to explain is f (xeeg , xau) based on the two

inputs. Considering fZ as the embedding layer of f , a linear
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FIGURE 3

Qualitative results: 2D explanation-map-pairs generated for di�erent cognitive experiments for multimodal inputs (AU and EEG) using the

proposed multimodal DeepSHAP algorithm (normalized) are illustrated. Spatio-temporal impact of EEG or face AU toward disfluency can be

understood using this temporal map-pair. The red region shows the highest impact toward stuttering prediction while the blue region shows the

least impact.

approximation of the combination Shapley values for each

modality can be calculated based on DeepLIFT multipliers

(Lundberg and Lee, 2017; Shrikumar et al., 2017),m, such that

φi(fZ , y) ≈ myifZ (yi − E[yi]) (6)

where φi corresponds to the attribution of individual features

in each modality. An average marginal contribution of features

based on local feature attributions of both EEG and AU can

be calculated citing the additive nature of Shapley explanations,

with feature removals of corresponding inputs x′eeg and x′au
influence φi(fZ , y) such that

φ
(

fZ , yi
)

=
1

|E|

1

|A|

∑

x′eeg∈E

∑

x′au∈A

φ

(

fZ , x
′
eeg , x

′
au, yi

)

(7)

Thus, the output of DeepSHAP are two explanation maps

E(xau) ∈ R17×87 and E(xeeg) ∈ R62×192 with positive

and negative correlations of each AU and EEG toward the

final classifier decisions. Since explanations are generated based

on a reference, we fix the reference to be sampled from the

same population based on the subject, session, and paradigm

under study.

3. Experiments

In this section, we detail our data processing pipeline,

experimental training setup, hyper parameters, and

evaluation metrics.

3.1. Data processing and statistics

From the cohort of AWS subjects, a Speech Language

Pathologist (SLP) selected 7 AWS subjects and labeled individual

trials as either stuttered or fluent. This generated 3,515 labeled

trials for the final downstream training. To pretrain our self-

supervised model, we generated a pretraining dataset of 69,000

trials by applying the pretext transformations presented in

Table 1 to the available unlabeled face AU and EEG data.

EEG data were recorded using a standard 10-20 montage

with 64 channel electrode cap (60 scalp Ag/AgCl electrodes

impedances ≤ 10 k�). Eye movements were monitored using

four electrodes, two lateral to each eye and one each above

and below the left eye. The data collected was digitized at

1,000 Hz with a DC-100 Hz bandpass filter using Curry 7

Neuroimaging Suite (Compumedics Neuroscan, Charlotte, NC).

Independent Component Analysis (ICA) was carried out to

remove movement artifacts from the EEG signals. Note that

facial expressions using video information already capture

muscle movements. The result of ICA was normalized by

recording specific constant (per session). The resulting EEG data

were resampled to 128 Hz. Now, for each EEG trial xeeg , we have

temporal steps Ne=192 for 1.5 s of information. We focus on 62

channels of information such that Ie=62.

The video data were split into fifty 1,500 ms long video

trials per paradigm per study. Video data were sampled at 58

frames/sec (17 ms temporal resolution). The number of frames

for each trial v is Nv=87. Noisy transient AUs associated with

head movements (AUs 51-64), some AUs in the upper (nostril

dilator AU 38) and lower (lip pucker AU18, bite AU32, suck

AU35) facial regions, and some associated with jaws (AU27,

29, 30, 31) were removed to recreate the dataset in Das et al.

(2021). Hence, for each trial v, we generated an input AU map

xau ∈ RIv×Nv , where Iv=17.
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3.2. Network architecture details

We present three variants of SSML architecture. In SSML-

A, facial encoderHAU consists of 4 Convolutional (Conv) layers

with {16, 32, 64, 64} kernels, respectively, all shaped 1×17 (Iv=17

AUs). This is followed by depth-wise (DepthConv) and separable

(SepConv) convolutions. Final embedding ZAU is of 1×64

dimensions. In the EEG encoder,HEEG, data extracted from one

Conv layer with 16 kernels, all shaped 1×62 (Ie=62 channels), is

passed to a DepthConv layer with 16 kernels and a depth factor

2 to compress the data along the channels. A SepConv layer with

16 kernels is then used to summarize individual feature maps

and later flattened to an embedding ZEEG of 1×64 dimensions.

In SSML-B architecture (280k parameters) both HAU and

HEEG consist of 3 Conv layers with {16, 32, 64} kernels,

respectively, all shaped 3×3 with max-pooling layers to create

embeddings of 1×64 in each path. To study the impact of

additional layers, SSML-C (317k parameters) has an additional

Conv layer with 64 kernels of size 3×3 in both branches.

3.3. Hyper parameters and training details

The labeled dataset for the downstream task was split equally

between stuttered and fluent trials. From this balanced dataset,

10% of the data was separated as a hold-out test dataset including

all subjects. From the rest of the available data, we selected 10-

folds of training (90%) and validation (10%) data for a 10-fold

cross-validation study. We trained all CNN classifiers on an

NVIDIA DGX A100 server, using the Tensorflow framework

(Abadi et al., 2016), with Stochastic Gradient Descent (SGD)

optimizer at an initial learning rate (LR) of 0.01. LR rate

halves with every 25 epochs of validation loss plateaus. Batch

normalization, a 50% dropout of nodes, and early stopping were

applied to curb overfitting.

3.4. Evaluation metrics

We evaluate the proposed models using the Area-Under-

Curve (AUC), F1 score, and accuracy (same number of

stuttered and fluent trials). Additionally, we compare the same

performance with Support Vector Machine (SVM) as the

downstream classifier.

3.5. Statistical significance of
explanations

The statistical significance of the multimodal explanations

is calculated by carrying out Analysis of Variance (ANOVA)

tests. ANOVA is carried out on both E(xau) and E(xeeg) to

study the impact of stutter rate and specific time zones (0–500,

500–1,000, 1,000–1,500 ms) to understand the dynamics of

TABLE 2 Multimodal downstream task performance statistics. Here,

SSML-* describes the results with pre-trained HAU and HEEG following

SSML-* architecture with 3 additional dense layers for the downstream

task.

Models AUC F1 Acc (%)

Our Multimodal (AU and EEG) Methods

SSML-A 0.81± 0.01 0.79 ± 0.02 80.80 ± 2.36

SSML-B 0.80± 0.01 0.77± 0.02 80.07± 2.09

SSML-C 0.77± 0.02 0.75± 0.03 78.07± 2.64

FSML-A 0.79± 0.02 0.78± 0.02 79.08± 2.43

FSML-B 0.78± 0.01 0.77± 0.02 77.79± 1.89

FSML-C 0.75± 0.01 0.73± 0.01 75.21± 2.24

SSML-A SVM 0.51± 0.00 0.69± 0.03 52.91± 3.54

SSML-B SVM 0.52± 0.07 0.51± 0.02 51.79± 7.41

SSML-C SVM 0.50± 0.00 0.67± 0.04 52.93± 4.72

State-of-the-Art AU Unimodal Method (Das et al., 2021)

SS-CNN-A 0.82 ± 0.01 0.73± 0.01 75.27± 1.11

SS-CNN-B 0.82± 0.01 0.74± 0.02 74.83± 1.15

SS-CNN-C 0.82± 0.01 0.73± 0.03 74.53± 1.61

FS-CNN-A 0.74± 0.05 0.66± 0.04 72.76± 1.38

FS-CNN-B 0.81± 0.02 0.72± 0.03 74.53± 1.11

FS-CNN-C 0.81± 0.04 0.70± 0.04 74.63± 1.70

FSML-* is fully supervised from scratch. SS-CNN-* and FS-CNN-* represent self-

supervised and fully supervised models from Das et al. (2021). Bold values represents

the best performing method out of all experiments carried out.

muscle movements of AWS a lot and their internal brain states

across time compared with fluent trials.

4. Experimental results and
discussions

As illustrated in Figure 1, the multimodal downstream task

was built using a weighted ensemble of EEG and AU classifiers

with non-parametric multipliers δ and γ . With proper tuning

of δ and γ , the network learns to not only associate common

features but also penalize the under-performing branch.

Results tabulated in Table 2 show the consistent performance

improvements of self-supervised multimodal learning (SSML)

over multimodal fully supervised learning (denoted as FSML).

Table 2 also summarizes the usage of non-parametric models

such as SVM denoted as SSML-(A,B,C) SVM. The SVM model

overfits, resulting in poor performance, due to the highly non-

linear behavior of the spatio-temporal embeddings and less

amount of labeled data for the downstream task. Tree-based

models such as decision trees and random forests also resulted in
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TABLE 3 Self-supervised SSUL-* and fully supervised FSUL-*

downstream task performances on EEG data using HEEG branch.

Models AUC F1 Acc (%)

SSUL-A 0.79± 0.00 0.79± 0.00 79.04± 0.46

SSUL-B 0.75± 0.01 0.76± 0.01 74.91± 0.73

SSUL-C 0.70± 0.01 0.70± 0.01 70.24± 0.52

FSUL-A 0.74± 0.03 0.73± 0.03 73.99± 3.37

FSUL-B 0.66± 0.03 0.64± 0.04 66.41± 3.41

FSUL-C 0.70± 0.02 0.71± 0.03 69.48± 2.07

TABLE 4 Downstream task performance for embedding fusion

optimization for SSML-A MLP instead of weighted ensemble.

Performance Embedding fusion Weighted ensemble

AUC 0.74± 0.01 0.81± 0.01

F1 0.73± 0.02 0.79± 0.02

Acc 74.00± 1.24 % 80.80± 2.36 %

Multimodal weighted ensemble outperforms the embedding fusion method.

poor performance. Due to space constraints, we are keeping the

results of only the SSML-(A,B,C) SVM models. A comparison

with results published in Das et al. (2021) is also provided.

We can see a considerable improvement in the accuracy of

predicting future stuttering events based on pre-speech data

when we use both EEG and facial muscle movement modalities

for prediction.

Table 3 summarizes the performance statistics for training

HEEG independently as a unimodal optimizer on the EEG

data. Here, SSUL-(A,B,C) denotes pre-training using pretext

tasks defined in Table 1 and Unimodal Learning FSUL-(A,B,C)

denotes training from scratch. SSUL-A for EEG data performed

better than Das et al. (2021) models based on AU data.

Additionally, self-supervised models on EEG data (SSUL-*)

performed better than fully supervised FSUL-*, validating the

success of self-supervised pre-training. Additional layers to the

deep model did not improve the performance.

4.1. Ablation studies

In order to evaluate the efficacy of the multimodal

downstream task with less labeled data, we utilize weighted

ensemble and embedding fusion methods to evaluate the

correlations between ZAU and ZEEG. Table 4 summarizes the

performance of training HAU and HEEG together by fusing

ZAU and ZEEG as one 1 × 128 embedding for downstream

optimization. Fusing the embeddings together will force the

network to learn a joint distribution of the embeddings.

Due to the small amount of labeled data and the complex

non-linear spatio-temporal embeddings of both AU and EEG,

the embedding fusion model underperforms compared to the

unimodal methods while the multimodal weighted ensemble

method outperforms both EEG and AU models.

4.2. Impact of upper and lower facial
muscles

As the subject progresses from speech preparation to

production (S1 to S2), the upper and lower facial regions have

different temporal patterns that distinguish fluent vs. stuttered

trials. As Figure 4A shows, we found a considerable statistical

correlation of both upper (F = 10.54, p <0.005) and lower (F

= 69.96, p <0.001) facial muscles toward predicting fluent vs.

stuttered trials. These predictions were driven by attributions

peaking at different times between S1 and S2. Specifically, the

upper facial muscles related to inner brow raiser (AU1, F =

56.4, p <0.001), outer brow raiser (AU2, F = 56.6, p <0.001),

brow lowerer (AU4, F = 25.76, p <0.005), and cheek raiser

(AU6, F = 32.27, p <0.005) peaked after S1 for stuttered trials

but peaked before S2 for the fluent trials. The opposite pattern

occurred in the lower facial region with dimpler (AU14, F = 93.3,

p <0.001), lip corner depressor (AU15, F = 25.21, p <0.005),

and lip stretcher (AU20, F = 91.45, p <0.001) peaking after S1

for fluent trials and before S2 for stuttered trials.

4.3. Impact of brain regions

Attributions show hemispheric differences in the brain states

that result in either fluent or stuttered speech output. As illustrated

in Figure 4B, EEG signals from the anterior frontal (AF, F =

79.10, p <0.001), lateral frontal (LF, F = 15.45, p <0.001),

and central (C, F = 9.90, p <0.005) electrodes were highly

significant at predicting fluent vs. stuttered trial. Specifically, the

right frontal region (FP2, F = 27.04, p <0.001) was related to

predicting a fluent trial while the left temporal region (T7, F =

29.07, p <0.005) was related to predicting a stuttered trial. These

results suggest that the left temporal region attributes toward

predicting a future stuttered trial while the right frontal region

swings between attributions which contribute to a fluent or a

stuttered trial as illustrated in Figure 5.

4.4. Improvements with multimodal
training

Unimodal training from scratch on EEG and AU data is

always attributed to anterior frontal electrodes FPZ and FP1

in the brain and brow lowerer (AU4), cheek raiser (AU6), and

dimpler (AU14) in the face. This means that the model always

uses a few channels of information to make the prediction.
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FIGURE 4

Time window analysis of facial muscle movement and EEG activity with respect to predictions of fluent vs. stuttered trials. (A) Facial muscle

movement attribution regions in the upper and lower face. The red highlighted regions show the areas with the most predictability in the upper

or lower face. (B) Topographic plots showing levels of predictability of EEG signals (Shapley values). Circular topographic plots: up, frontal

electrode sites; down, posterior sites, left and right correspond to the left and right scalp sites. AU, attribution unit; SHAP, Shapley.

FIGURE 5

Shapley values of EEG recorded from lateral-frontal left and right

hemispheres Topographic plot as a function of time between

the cue (0 ms) and target (1,500 ms) onset in the Non-Memory

and Memory test paradigms. In both paradigms, predictability of

stuttered or fluent speech was maximal after S1 onset at the left

site and closer to S2 onset at the right hemisphere site.

SSUL on EEG and AU improved the results slightly. SSML using

the weighted ensemble method generated high attributing AUs

from both upper and lower face and EEG channels from frontal,

temporal, and parietal regions seen in AWS. Additionally, we

see consistent temporal behavior related to speech preparation

(Brown et al., 2005; Kell et al., 2009; Chang et al., 2019) in AWS

which emphasizes that our multimodal latent space learned to

map feature-wise correlations between modalities.

There are several reasons why the success of AI prediction

using both EEG and facial signals is unlikely due to

contamination of the EEG signal by facial EMG. First, the two

signals are in different frequency bands (EEG low frequency

slow waves, EMG high frequency muscle activity). Second,

pre-processing removed EMG artifacts from EEG. Lastly, left

and right frontal electrodes had different prediction patterns

based on Shapley attribution, while facial muscle activity

was symmetrical. A weighted ensemble of self-supervised

pre-trained HAU and HEEG using Equation 5 forces the

network to generalize and correlate facial microexpressions and

corresponding brain activity over time. This ensemble-learning

using pre-trained networks reduces the effect of overfitting of

the overall multimodal network to either the facial expressions

or EEG signals which can be verified by the low variance

of performance statistics in Table 2 for the 10-fold cross-

validation tests.

4.5. Theoretical considerations

We predicted that brain dynamics associated with

speech fluency may be evident by peripheral muscle activity,

which would act as an indicator of brain activity. Similar

psychophysiological approaches index brain activity with

autonomic nervous system measures, such as skin conductance

responses and level, pupil size, heart rate variability but also

include electromyographic measures (Cacioppo et al., 2016).

The present observations provide a new line of support for the

idea that stuttering is, in part, due to aberrant motor control

during speech preparation that occurs well before the stuttering

behavior itself. Our AI methods to define facial muscle activity
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were capable of accurately predicting speech behavior up to

about 4 s later (1.5 s from S1 to S2, with a speech onset latency

up to about 2.5 s from S2).

We can only lightly speculate on the mechanisms that relate

facial muscle activity patterns to the speech in AWS. There is a

neuroanatomical basis for why facial musclesmay show different

activation patterns before fluent vs. stuttered speech. Facial areas

of the motor cortex homunculus are located right next to areas

controlling speech articulators. Classic ideas suggest that “motor

overflow” is a general phenomenon in neurological disorders,

whereby imprecise motor control at the level of the primary

motor cortex activates regions of the homunculus beyond the

intended ones (Hoy et al., 2004). Research on stuttering has

found that motor cortex dysfunction can be evident in non-

speech cortical areas (Kiziltan and Akalin, 1996; Chang et al.,

2019). AWS also show deficits in motor sequence learning

(Smits-Bandstra et al., 2006). It is also worth noting that

feedback from facial EMGmuscle activity patterns can be helpful

in speech therapy (Hancock et al., 1998).

There is substantial MRI literature examining hemispheric

differences in people who stutter. The focus is on left frontal

speech and motor areas and their homologous right hemisphere

structures [reviewed in (Smith and Weber, 2017; Chang

et al., 2019)]. The most consistent finding is a decrease in

white matter integrity along the left hemisphere superior

longitudinal fasciculus, which connects frontal speech/language

and posterior auditory areas. In concert, left frontal regions

(inferior frontal gyrus, ventral premotor) show irregular gray

matter development in people who stutter (Beal et al., 2015),

consistent with broader fronto-occipital asymmetry differences

(Mock et al., 2012). White matter integrity in the left

orbitofrontal gyrus is also reduced and greater in those who

recovered from stuttering as children (Kell et al., 2009).

People who stutter show increased right frontal hemodynamic

responses along with reduced left auditory responses (Brown

et al., 2005; Budde et al., 2014), which normalize under

conditions that enhance speech fluency (De Nil et al., 2003;

Lu et al., 2017). One limitation of this line of work is that

MRI measures have limited temporal resolution, while EEG

can image neural activity with millisecond-level precision. This

study tracked rapid brain dynamics in left and right frontal areas

and found that both regions contributed to predicting fluent or

stuttered speech, with left frontal areas being predictive early

in each trial and predictive right hemisphere activity occurring

later. Such patterns are informative for understanding brain

mechanisms that drive stuttering in real-time.

4.6. Limitations and future work

This project did not attempt to test the generalizability

of the current multimodal network to a different cohort

of AWS subjects, children who stutter, or to different test

conditions. Relevant variables for test conditions include the

specific speaking tasks and recording parameters for EEG (e.g.,

number of channels and locations, data processing) and facial

video (camera, lighting conditions). However, the proposed

self-supervised learning paradigm clearly shows improvements

compared to unimodal counterparts and other fully supervised

methods, showing that our SSML-* architectures are the current

state-of-the-art models in controlled experimental settings for

AWS across a substantial range of severities. Another limitation

is that there was not enough data to individually examine

subtypes of disfluency (prolongations, silent blocks, part-word

repetition). Thus, potential differences in neural and facial

muscle activities during speech preparation that culminate in a

block vs. a prolongation, for example, could not be identified.

Future work could test the hypothesis that lower facial

muscle activity occurring shortly before the cue (S2) to

speak reflects speech motor programming. The possibility

that the transient, early activity in upper facial muscles

previously associated with longer-lasting affect states is also

subject to testing. Future work can explore a generalized few-

shot subject-wise self-supervision algorithm that could rapidly

adapt the trained models for personalized adjunct to speech

therapy. Testing with more participants would also help to

better understand the role of individual differences relative to

commonalities across individuals. The current study is focused

on stuttering disfluency. However, for many similar neurological

disorders that also have fluctuating brain states, such as stroke,

Alzheimer’s disease, aphasia, Parkinson’s disease, and epilepsy,

domain adaptation may be used to generalize the method. We

do not foresee any negative societal impacts as a consequence of

our work.

5. Conclusion

In this paper, we designed a self-supervised multimodal

explanation algorithm that successfully correlate fluctuating

brain states of AWS and facial muscle activity quantified as

facial AUs. By forcing the latent space of external behavior

(face) using the internal brain-states (EEG), we learn both

microexpression and cognitive state representations. By carrying

out multimodal training of EEG and AU modalities and

explaining the predictions using the proposed multimodal

Shapley explainer, we found correlations among upper and lower

facial regions to left-temporal and bilateral frontal brain regions.

Such correlations were evident at specific time windows, without

a priori labeled knowledge about human speech behavior in

AWS provided to the neural network. Our explainability method

identified key regions from both face and brain that may drive

the production of either fluent or stuttered speech in AWS. The

brain regions identified are also the same regions that differ both

structurally and functionally between people who stutter and

fluent controls (Brown et al., 2005). The proposed methodology

can be applied for multimodal speech therapies and also
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generalized to other neurological disorders with fluctuating

brain states, such as stroke or Alzheimer’s disease.
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