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Background:Considering the role of immunity and ferroptosis in the invasion, proliferation
and treatment of cancer, it is of interest to construct a model of prognostic-related
differential expressed immune-related ferroptosis genes (PR-DE-IRFeGs), and explore the
ferroptosis-related biological processes in esophageal cancer (ESCA).

Methods: Four ESCA datasets were used to identify three PR-DE-IRFeGs for constructing
the prognostic model. Validation of our model was based on analyses of internal and
external data sets, and comparisons with past models. With the biological-based
enrichment analysis as a guide, exploration for ESCA-related biological processes was
undertaken with respect to the immune microenvironment, mutations, competing
endogenous RNAs (ceRNA), and copy number variation (CNV). The model’s clinical
applicability was measured by nomogram and correlation analysis between risk score
and gene expression, and also immune-based and chemotherapeutic sensitivity.

Results: Three PR-DE-IRFeGs (DDIT3, SLC2A3, and GCH1), risk factors for prognosis of
ESCA patients, were the basis for constructing the prognostic model. Validation of our
model shows a meaningful capability for prognosis prediction. Furthermore, many
biological functions and pathways related to immunity and ferroptosis were enriched in
the high-risk group, and the role of the TMEM161B-AS1/hsa-miR-27a-3p/GCH1 network
in ESCA is supported. Also, the KMT2D mutation is associated with our risk score and
SLC2A3 expression. Overall, the prognostic model was associated with treatment
sensitivity and levels of gene expression.

Conclusion: A novel, prognostic model was shown to have high predictive value.
Biological processes related to immune functions, KMT2D mutation, CNV and the
TMEM161B-AS1/hsa-miR-27a-3p/GCH1 network were involved in ESCA progression.
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INTRODUCTION

As the sixth leading cause of death, and the ninth most common
cancer in the world, esophageal cancer (ESCA) is mainly
composed of two pathological types: esophageal squamous cell
carcinoma (ESCC) and esophageal adenocarcinoma (Bray et al.,
2018). Squamous cell carcinoma is the most common histological
type of ESCA worldwide (Napier et al., 2014). Surgery, the main
treatment method for ESCA, is likely to be accompanied by
complications such as esophageal obstruction and stenosis
(Kofoed et al., 2015). The use of esophageal chemotherapy
combined with surgery can optimize the treatment outcome,
but drug resistance will lead to chemotherapy failure. With the
development and improvement of ESCA treatment strategies, the
5-year survival rate of patients with early ESCA has increased
significantly. However, the prognosis of patients with advanced
ESCA is still poor (Ferlay et al., 2015). In addition, distant
metastasis of cancer will lead to a poor prognosis for patients
with ESCA. In recent years, the role of immune checkpoint
inhibitors (ICIs) in cancer treatment has brought new hope to
ESCA patients.

Previous studies have shown that high expression of PD-L1 in
tumors is associated with poor prognosis, while other studies have
shown that PD-L1 positive ESCA patients have a higher response
rate to immunotherapy (Huang and Fu, 2019; Hong et al., 2020).
So, it is inevitable that the heterogeneity of PD-L1 expression will
affect the accuracy of prognosis and prediction. Therefore, it is of
interest to explore biomarkers that can effectively predict the
prognosis of ESCA patients and provide guidance for the best
treatment plan.

The immune system plays an irreplaceable role in the
occurrence and development of cancer (Gentles et al., 2015),
including a significant impact on the effect of radiotherapy. After
radiotherapy, the weakened T cell immune function can change
the host’s immune response and affect ESCA prognosis and
outcome (Hong et al., 2014). In addition, the immune
microenvironment composed of immune cells and stromal
cells occupies an important position in the progression of
tumors (Gajewski et al., 2013). Furthermore, immune
infiltrating cells, a crucial factor in the prognosis of tumor
cells, are widely used to evaluate the clinical benefits of
immunotherapy (Camisaschi et al., 2014). The
immunosuppressive cells in the tumor microenvironment can
interfere with immune monitoring, leading to tumor immune
escape (Zamarron and Chen, 2011). As ICIs-related
immunotherapies are widely used in cancer treatment, the
predictive value of immune-related genes has also been
confirmed by past work (Dine et al., 2017).

Ferroptosis is a cell death pathway driven by iron-dependent
lipid peroxidation (Stockwell et al., 2017). Mou et al. (2019) found
that LDL-DHA induces cancer cell death through the ferroptosis
pathway in liver cancer. In renal cell carcinoma, Miess et al.
(2018) found that increased fatty acid metabolism due to β-
oxidation leads to lipid peroxidation in renal cell carcinoma and
promotes cell ferroptosis. These studies all confirmed the
important role of ferroptosis in the progression and prognosis
of cancer. Likewise, the potential anti-tumor activity of

ferroptosis also shows potential for treatment of metastatic
and malignant tumors resistant to traditional therapies.
Moreover, activated CD8+ T cells can enhance ferroptosis-
specific lipid peroxidation in tumor cells (Wang et al., 2019),
and which also reflects the cooperative role of immunity
and ferroptosis in anti-tumor immunity. However, biological
markers constructed based on these two types of genes are
rarely reported.

With the in-depth study of the competing endogenous RNA
(ceRNA) regulatory network, the interaction mechanism between
RNAs has been studied more frequently. The combination of
microRNA (miRNA) and mRNA will lead to gene silencing
(Salmena et al., 2011). In addition, lncRNA can regulate the
expression of target genes by competitively binding with miRNA
(Qi et al., 2015). Sequence changes caused by the ceRNA
regulatory network play an important role in cell metabolism
and the occurrence and development of cancer (Karreth and
Pandolfi, 2013). Through ceRNAs analysis, we can further
explain how transcripts construct gene expression regulatory
networks and explore the mechanism of regulatory genes from
a higher scale perspective.

The purpose of this study is to construct a predictive model
with excellent performance and that is verifiable by screening the
prognostic-related differentially expressed immune-related
ferroptosis genes (PR-DE-IRFeGs) in ESCA. We also
designed a series of in-depth analyses from the perspective
of the tumor immune microenvironment, mutation and
ceRNA regulatory axis; and gene copy number variation
(CNV) to further explore the potential biological processes
closely related to ferroptosis and immunity. In addition, we
explored the potential clinical application value of predictive
models from multiple aspects, including immunotherapy and
chemotherapy. Finally, we construct a nomogram with proven
high accuracy to predict the overall survival of ESCA patients.
It is hoped that our prediction model can help to further
understand the molecular mechanism of ESCA and provide
guidance toward the clinical diagnosis and treatment
of ESCA.

METHODS

Data Collection for the Identification of
DE-IRFeGs
Figure 1 shows a flow chart of the procedure of this study. This
study obtained the data of ESCA samples from four public
datasets. First, on 1 November 2021, we extracted 171 cases
(160 ESCAs and 11 adjacent normal tissues) from The Cancer
Genome Atlas database (TCGA, cancergenome.nih.gov) for RNA
sequencing and corresponding clinical data. Then, on 2
November 2021, we obtained three external datasets from the
Gene Expression Omnibus (GEO) database (https://www.ncbi.
nlm.nih.gov/geo/). These are 358 samples from the GSE53625
dataset (179 esophageal squamous cell carcinoma, 179 normal
esophagus tissues), and 106 samples from the GSE23400 dataset
(53 esophageal squamous cell carcinoma, 53 normal esophagus
tissues), and 226 samples (113 esophageal squamous cell
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carcinoma, 113 normal esophagus tissues) from GSE67269
dataset.

On that date, we also downloaded 2,660 immune-related genes
(IRGs) from the ImmPort (www.immport.org/home) and
InnateDB (www.innatedb.ca) databases, as well as
259 ferroptosis-related genes (FRGs) from the FerrDb (www.
zhounan.org/ferrdb) database. Based on these genes, we extracted
the RNA sequencing data of 2,367, 1,540, 1,638, and 1,637 IRGs
from the TCGA, GSE53625, GSE23400, and GSE67269 datasets,
respectively, as well as the RNA sequencing data of 246, 163, 211,
and 211 FRGs from the TCGA, GSE53625, GSE23400, and
GSE67269 datasets, respectively.

To analyze the differential expression of IRGs between 160
ESCA tissues and 11 adjacent normal tissues in the TCGA
dataset, we set |log2 fold change| (| log2FC |)>1 and false
discovery rate (FDR) < 0.05 as filter conditions (R package
limma). We also used FDR <0.05 as new filter conditions and
analyzed RNA sequencing data of IRGs from GSE53625,
GSE23400, and GSE67269 datasets, FRGs from TCGA and
GSE53625 datasets to identify the corresponding differentially
expressed immune-related genes (DE-IRGs) and DE-FRGs. A
fold change of two-fold or greater is considered differential
regulation of the protein (Teister et al., 2017). Limited by the
restricted number of DE-FRGs and DE-IRGs for sufficient

PR-DE-IRFeGs in this differential analysis, we did not use fold
change. Finally, we used R package Venn to obtain the common
DE-IRGs from TCGA, GSE53625, GSE23400, and GSE67269
datasets, and the common DE-FRGs from TCGA and
GSE53625 datasets, respectively. In the process, we only
considered the same name of the differentially expressed
genes, but did not consider the same direction of the
differential expression of these genes.

By co-expression analysis, the threshold was set to the
correlation coefficient >0.3 and p-value <0.001. The
expression values of 121 crossed IRGs, and 52 crossed FRGs
extracted from the expression matrix of TCGA were used to
filter differentially expressed immune-related ferroptosis
genes (DE-IRFeGs).

GO and KEGG Enrichment Analysis Based
on DE-IRFeGs
To show that the functions and pathways of DE-IRFeGs have
been enriched, we searched the databases of Kyoto Encyclopedia
of Genes and Genomes (KEGG) and Gene Ontology (GO) for
these DE-IRFeGs (R package org.Hs.eg.db). In addition to
histograms, bubble charts were also used to display
significantly rich functions and pathways.

FIGURE 1 | Research diagram of the informatics procedure.
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Recognition of PR-DE-IRFeGs and
Construction of the Predictive Model
We extracted the same samples with complete overall survival
(OS) and mRNA expression data from the TCGA and GSE53625
datasets. To obtain DE-IRFeGs with prognostic values from the
TCGA, we performed univariate Cox analysis with a cutoff value
of p < 0.05.

To elucidate the differential expression of 4 PR-DE-IRFeGs in
ESCA, we used the R package ConsensusClusterPlus (1,000
iterations and 80% resampling rate) to classify ESCA patients
into different subtypes. A heat map was used to demonstrate the
differences of clinicopathological features and 4 PR-DE-IRFeGs
expression between the two subtypes. We also performed Kaplan-
Meier survival analysis on the PR-DE-IRFeGs to explore the
relationship between their expression and OS. In addition, we
also mapped the co-expression network between these PR-DE-
IRFeGs and the corresponding DE-IRGs. 159 samples with
complete OS data and PR-DE-IRFeGs mRNA expression
values were randomly matched to the training dataset (n = 80)
and test dataset (n = 79) on average. To verify that randomization
did not cause a deviation in the distribution of clinical traits, we
used a chi-square test to compare the differences in clinical
characteristics between the training and the test datasets.

Similarly, we extracted PR-DE-IRFeGs shared by the PR-DE-
IRFeGs obtained from the training dataset and the PR-DE-
IRFeGs obtained from the TCGA total dataset. Lasso
regression analysis can screen out highly relevant crossed PR-
DE-IRFeGs in the training set, thereby minimizing the risk of
overfitting of screening features and achieving the purpose of
accurately predicting the clinical prognosis of patients. Then, we
determined the penalty parameter (λ) through the minimum 10-
fold cross-validation and selected the optimal penalty parameter
(λ) from it to construct a multiCox regression model (predictive
model) based on 3 PR-DE-IRFeGs. Finally, we applied the
coefficients obtained by the lasso and multiCox regression
algorithm to the following risk scoring equation:

Riskscore � ∑(PR −DE − IRFeGs exp ression values

× corresponding coefficient)

Validation of Predictive Model
We used the training dataset, test dataset, and total dataset from
the TCGA database and the external dataset GSE53625 to
evaluate and verify the accuracy of the established predictive
model in predicting prognosis. All samples in the TCGA and
GSE53625 datasets were assigned risk scores, and ESCA patients
were divided into high-risk and low-risk groups using the median
of the risk scores as a cutoff score. After obtaining the risk score,
we used R to visualize each sample’s specific risk score and
survival status. We created a Kaplan-Meier curve to clarify the
correlation between risk score and patient survival index, and
visualized the risk plot, survival status, and heatmap of four
datasets through related R packages to further verify the accuracy
of the predictive model. According to the patient’s risk score and
overall survival, the Receiver Operating Characteristic (ROC)

curve was drawn. The R package timeROC was used to predict
ESCA patient survival for 1, 2, and 3-years. The area under the
curve (AUC) value represents the accuracy of prediction.
Univariate and multivariate Cox regression was used to verify
the independence of the predictive model and analyze whether
the risk score could still be used as an independent predictor for
the patient’s survival under the case of multifactorial clinical
characteristics (age, gender, T stage, N stage, and clinical stage).

Comparing Prediction Performance With
Other Models
Song et al. (2021) and Tang et al. (2021), respectively, screened
7 ferroptosis-related genes and 4 autophagy-related genes to
construct models to predict the prognosis of patients with
ESCA. We extracted the mRNA expression data of the
corresponding genes of each model from the TCGA ESCA
dataset to construct a multiCox regression model and
calculated the corresponding risk score for each sample.
Similarly, the samples were divided into high-risk and low-risk
groups based on the median risk scores of all examples in each
model. The ROC plots based on the risk scores of the three model
samples were used to compare the performance of the models in
predicting prognosis.

Similarly, the Kaplan–Meier survival plot were used to
compare the ability of the three models to distinguish
prognosis. Thus, we tried to compare the prognostic
performance of the 7-gene combination model, 4-gene
combination model and our 3-gene combination model based
on the concordance index (C-index) calculated based on the
mRNA expression levels of the 7 genes (ALOX12, ALOX12B,
ANGPTL7, DRD4, MAPK9, SLC38A1, and ZNF419) that Song
et al. (2021) introduced, the 4 genes (SQSTM1, BIRC5, NRG3,
and CXCR4) that Tang et al. (2021) introduced, and the 3
genes our study presented. Higher C-index implied better
prognostic performance (Schröder et al., 2011). The R
package survcomp was used to calculate and compare the
C-indexes between the 3 prognostic combinations (Schröder
et al., 2011). In addition, the restricted mean survival time
(RMST) curve was also used to evaluate the performance of
each model and compare the differences among them (Zheng
et al., 2021).

Stratified Analysis of Predictive Model
The stratified analysis tested whether the predictive model was
highly accurate in different clinicopathological feature groups.
First, heat maps were used to display the clinical features of all
ESCA samples in the high-risk and low-risk groups. According
to different clinical parameters, including survival status
(Alive and Deceased), gender (female and male), tumor
stage (I-II and III-IV), T stage (T0-T4), M stage (M0-M1),
N stage (N0-N3), divide the entire TCGA concentration into
patients for the subgroup. Box plots show the differences of
riskscore in different subgroups. Kaplan-Meier analysis and
log-rank test were performed to compare the survival
differences between the high-risk and the low-risk groups in
each subgroup.
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Biological-Based Enrichment Analysis and
Immune Infiltration Assessment
To explore the immune biological functions and pathways
involved in different risk groups, we used an R package for
GO biological function enrichment analysis and KEGG
pathway enrichment analysis based on differentially expressed
genes between different risk groups. The R package cluster profile
and gene sets “c2.cp.kegg.v7.4.symbols.gmt” and
“c5.go.v7.4.symbols.gmt” were used in this process.
Considering the enrichment of a large number of immune-
related functions and pathways in the high-risk group, the
next step was to use the R package estimate to calculate the
immune and stromal cell fractions of each sample. In addition, we
also compared the differences in the immune and stromal cell
fractions of patients between different risk groups. Based on the
single-sample gene set enrichment analysis (ssGSEA) of the R
packages GSEAbase and gsva, we obtained 16 immune cells and
13 immune function scores to estimate each abundance of
infiltrating immune cells and functions in each sample. Firstly,
based on the predictive model, the difference analysis of immune
cells and functions between different risk groups was carried out,
and a box plot was drawn. Heat maps show the distribution
differences of 16 immune cells and 13 immune functions in each
sample with different risk scores. In addition, correlation analysis
was conducted to evaluate the relationship between each patient’s
immune cell/function score and risk score. Finally, the differences
of 16 kinds of immune cells and 13 kinds of immune functions
between the high and low-risk groups were compared.

To assess the composition of different immune cell types in
ESCA, we also used the Cibersort deconvolution algorithm to
obtain matrix data for the proportion of 22 immune cells per
tumor sample from RNA-sequencing data. We further visualized
matrix based data filtered by p < 0.05 with the bar chart. We also
performed correlation analysis between different immune cells
and visualized the corresponding results in the correlation matrix
plot of immune cells.

Prediction and Verification of ceRNA
Regulatory Network
For the purpose of determining the interaction between lncRNAs,
miRNA, and mRNAs, we combined the data of lncRNAs and
mRNAs with miRNA data to construct the lncRNA-miRNA-
mRNA regulatory network, and further explore the putative
mechanism of ESCA progress. We select GCH1 in the model
to predict and verify the complete ceRNA regulatory axis. In
order to further verify the universal differential expression of
GCH1 between the cancer group and the standard group, we
downloaded the RNA sequencing data of 33 human cancers from
the UCSC Xena (https://xena.ucsc.edu/) database. These
annotated RNA sequencing data were used to differentiate
GCH1 expression between cancer and normal tissues. GEPIA
(gepia.cancer-pku.cn) is a tool for cancer and standard gene
expression profiling and interactive analysis (Tang et al.,
2017). This website was used to verify further the difference in
survival based on GCH1 expression in ESCA. Next, the miRNA
expression data of 185 ESCA tissues and 13 normal tissues

adjacent to cancer were obtained from TCGA. After
annotating with the mature miRNA annotation file
downloaded from mirbase (https://www.mirbase.org/), we
received the miRNA expression matrix of these 198 samples.
After the prediction by multiple target gene prediction programs,
including PITA, RNA22, minimap, microT, miRanda, PicTar and
TargetScan in StarBase (starbase.sysu.edu.cn), miRNAs in the
upstream binding of GCH1, appeared more than twice, were
considered candidate miRNAs for GCH1. We use Cytoscape (v3.
8.2) tomap the co-expression network of miRNA andGCH1. The
R packages ggExtra and reshape2 were employed to obtain the
correlation between GCH1 expression level and upstream
binding miRNA. The differential expression of miRNAs
(correlation coefficient t < −0.34, p < 0.001) between tumor
and normal tissues is dependent on the difference analysis (|
log2FC|) > 1, p < 0.05). The Kaplan-Meier plotter was used to
draw survival plots between the subgroups with high and low
miRNA expression. Only the analysis result of hsa-miR-27a-3p
was statistically significant and used for subsequent analysis.
StarBase (v2.0) was also used to predict candidate lncRNAs
that binds to hsa-miR-27a-3p. We reused Cytoscape (v3.7.2)
to map the co-expression network of lncRNAs and hsa-miR-
27a-3p. Similarly, the correlation between lncRNAs and hsa-miR-
27a-3p expression (correlation coefficient t < −0.31, p < 0.001)
and the correlation between lncRNAs and GCH1 expression, as
well as the difference (|log2FC|) > 1, p < 0.05) and survival
analysis of lncRNAs (p < 0.05), were also analyzed. Only the
analysis result of TMEM161B-AS1 was statistically significant.
Finally, reran Cytoscape (v3.7.2) to draw the ceRNA regulatory
network composed of hsa-miR-27a-3p, TMEM161B-AS1,
and GCH1.

Analysis of the Correlation Between
PR-DE-IRFeGs and Mutation Field
In order to analyze the correlation between mutations and
predictive model, we downloaded the somatic gene mutation
data and corresponding clinical data of ESCA samples from the
TCGA dataset. After using VarScan to detect the MAF files of
somatic mutations in ESCA samples, the R package GenVisR was
used to visualize the 30 most frequently mutated genes in the
high-risk and low-risk groups. The waterfall diagram shows the
mutation in the 43 DE-IRFeGs. Tumor mutation burden (TMB)
is the number of mutation bases per million bases calculated
based on the somatic mutation data of each tumor (Liu C. et al.,
2021). We calculated each patient’s TMB using perl. We explored
the correlation between TMB and risk score. In addition, we
compared the difference in TMB between high and low-risk
groups. The Kaplan-Meier survival curve was used to compare
the survival difference between the high TMB and low TMB
groups. According to the mutation status of KMT2D/MUC16,
TCGA samples were divided into wild group andmutation group.
The difference between the risk scores between KMT2D/MUC16
mutation and the wild group was compared. In addition, we also
analyzed the relationship between KMT2D/MUC16 mutation
and the three PR-DE-IRFeGs. To explore the relationship
between KMT2D/MUC16 mutations and the prognosis of
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ESCA relationship, a Kaplan-Meier survival curve analysis was
used to compare the wild and mutant groups’ OS differences.
Pan-cancer analysis was used to compare the expression
differences of KMT2D and MUC16 in cancer tissues and
normal tissues of 33 cancer patients. The differences in the
expression of KMT2D and MUC16 were found in different
tumor types.

CNV Analysis
CNV data of TCGA ESCA patients were downloaded from the
UCSC Xena (https://xena.ucsc.edu/) database On 8 November
2021. The CNV data of 43 DE-IRFeGs in 185 ESCA samples were
used in our analysis. After statistics of the CNV frequency of these
genes, the corresponding results were visualized. The CNV
changes of these 43 DE-IRFeGs on the chromosome were
also pictured in the circle diagram, which can well reflect
the corresponding position of the gene on the chromosome.
We divided all samples into single deletion, normal, and
single gain copy number groups based on the change in
copy number of 3 PR-DE-IRFeGs in the model,
respectively. The Kruskal-Wallis test was used to compare
the expression differences of the corresponding PR-DE-
IRFeGs among the three groups. In addition, Kaplan–Meier
survival plot were used to compare the survival differences of
the three groups of samples.

Correlation Analysis Between Predictive
Model and ICIs-Related, m6A-Related and
Multidrug Resistance-Related Genes
In view of the fact that the expression levels of ICIs (ICIs)-
related genes may be related to the clinical results of immune
checkpoint inhibitor blockade treatment, we applied a
spearman correlation analysis to explore the correlation
between the risk score and the expression of ICIs-related
genes. In addition, to verify the accuracy of the correlation
results, we also compared the differences in ICIs-related gene
expression between samples in the high and low-risk groups.
The same method was applied to explore the correlation
between the expression of N6-methyladenosine (m6A)-
related genes/multidrug resistance-related genes and risk
score. The R packages ggplot2 and reshape2 were used in
this analysis.

Clinical Treatment Application of 3
PR-DE-IRFeGs Used to Construct a
Predictive Model
Studies have shown that the gene expression levels of critical
targets for immune checkpoint blockade may be closely related to
the clinical effects of ICIs (Hodi et al., 2010). We selected
programmed death-ligand 1 (PD-L1 or CD274) that can be
used to predict the effect of immunotherapy for further
analysis. The correlation between expression of CD274 and
risk score/3 PR-DE-IRFeGs genes were shown by circle
diagram. Application of Tumor Immune Dysfunction and
Exclusion (TIDE) algorithm and Microsatellite Instability

(MSI) could be used to predict the potential response to
immune checkpoint blockers (ICB) treatment (Jiang et al.,
2018; Lin et al., 2020). We also used the circle graph to show
the correlation between TIDE, MSI, Dysfunction, Exclusion, and
risk score/3 PR-DE-IRFeGs through Spearman correlation
analysis. We used the R package pRophetic to predict the half-
maximal inhibitory concentration (IC50) of the three
chemotherapeutics as recommended by the National
Comprehensive Cancer Network (NCCN) guidelines for
treating ESCA patients from the total dataset of samples.
Used the cell line expression data in the Cancer Drug
Sensitivity Genomics (GDSC) database and the RNA
sequencing transcriptome data in the TCGA database to
construct a regression model to predict the IC50 of the
drug in the R package (Geeleher et al., 2014). We
performed Spearman correlation analysis to evaluate the
correlation between the IC50 of the three chemotherapeutic
drugs and the risk score. We also used the same method to
explore further the correlation between the expression of the
three PR-DE-IRFeGs and the IC50 of these three drugs.
Finally, we compared the IC50 difference between the high-
risk group and the low-risk group.

Construction and Verification of Forecast
Nomogram
To create a clinically applicable quantitative tool to predict 1, 2,
and 3-year OS of ESCA patients and monitor the prognosis of
patients, we combined N and M staging and risk group to
generate a nomogram to predict ESCA patients’ survival
probability. The nomogram was constructed by using the R
package rms. We drew the 1, 2, and 3-year ROC plot of the
training dataset, test dataset, and total dataset of the TCGA
database. For the purpose of verifying the accuracy of the
nomogram, we also used the calibration curve to evaluate the
accuracy of the nomogram in survival prediction. In the
calibration curve, if the predictive value is more consistent
with the actual value, it means that the prediction accuracy of
the nomogram is higher.

Statistical Analysis
In order to compare the differences in risk scores between different
subgroups of these clinical features, a chi-square test was used.
Next, we used Student’s t-test or Wilcoxon signed-rank test to
compare the difference between continuous variables and the chi-
square test or Fisher’s exact test to compare the difference between
categorical variables. Univariate cox regression analysis was used to
identify PR-DE-IRFeGs. lasso regression and mutiCox regression
are used to screen PR-DE-IRFeGs to build predictive model.
Kaplan-Meier analysis and log-rank test was used to compare
OS differences between different subgroups. The univariate and
multivariate Cox analysis based on each clinical feature and risk
score were used to verify the independent prognostic value of the
risk score. Spearman or Pearson correlation analysis was used to
analyze the correlation between variables. We used the R
programming language (version 4.0.3), Perl, and Cytoscape
(version 3.8.2) to run these analyses.
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RESULTS

Identification of DE-IRFeGs
We quantified 491 DE-IRGs (of which 103 genes were down-
regulated, and 388 genes were up-regulated) in the TCGA dataset

(Supplementary Figure S1), 1090 DE-IRGs (of which 598 genes
were up-regulated and 492 genes were down-regulated) in the
GSE53625 dataset (Supplementary Figure S2), and 981 DE-IRGs
(of which 545 genes were down-regulated and 436 genes were up-
regulated) in the GSE23400 dataset (Supplementary Figure S3),

FIGURE 2 | Recognition of PR-DE-IRFeGs. (A–B) Genes shared among database samples of DE-IRGs and DE-FRGs. The database samples refer to TCGA and
GEO. (C) Forest plot of univariate Cox regression analysis of 4 PR-DE-IRFeGs. Hazard ratio is obtained by running single factor and multi-factor cox regression. (D) The
heat map shows the expression status of 4 PR-DE-IRFeGs in tumor and standard cases. (E) The co-expression network between 4 PR-DE-IRFeGs and the
corresponding DE-IRGs. (F–I) Survival differences between the high and low expression groups that correspond to the four PR-DE-IRFeGs.
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and 885 DE-IRGs (of which 440 genes were down-regulated and
445 genes were up-regulated) from the GSE67269 dataset
(Supplementary Figure S4). Finally, by extracting common
DE-IRGs of the 4 datasets, we obtained 121 shared DE-
IRGs (Figure 2A). Likewise, we also identified 119 DE-
FRGs (of which 24 genes were down-regulated and 95 genes
were up-regulated) in the TCGA dataset (Supplementary
Figure S5) and 107 DE-FRGs (of which 64 genes were up-
regulated and 43 genes were down-regulated) in the GSE53625
dataset (Supplementary Figure S6). Similarly, by intersecting
the DE-FRGs of the 2 datasets, we obtained 52 crossed DE-
FRGs (Figure 2B). We identified 43 DE-IRFeGs under the
condition of performing the co-expression analysis between
RNA sequencing data of IRGs and FRGs. Supplementary
Table S1 shows the correlation results among IRGs and
43 DE-IRFeGs.

GO and KEGG Enrichment Analysis Based
on DE-IRFeGs
Studies have reported that hypoxia can protect tumor cells from
the effects of ferroptosis inducers, and in the case of hypoxia, iron
output will increase, and stable ferritin input will decrease,
indicating that hypoxia and ferroptosis are closely related

(Stockwell et al., 2017). Surprisingly, our DE-IRFeGs genes
enriched with biological processes (BPs) are almost all related
to hypoxia-related reactions, such as response to oxidative
stress, cellular response to oxidative stress, response to oxygen
levels, response to hypoxia, response to decreased oxygen level,
and reactive oxygen metabolism process (Supplementary Figure
S7A). KEGG pathway analysis revealed that these genes are
mainly enriched in autophagy, mitochondrial autotropism,
HIF-1 signaling pathway, NOD-like receptor signaling
pathway, chemical carcinogenesis-reactive oxygen species
(Supplementary Figure S7B), and which are related to
hypoxia and autophagy, also closely related, indicating that
the DE-IRFeGs gene we screened is closely related to
ferroptosis.

Recognition of PR-DE-IRFeGs and
Construction of Predictive Model
By integrating the mRNA expression and clinical data of
ESCA patients, we obtained 159 samples in the TCGA
dataset and 179 samples in the GSE53625 dataset,
respectively. Their clinical characteristics were shown in
Table 1. 4 PR-DE-IRFeGs (DDIT3, SLC2A3, GCH1, and
ATG5) were screened out by univariate cox analysis

TABLE 1 | Sample sizes by clinical characteristic in the four data sets.

Features Type Total dataset Test dataset Training dataset P GSE53625 dataset

Age (years) < = 60 - - - - 99(55.3%)
>60 - - - 80(44.7%)

Futime (days) < = 730 123(77.36%) 61(77.22%) 62(77.5%) 1 71(39.7%)
>730 36(22.64%) 18(22.78%) 18(22.5%) 108(60.3%)

Fustat Alive 96(60.38%) 43(54.43%) 53(66.25%) 0.1734 73(40.8%)
Deceased 63(39.62%) 36(45.57%) 27(33.75%) 106(59.2%)

Gender Female 23(14.47%) 11(13.92%) 12(15%) 1 33(18.4%)
Male 136(85.53%) 68(86.08%) 68(85%) 146(81.6%)

Stage I 16(10.06%) 6(7.59%) 10(12.5%) 0.3795 10(5.6%)
II 68(42.77%) 30(37.97%) 38(47.5%) 77(43.0%)
III 48(30.19%) 27(34.18%) 21(26.25%) 92(51.4%)
IV 8(5.03%) 5(6.33%) 3(3.75%) 0(0.0%)
Unknown 19(11.95%) 11(13.92%) 8(10%) 0(0.0%)

T T0 1(0.63%) 1(1.27%) 0(0%) 0.707 0(0.0%)
T1 27(16.98%) 14(17.72%) 13(16.25%) 12(6.7%)
T2 37(23.27%) 19(24.05%) 18(22.5%) 27(15.1%)
T3 75(47.17%) 36(45.57%) 39(48.75%) 110(61.4%)
T4 4(2.52%) 1(1.27%) 3(3.75%) 30(16.8%)
Unknown 15(9.43%) 8(10.13%) 7(8.75%) 0(0.0%)

M M0 119(74.84%) 59(74.68%) 60(75%) 0.7322 -
M1 8(5.03%) 5(6.33%) 3(3.75%) -
Unknown 32(20.13%) 15(18.99%) 17(21.25%) -

N N0 65(40.88%) 25(31.65%) 40(50%) 0.0645 83(46.4%)
N1 62(38.99%) 35(44.3%) 27(33.75%) 62(34.6%)
N2 9(5.66%) 7(8.86%) 2(2.5%) 22(12.3%)
N3 6(3.77%) 3(3.8%) 3(3.75%) 12(6.7%)
Unknown 17(10.69%) 9(11.39%) 8(10%) 0(%)

Futime represents overall survival; Fustat represents survival state; P represents p value; Stage represents clinical stages.
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(Figure 2C). All PR-DE-IRFeGs (HR > 1) were identified as
risk factors (Figure 2C).

The heatmap in Figure 2D showed the expression of these genes.
The similarity by the expression levels of the 4 PR-DE-IRFeGs and
the proportion of ambiguous clustering determined that k = 2
qualitatively showed an ideal clustering pattern (Supplementary
Figures S8A–C). All ESCA patients were divided into two subtypes,
cluster 1 (n = 99) and cluster2 (n = 60) (Supplementary Figure
S8D). The expression of DDIT3 and SLC2A3 was higher in cluster 2
than in cluster 1 (Supplementary Figure S8E).

In addition, better Overall Survival (OS) was observed in the
low expression of these PR-DE-IRFeGs by the Kaplan-Meier

survival in Figures 2F–I (p < 0.05). Figure 2E shows the co-
expression relationship between each PR-DE-IRFeGs and the
corresponding DE-IRGs. Table 1 also shows no significant
difference in all clinical traits between the training dataset and
the test dataset (p > 0.05), and which shows that the
randomization did not induce bias in the distribution of
clinical characteristics data.

We obtained 3 common PR-DE-IRFeGs (DDIT3, SLC2A3
and GCH1) in the training dataset and in the total dataset. Next, 3
PR-DE-IRFeGs, namely DDIT3, SLC2A3, and GCH1, based on
the optimal value of λ, were determined by lasso regression
analysis and used to construct the multiCox regression model.

FIGURE 3 | The results of various methods to verify the performance of the model based on the training, test, total and GSE53625 datasets. (A–D) Risk score and
survival time plots. (E–H) Expression heat map of 3 PR-DE-IRFeGs. (I–L) 1-, 2-, and 3-year ROC plot (M–P) Kaplan-Meier survival plot. (Q–T) Forest plots for univariate
Cox regression. (U–X) Forest plots for multivariate Cox regression.
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We calculated the risk score of each sample of 3 datasets in TCGA
and the GSE53625 dataset according to the risk score calculation
formula: Risk score � ∑DDIT3 exp ression values × 0.3605 +
SLC2A3 exp ression values ×
0.3646 + GCH1 exp ression values × 0.4714. Then, based on the
median value of the risk scores of all samples in each dataset, the
samples were divided into high-risk and low-risk groups.

Validation of Predictive Model
To verify the applicability and prognostic value of our predictive
model based on the TCGA training dataset, we used the training
dataset, test dataset, total dataset of the TCGA database and the
external dataset GSE53625 for testing. The median of the risk
score was used as the cutoff value to divide the four sets of patients
into high- and low-risk groups, respectively. The risk curve graph

and survival state graph show the distribution of risk scores and
the overall survival of the four sets of samples (Figures 3A–D).
The heat map shows the distribution of the three genes screened
for the predictive model between the high- and low-risk groups
(Figures 3E–H). The results show that these three genes have
differences between the high and low-risk tissues. Next, we used
the ROC curve to check the prediction performance of the model
for 1, 2, and 3 years of OS. The results in Figures 3I–K show that
the AUC of the training dataset, test dataset, and total dataset is
greater in significance than 0.6 (most AUC values > 0.65).

In the external dataset, The AUC of GSE53625 is also greater
than 0.5 (Figure 3L). In addition, the results of the Kaplan-Meier
plot show that patients with high-risk scores had a lower survival
probability than the lower-risk group (Figures 3M–P), verifying
that the prognosis of the high-risk group was worse than that of

FIGURE 4 | Performance comparison among different models. (A–C) The 1, 2, and 3- years ROC curves for three models. (D–F) Kaplan-Meier survival curves for
three models. (G) Comparison of C-index of the three models. (H) Comparison of RMST plot of the three models. IRFR model represents the model we built using three
PR-DE-IRFeGs. Tang autophagy model represents a model constructed by Tang et al. (2021) using 4 autophagy-related genes. The Song ferroptosis model represents
a model constructed by Song et al. (2021) using 7 ferroptosis-related genes.
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the low-risk group. Finally, we performed univariate and
multivariate Cox regression analysis to check whether the risk
score is an independent prognostic factor for ESCA patients. We
analyzed the association between OS and clinical characteristics
(including age, sex, T stage, M stage, N stage, and risk score) of
ESCA patients in the training dataset, test dataset, total dataset,
and external GSE53625 dataset. After adjusting for other clinical
confounding factors, multivariate Cox regression analysis still
determined risk score as the independent predictor of each group
of OS (Figures 3Q–S, U–W) across 3 TCGA datasets.

Unfortunately, similar results were not found in the GSE53625
dataset (Figure 3T,X). In general, our predictive model has good
performance for ESCA survival prediction.

Comparing Prediction Performance With
Other Models
By comparison, the AUC of our model has observed the highest
AUC value in almost all years among the three models (Figures
4A–C), and which means that our model has the best

FIGURE 5 |Detailed analyses of clinical data. (A) The distribution of clinical characteristics and risk for each data sample. (B–G)Differences in risk scores of patients
with different clinical characteristics. (H–Q) Kaplan-Meier survival plots for different groups by clinical feature.
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FIGURE 6 | GSEA enrichment and immune infiltration assessment analyses. (A–B) GO enrichment analysis for high- and low-risk groups. Based on biological
features. (C–D) GO enrichment analysis for high- and low-risk groups. Based on KEGG pathways. Color represents a pre-defined biological function or pathway. (E–F)
Correlation analysis between risk score and immune/stromal cell score. (G–H)Comparison between immune/stromal cell score and high-/low-risk group. (I) An overview
heat map of the different scores of 16 immune cells and 13 immune functions as the risk score increases. (J) The correlation between 16 types of immune cells, 13
types of immune function, and risk score. (K) Analysis of the difference between 16 types of immune cells, 13 types of immune function, and high-/low-risk groups.
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performance in predicting the prognosis of ESCA patients. The
Kaplan–Meier survival plot also confirmed that our model with
the lowest p-value has the best ability to distinguish prognosis
(Figures 4D–F). In addition, through the comparison of the
c-indexes, we also observed that our model performed better than
the model of Tang et al. (2021) (Figure 4G). And our model has
also been marked to have the highest RMST curve in 3 models
(Figure 4H).

Stratified Analysis of Predictive Model
Since clinical features such as risk score and TNM staging are
independent prognostic factors of OS in separate data sets, we
used stratified analysis to explore whether the predictive model
can effectively predict ESCA patient’s OS with different
clinicopathological characteristics. The heat map shows an
overview of the clinical features of each patient (Figure 5A).
When analyzing the relationship between risk scores and various
clinical characteristics, we made several findings of interest.
Survival status, stage, and N stage were highly correlated with
the risk score (Figures 5B,D,G, p < 0.001). In other clinical
features, no significant results were found (Figures 5C,E,F, p >
0.05). In addition, we implemented the Kaplan-Meier survival
curve to verify the predictive value of the model in different
clinical parameter subgroups. We found that the predictive model
also has good OS predictive performance in each subgroup with
different clinical characteristics, except for stage I-II staging, stage
III-IV staging, T0-1 staging, and N0 staging (p＜0.05). In
addition to the N0 staging subgroup, patients in the low-risk
group of other subgroups have a better OS (Figures 5H–Q).

Enrichment Analysis and Immune
Infiltration Assessment
Supplementary Table S2 presents the results of gene expression
differences between different risk groups. The analysis results of
GO-enriched cell components (CC), molecular functions (MF),
and biological processes (BP) based on the high- and low-risk
groups were shown in Figures 6A,B. A large number of immune-
related functions were enriched in the high-risk group, including
a-β T cell activation, B cell-mediated immunity, mast cell
activation involved in immune response, regulation of B cell
proliferation, regulation of T cell activation, and toll like receptors
4 signaling pathway. The low-risk group is mainly enriched in the
glutamate receptor signaling pathway, the intrinsic apoptotic
signaling pathway in response to DNA damage caused by p53
mediators, the regulation of the cell cycle G1/S phase transition,
and the combination of proline-rich regions. Figures 6C,D show
all the results of the KEGG pathway in the high- and low-risk
groups, including chemokine signaling pathway, cytokine
receptor interaction, metabolism of glycine, serine, and
threonine, leukocyte transendothelial migration, and T cell
receptor signaling. The pathways closely related to immunity
and ferroptosis were enriched in the high-risk group.

In the process of establishing a predictive model, we have
determined 121 DE-IRGs. Given that our model associated
immunity, we further analyzed the immune-related risk score
and the state of immune infiltration in the tumor

microenvironment to determine whether the predictive model
can reflect the state of the immune microenvironment. By
analyzing the correlation between immune/stromal cells and
risk scores, we found that immune cell scores and stromal cell
scores were significantly positively correlated with risk scores
(Figures 6E,F). Box plots show that the high-risk group’s
immune cells score and stromal cells score are higher in value
(Figures 6G,H). The heat map shows the 16 immune cell scores
and 13 immune function scores status of all samples with
different risk scores (Figure 6I). The correlation analysis
bubble plot shows that most immune cells and immune
functions positively correlated with the risk score (Figure 6J).
When comparing the differences between immune cells and
immune functions in high- and low-risk groups, we found
that Neutrophils, T helper cells, tumor infiltrating lymphocyte
(TIL), Check-point, antigen presenting cell (APC) co-
stimulation, B cell, Regulatory cells (Treg), plasmacytoid
dendritic cells (pDCs), T cell co-stimulation, T cell co-
inhibition, Type 2 helper T (Th2) cells, human leukocyte
antigen (HLA), Follicular helper T cell (Tfh), Inflammation-
promoting, CD8+ T cells in the high-risk group are higher in
value (Figure 6K). This result is consistent with the results of our
correlation analysis. In summary, we have observed a link
between the immune-related risk score and the tumor
microenvironment.

The proportions of different immune-infiltrating cells varied
from sample to sample. However, the highest proportion of
T cells and macrophages could still be found (Supplementary
Figure S9A). From the correlation plot, it was observed that T cell
CD8 had the strongest positive correlation with T follicular helper
cells and a negative correlation with macrophage M0
(Supplementary Figure S9B). The resting mast cells and
neutrophils are most closely related to the activated dendritic
cells (Supplementary Figure S9B).

Prediction and Verification of ceRNA
Regulatory Network
GCH1 expression in breast invasive carcinoma (BRCA), cervica
squamous cell carcinoma and endocervical adenocarcinoma
(CESC), cholangiocarcinoma (CHOL), ESCA, and kidney
chromophobe (KICH), kidney renal clear cell
carcinoma(KIRC), kidney renal papillary cell carcinoma
(KIRP), liver hepatocellular carcinoma (LIHC),
pheochromocytoma and paraganglioma (PCPG), stomach
adenocarcinoma (STAD), and uterine corpus endometrial
carcinoma (UCEC) showed significant differences. In addition
to CHOL, KICH, KIRC, KIRP, and LIHC, GCH1 expression is
up-regulated in other cancers (Figure 7A). Higher GCH1
expression was found to be associated with a poorer prognosis
in the GEPIA plotted survival curve (Figure 7B). We predicted
the 56 upstream miRNAs that may bind to GCH1. The miRNAs-
GCH1 regulatory network established by the Cytoscape software
was shown in Figure 7F. According to the mechanism by which
miRNA regulates the expression of target genes, there was a
significant negative correlation between miRNA-27a-3p and
GCH1 expression (Figure 7C). We also found that this
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FIGURE 7 | Prediction and validation of ceRNA regulatory network. (A) Difference in GCH1 expression between normal and tumor tissue across 33 cancer types.
(B) Survival rates for levels of high and low GCH1 expression. (C) Correlation between GCH1 and hsa-miR-27a-3p expression. (D) Expression level of has-miR-27a-3p
for normal versus ESCA tissue. (E) Survival rates for levels of high and low hsa-miR-27a-3p expression. (F) Regulatory network of miRNAs-GCH1. (G) Correlation
between expression of TMEM161B-AS1 and hsa-miR-27a-3p. (H) Correlation between expression of TMEM161B-AS1 and GCH1. (I) TMEM161B-AS1
expression between normal and ESCA tissue. (J) Survival rates between groups with high and low expression of TMEM161B-AS1. (K) Correlation between expression
of LINCO2381 and hsa-miR-27a-3p. (L) Correlation between expression of LINCO2381 and GCH1. (M) Expression levels of LINCO2381 for normal and ESCA tissue.
(N) Survival rates between groups with high and low expression of LINCO2381. (O) Regulatory network of lncRNAs- hsa-miR-27a-3p. (P) ceRNA regulatory network
genes include TMEM161B-AS1, hsa-miR-27a-3p and GCH1. The expression level of all genes refers to the transcription level of RNA.
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miRNA was significantly up-regulated in ESCA (Figure 7D) with
a better prognosis (Figure 7E). These findings suggest that
miRNA-27a-3p may be the most promising regulatory miRNA
of GCH1 in ESCA. Through the starBase database, 139 lncRNAs
were obtained. The lncRNAs-GCH1 regulatory network is shown
in Figure 7O. The expression of the two lncRNAs (TMEM161B-
AS1 and LINC02381) were negatively correlated with the

expression of miRNA-27a-3p (Figures 7G,K) and positively
correlated with the expression of GCH1 (Figures 7H,L).
LINC02381 and TMEM161B-AS1 were significantly less
expressed in ESCA tumor tissues (Figures 7I,M). High
expression of TMEM161B-AS1 indicated a worse prognosis
(Figure 7J), but there was no significant difference in OS
between high and low expression of LINC02381 (Figure 7N).

FIGURE 8 | Mutational analysis of genes of interest. (A) Mutational types and distribution of 43 DE-IRFeGs. (B–C) Waterfall-type plots showing the mutation
distribution of the thirty most common genes in low and high risk groups. The right panel of each plot shows the mutation frequency by type, and the color key in the
bottom panel shows references to mutation type and risk score. The histogram in the top panel shows the TMB statistic for each sample. (D) Correlation between TMB
and risk score. (E) TMB frequency for high- and low-risk groups. (F) The difference in survival rates between the high and low TMB groups. (G) Risk score between
KMT2D wild and mutant groups. (H–J) Expression levels of SLC2A3, DDIT3, and GCH1 for the KMT2D wild and mutant groups. (K) Survival rates between KMT2D wild
and mutant groups. (L) Expression levels of KMT2D between normal and tumor tissues across 33 cancer types. (M) Risk scores for MUC16 wild and mutant groups.
(N–P) Expression levels of SLC2A3, DDIT3, and GCH1 for the MUC16 wild and mutant groups. (Q) Survival rates between MUC16 wild and mutant groups. (R)
Expression levels of MUC16 for normal and tumor tissues across 33 cancers types.
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Figure 7P shows the ceRNA regulatory network composed of
TMEM161B-AS1, hsa-miR-27a-3p and GCH1.

Analysis of the Correlation Between
PR-DE-IRFeGs and Mutation Field
We show the mutations of the 43 DE-IRFeGs through a waterfall
plot (Figure 8A). Figures 8B,C show the mutations of the top 30
most common genes in 77 samples in the low-risk group and 78
samples in the high-risk group. The results showed that TMB was
positively correlated with risk score (Figure 8D). However,

significant differences in TMB between the high and low risk
groups were not found (Figure 8E). By a Kaplan-Meier survival
curve, we found that the OS of the samples with high TMB was
lower (Figure 8F). Afterwards, we passed the risk score
difference between the wild group and the mutant group of
the KMT2D, and found that the risk score in the mutant group
was lower (Figure 8G). By comparing the expression levels of
the 3 PR-DE-IRFeGs genes in the KMT2D wild group and the
mutant group, it was found that the expression levels of the 3
PR-DE-IRFeGs in the mutant group were all lower (only
SLC2A3 shown significance, Figures 8H–J). The Kaplan-

FIGURE 9 | Copy number variation (CNV) analyses. (A) Frequency of CNV for 43 of the DE-IRFeGs. The green circle refers to copy number loss and the pink circle
refers to copy number gain. (B) Distribution of 43 DE-IRFeG CNVs by position along the human chromosomes. (C–E) Three PR-DE-IRFeGs (DDIT3, GCH1, and
SLC2A3) expression levels for normal, single deletion, and single gain copy number groups. (F–H) Survival rates among single deletion, normal, and single gain copy
number groups of the three PR-DE-IRFeGs (DDIT3, GCH1, and SLC2A3), respectively.
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Meier survival curve shows that there is little difference in
survival status between the KMT2Dmutant group and the wild
group (Figure 8K).

Through pan-cancer analysis, we discovered the differential
expression of KMT2D between many cancers and normal
tissues. KMT2D gene is highly expressed in CHOL,
KICH, LIHC and STAD (Figure 8L). We used the same
method to analyze the mutant gene MUC16. The results
showed that there was no significant difference in the risk
score and OS between the wild group and the mutant group
of MUC16 (Figures 8M,Q). Except for the significantly higher
expression of DDIT3 in the MUC16 mutant group (Figure 8O),

no significant differences of remaining 2PR-DE-IRFeGs was
found (Figures 8N,P). Pan-carcinoma results show that except
in BRCA, the MUC16 is more highly expressed in other cancers
tissues (Figure 8R).

CNV Analysis
Except for MAFG, PGD, LONP1, RRM2, HRAS, GABARAPL1,
PRKAA2, ATG5, HILPDA, ELAVL1, PSAT1, BACH1, and
SCD, which have a higher frequency of CNV loss, the
remaining 30 DE-IRFeGs (including 3 PR-DE-IRFeGs) have
a higher frequency of CNV gain (Figure 9A). Figure 9B shows
the corresponding positions of these 43 genes on the

FIGURE 10 | Analyses of gene correlations. (A) Correlation analysis between 45 ICIs-related gene expression and risk score. (B) Expression levels of
ICIs-related genes for high- and low-risk groups. (C) Correlation between m6A-related genes and risk score. (D) Expression of m6A-related genes for
high- and low-risk groups. (E) Correlation between ABCC1 gene expression and risk score. (F) Expression levels of ABCC1 for high- and low-risk groups.
(G) Correlation between ABCC3 expression and risk score. (H) Gene expression of ABCC3 in high- and low-risk groups. ns, not significant; *p < 0.05;
**p < 0.01; ***p < 0.001.
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chromosome and the comprehensive status of CNV. It can be
observed that the CNV frequency of DE-IRFeGs on
chromosomes 1, 3, 11, and 19, and the gain copy number
frequency of DE-IRFeGs on chromosomes 3 and 11, is higher
(Figure 9B). By comparison, the highest expression levels of
DDIT3 and GCH1 were observed in the single gain copy
numbers group, compared to the lowest in the single
deletion copy numbers group (Figures 9C,D).
Unfortunately, there was no significant difference in the
expression of SLC2A3 between the three groups
(Figure 9E). From the survival curve, we also observed that
the survival of the single deletion copy number group of
DDIT3 is the best, compared to the worst in the single gain
copy number group (Figure 9F). Similar significant differences

are not observed in the survival plot of GCH1 and SLC2A3
(Figures 9G,H).

Correlation Analysis Between Predictive
Model and ICIs-Related, m6A-Related and
Multidrug Resistance-Related Genes
We analyzed the correlation between 45 ICIs-related genes and
the predictive model (Figure 10A). It can be seen that CD44 and
TNFRSF18 are significantly negatively correlated with the risk
score, and genes such as CTLA4, TNFRSF9, CD80, TIGIT,
PDCD1, etc. are positively correlated. And the difference in
the expression levels of these genes between the high and low-
risk groups supports our previous analysis (Figure 10B).

FIGURE 11 | Application of model to clinical treatments. (A) Correlations among gene expression levels of three PR-DE-IRFeGs, CD274, and their risk
score. (B) Correlations among gene expresion levels of three PR-DE-IRFeGs, scores for TIDE, MSI, Dysfunction, Exclusion, and risk scores. (C) Correlation
between the three drugs in clinical use and expression level of three PR-DE-IRFeGs, risk score. (D–F) Drug sensitivity of docetaxel, cisplatin, and paclitaxel for
the high and low-risk groups.
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Considering the vital role of N6-methyladenosine (m6A) in
regulating mRNA splicing, export, localization, translation, and
stability, we also analyzed the relationship between m6A-related
genes and risk scores. The results show that METTL3, METL14,
RBM15, ZC3H13, YTHDC1, and the risk score have a significant
positive correlation (Figure 10C). Except for YTHDF2 and
ALKBH5, METTL3, ZC3H13, and YTHDC1 which had higher
expression levels in the high-risk group (Figure 10D). Finally, we
also explored the correlation between the expression of drug
resistance genes MRP1 (ABCC1) and MRP3 (ABCC3) and risk
score. ABCC1 is negatively correlated with risk score
(Figure 10E), but ABCC3 has no significant correlation with
risk score (Figure 10G). The difference in expression of ABCC1
and ABCC3 between the high and low-risk groups supports our
correlation analysis (Figures 10F,H).

Clinical Application of 3 PR-DE-IRFeGs
From the Predictive Model
The circle graph shows that SLC2A3 is positively correlated with
CD274, while DDIT3 is negatively correlated with CD274
(Figure 11A). Higher tide prediction score represents a higher
possibility of immune escape, which indicates that the patient is
less likely to benefit from ICIs treatment (Jiang et al., 2018).
Figure 11B shows the correlation between TIDE, MSI,
Dysfunction, Exclusion, and risk score/the three PR-DE-
IRFeGs. 3 PR-DE-IRFeGs/risk score show a significant
negative correlation with TIDE and dysfunction, and a
significant positive correlation with Exclusion, indicating that
our model containing 3 PR-DE-IRFeG has greater application
value in immunotherapy. Docetaxel and paclitaxel were observed
positively correlated with SLC2A3 and risk score (Figure 11C). A
positive correlation between GCH1 and these three drugs, and a
positive correlation between DDIT3 and paclitaxel were also
observed (Figure 11C). The difference in IC50 of the three
drugs between the high and low-risk groups also supports our
correlation analysis (Figures 11D–F).

Construction and Verification of Forecast
Nomogram
Supplementary Figure S10A shows the nomogram constructed
by 2 clinical prognostic factors (N staging andM staging) and risk
score. The time-dependent ROC curve shows the nomogram’s
excellent predictive performance in 1, 2, and 3- years of OS
(majority of AUC > 0.65, Supplementary Figures S10B–D). We
have observed similarities between the predicted OS and the
actual OS in most years based on 3 data sets (Supplementary
Figures S10E–G). These data indicate that the nomogram has a
better ability to predict OS in patients with ESCA.

DISCUSSION

As a common and highly heterogeneous malignant tumor (Fisher
et al., 2013), ESCA lacks accurate biomarkers to predict the
survival prognosis of patients. Four ESCA datasets from

TCGA and GEO databases were used to screen out three PR-
DE-IRFeGs for constructing a predictive model. After multiple
analysis and verification of multiple internal and external
datasets, our model has proven to meet this requirement. In
addition, our model showed the best predictive value compared
with other models in previous research (Song et al., 2021; Tang
et al., 2021). Three PR-DE-IRFeGs have been reported to be
closely related to ferroptosis and immunity, as well as the
occurrence, development and prognosis of certain cancers.
Through in-depth exploration from multiple perspectives,
many potential roles of the immune system and ferroptosis in
ESCA have been observed. At present, immunotherapy has
attracted much attention in the treatment of patients with
advanced ESCA, and the optimal treatment plan is particularly
important in the multimodal treatment of ESCA. The close
correlation between clinical treatment sensitivity and the
model also demonstrates the excellent guiding value of our
model in immunotherapy and chemotherapy. Not only that,
the high correlation between the model and genes related to
multidrug resistance, M6A, and ICIs also implies a close
relationship among them. Finally, a nomogram composed of
comprehensive factors was constructed to accurately and
efficiently predict the survival rate of cancer patients.

The three PR-DE-IRFeGs (DDIT3, SLC2A3, and GCH1) used
to construct the model were all identified as risk factors. Solute
carrier family 2(facilitated glucose transporter), member 3
(SLC2A3) encodes glucose transporter 3 (GLUT3), which can
inhibit ferroptosis and is closely related to the poor prognosis of
cancer (Masin et al., 2014). Dai et al. (2013) found that highly
expressed miR-106a can hinder the effect of SLC2A3 and further
inhibit cell proliferation and glycolysis in gliomas. In addition, the
up-regulation of the SLC2A3 gene has also been observed to
reduce the OS and Disease Free Survival of patients with
colorectal cancer (Gao et al., 2021). As a transcription factor
that induces DNA damage, recombinant DNA damage inducible
transcript 3 (DDIT3) can develop diseases through apoptosis and
autophagy (Liu H. et al., 2021). Tan et al. (2016) found that
DDIT3 was significantly up-regulated in T-47D breast cancer
cells, which promoted the formation of endoplasmic reticulum
and autophagosomes, and ferritin autophagy mediated by
NCOA4 could control cellular iron homeostasis to support
ferroptosis (Yang M. et al., 2019). These results indicated that
DDIT3 could affect ferroptosis by affecting autophagy. GTP
cyclized hydrolase 1 (GCH1) is the rate-limiting enzyme in
the biosynthesis of tetrahydrobiopterin (BH4) (Zhang et al.,
2007). Wei et al. (2020) found that cells with high expression
of GCH1 induce lipid remodeling by synthesizing BH4/BH2,
forming a GCH1-BH4-phospholipid axis to inhibit ferroptosis is
related to the poor prognosis of glioma patients. These results all
supported that the three PR-DE-IRFEGs are closely related to
ferroptosis and immunity. Similar to these studies, poor
prognoses were observed in the up-regulation of these genes
in ESCA, which may also be caused by the suppression of
iron death.

To further understand the biological functions and molecular
mechanisms of 43 DE-IRFeGs, GO function and KEGG pathway
enrichment analysis were performed. The results showed that the
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BPs,MFs, and CCs enriched in DE-IRFeGs were mainly related to
hypoxia and cell autophagy, such as oxidative stress and the
response to oxygen levels from GO enrichment. Similarly,
pathways related to autophagy, such as autophagy-animal,
mitophagy-animal, HIF-1 signaling pathway, etc, have also
been discovered. Li et al. (2019) found that the form of
carbonic anhydrase 9 inhibiting multiple myeloma cell death
under hypoxic conditions is mainly a mixed cell death of
apoptosis and ferroptosis through autophagy process. In
addition, studies have also found that cytoplasm actively
controls ferroptosis by interacting with GPX4 to activate the
autophagy degradation of GPX4 (Chen C.a. et al., 2021). After
combining these studies, we considered that the screened DE-
IRFeGs were closely related to ferroptosis and autophagy.

To verify the utility of our model, we compared our model, the
ferroptosis-related model of Song et al. (2021) and the autophagy-
relatedmodel of Tang et al. (2021). After comparing the ROC plot
and Kaplan-Meier survival plot, it is found that our model has the
best performance in predicting the prognosis of ESCA patients.
Compared with the other two studies, our study also shows other
advantages. Compared with the model constructed by Song et al.
(2021) which is based on two data sets, we used four data sets to
screen for differential genes and used co-expression analysis to
identify DE-IRFeGs as incorporated in our model. As compared
with the lack of analysis of prognostic factors, such as immune
infiltration in the predictive model constructed by Tang et al.
(2021), we have established some interesting findings. And by the
c-index comparison, we observe that our model performs better
than Tang et al.’s model and has the highest RMST curve among
the three models of interest. These analyses support the utility of
our predictive model. Considering the joint role of immunity and
ferroptosis in tumor development, and our analysis of their
genetics (IRGs and FRGs), we consider our approach more
favorable to studies which examine only one of these roles
(see Guo et al., 2020; Zhang et al., 2021). Our model also has
predictive value for chemotherapy and immunotherapy, and
shows good performance across multiple internal and external
datasets, both features not included in Guo et al. (2020) and
Zhang et al. (2021).

The immune microenvironment of cancer cells plays an
essential role in inhibiting tumor proliferation or promoting
tumor progression (Tang et al., 2021). We observed a large
number of biological pathways and processes related to
immune cells enriched in the high-risk group, which suggested
that there may be immune microenvironment-related biological
processes in the high-risk group. The positive correlation between
immune and stromal cell scores and risk scores observed in
further immunological analysis supports this conclusion. We
also observed higher neutrophils, T helper cells, B cells, Tregs,
pDCs, T cell costimulation, HLA, Tfh, inflammation promotion,
and CD8+ T cell scores in the high-risk group. Many studies have
shown that the increase of neutrophils in tumor tissues is related
to the poor prognosis of patients. For example, Hanne Krogh
Jensen et al. Jensen et al. (2009) found that neutrophils in tumors
are poor prognostic factors for renal cancer. Niels Borregaard’s
research results also shown that high neutrophils are associated
with poor overall survival (Borregaard, 2010). Inflammation and

the development of ESCA seem to be closely related (Abdel-Latif
et al., 2009). In the high-risk group, Neutrophils, Treg,
Inflammation-promoting CD8+ T cells are higher than those
in the low-risk group. These cells also dominate the inflammation
response (Zhao et al., 2016), which explains why their content is
higher in the high-risk group.Wang et al. (2019) found that CD8+

T cells release cytokines, including tumor necrosis factor and
interferon γ, to drive tumor cell killing by regulating ferroptosis.
Co-stimulation has been found to promote the proliferation and
survival of CD8+ T cells and Tregs (Chen and Flies, 2013).
Combining our results, we suspect that increased T cell
costimulation in patients in the high-risk group may promote
the proliferation of CD8+ T cells and Tregs, increasing their
content in ESCA. The increased CD8+ T cells release interferon γ
to improve the response of interferon γ to regulate ferroptosis.
These results support the potential role of immunity and iron
death in the progression of ESCA.

In recent years, as the understanding of RNA function has
gradually deepened, more and more studies have confirmed that
miRNA, lncRNA, and other RNAs play an essential role in
regulating tumors and immunity (Tay et al., 2014). Although
many studies have explored the impact of immune-related genes
on ESCA, the role of immune-related miRNA and lncRNA in the
progression of ESCA has not been clearly explained, especially the
analysis based on high-throughput sequencing has been lacking.
Therefore, it is significant to explore the potential regulatory
mechanism of the ceRNA network composed of mRNA-miRNA-
lncRNA in the progress of ESCA. After prediction and
verification of RNA sequencing data, the ceRNA regulatory
network composed of TMEM161B-AS1, hsa-miR-27a-3p and
GCH1 was screened out, which may play an important
biological role in ESCA.

Through the differential analysis of expression in pan-cancer,
GCH1 was observed to be up-regulated in most tumor tissues.
Recently, many studies have shown that the high expression of
GCH1 associated with the poor prognosis of tumors. Wei et al.
(2021) found that the expression of GCH1 was positively correlated
with the penetration of Tregs, and high GCH1 expression was
related to the decrease in the overall survival rate of triple
negative breast cancer. (Tran et al., 2018) also confirmed that
higher levels of GCH1 in patients with gliomas are related to
higher grades of gliomas, recurrence and poor survival rates. The
study by Gitanjali Pickett found that inhibiting or silencing GCH1
will reduce the proliferation and survival of tumor cells, and the
expression of GCH1 will increase under hypoxia (Pickert et al.,
2013). These results are consistent with the better prognosis we have
observed in the low expression of GCH1 in ESCA. Data from TCGA
also confirmed that the expression of upstream miR-27a-3p was
significantly negatively correlated with GCH1, but positively
correlated with prognosis. A study by Zhu K.-P. et al. (2019)
have also found that miR-27a can inhibit ESCC tumorigenesis by
targeting KRAS. Yan et al. (2019) found that miR-27a-3p has the
function of a tumor suppressor, regulates the proliferation of non-
small cell lung cancer cells by targeting HOXB8, and plays a tumor
suppressor effect in non-small lung cancer.

Similarly, data from TCGA also confirmed that the expression
of upstream TMEM161B-AS1 was significantly negatively
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correlated with miR-27a-3p and prognosis. The results have been
confirmed in other studies. Chen Q. et al. (2021) found that
lncRNA TMEM161B-AS1 mediated by HSA-Mir-27a-3p had an
inhibitory effect on glioma cells, and hsa-Mir-27a-3p inhibited
the proliferation, migration, and invasion of glioma cells by
down-regulating the expression of FANCD2 and CD44, thus
promoting cell apoptosis and ferroptosis. This supports that miR-
27a-3p can target TMEM161B-AS1. Based on the above results,
we infer that the overexpression of TMEM161B-AS1 may up-
regulate the expression of GCH1 by competitively binding hsa-
miR-27a-3p to promote the proliferation, migration, and
invasion of ESCA cells.

Gene mutations play an important role in the occurrence,
development and prognosis of tumors. As a response to the
number of mutations, TMB can be used as a marker to predict the
effect of immunotherapy in cancer patients. It was observed that
TMB was positively correlated with risk score and negatively
correlated with prognosis in our study. Among the 30 most
commonly mutated genes in ESCA, KMT2D was observed to
have a higher mutation frequency. Through analysis, we found
that the risk score of the KMT2D mutation group was lower. The
KMT2D gene encodes histone methyltransferase to methylate the
Lys-4 position of histone H3. It has been found that KMT2D is
closely related to tumor cell migration and adhesion. The
KMT2D mutation caused by the loss of KMT2D will inhibit
tumor migration, which is beneficial to the prognosis of cancer
(Guo et al., 2013). Interestingly, recent studies have reported that
KMT2D mutations are inhibitors of the development of ESCA
(Zhang et al., 2020). In addition, KMT2D mutations have also
been observed to have a longer survival time in patients with
small-cell lung cancer (Simbolo et al., 2017). Through analysis, we
found a lower risk score and a better prognosis in the KMT2D
mutation group in ESCA. Combining these results, we suspect
that the KMT2D mutants may play a role in ESCA through and
PR-DE-IRFeGs related to risk scores. The significantly lower
SLC2A3 expression in the KMT2D mutant group supports
this conjecture. The critical target that mediates the function
of KMT2D inhibition in tumors by whole-genome analysis is also
SLC2A3 (Koutsioumpa et al., 2019). According to existing
studies, it is found that SLC2A3 has a high affinity for glucose,
which can ensure the effective uptake of glucose by cells (Simpson
et al., 2008), and the low expression of KMT2D significantly
affects the effect of SLC2A3, thereby inhibiting cancer cells’
uptake and utilization of glucose. The functional
characteristics shown by the reduction of SLC2A3 in KMT2D
mutant group indicate that KMT2D mutation may be closely
related to the down-regulation of the ferroptosis-related gene
SLC2A3 and the promotion of ESCA progression.

With the emergence of large-scale sequencing, it has become a
trend to study diseases from molecular mechanisms. At present,
studies have shown that the correlation between gene expression
and CNV has a biological effect on the occurrence and
development of cancer (Heitzer et al., 2016). CNV causes the
heterogeneity of cancer genes. And CNV can be used to diagnose
specific tumor subtypes (Friedman et al., 2009) for early clinical
diagnosis and early intervention of tumors. Since CNV may lead
to genetic instability, increased genomic instability is associated

with the poor prognosis of many cancer types (Shi et al., 2012;
Tanenbaum et al., 2016). SLC2A3 duplication is a frequently
detected CNV phenomenon. Studies have shown that SLC2A3
duplication may be a genetic modifier of individual congenital
heart defects and aortic arch abnormalities. The loss of 22q11.2
CNV leads to the repetitive expression of SLC2A3, causing
abnormal glucose transport, affecting the development of the
heart and the production of diseases (Mlynarski et al., 2015). The
expression levels of DDIT3 and GCH1 were the highest in the
single gain copy group, while the survival rate in DDIT3 single
deletion group was the worst in ESCA. Combined with our
research results, we infer that CNV may play a role in ESCA
by affecting the expression of DDIT3 and GCH1.

Given the vital role of ICIs for metastatic systemic anti-tumor
therapy (Das et al., 2020), we analyzed the correlation between the
predictive model and ICIs. ICIs are a class of biological agents that
can promote immune cells to fight tumors by interacting with the
immune system and respond to tumors by changing the immune
microenvironment to change the state of immune infiltration
(Derakhshani et al., 2021). The expression of many ICIs-related
genes was found to be significantly correlated with our risk score.
CTLA4 and PDCD1 genes are two representative immune
checkpoint genes, proven to have an excellent immune
blocking effect in various cancers (So et al., 2020). These
immune checkpoint suppressor genes were observed higher in
the high-risk group, meaning high-risk patients with ESCA in the
group are more suitable for immunotherapy with corresponding
ICIs. Research in recent years has shown that M6a methylation is
a reversible RNA modification process. By detecting changes in
m6A-regulated gene expression (Wang et al., 2020), the
relationship between m6A status and the development of
tumor diseases can be assessed. In addition, PD1/PD-L1
checkpoint blockade is regulated by YTHDF1 (m6A reader)
and FTO (eraser), and m6A modulators may be potential anti-
cancer immunotherapy targets (Yang S. et al., 2019; Han et al.,
2019). METTL3 promotes the growth and tumorigenesis of acute
myeloid leukemia cells and inhibits renal cell carcinoma (Zhang
C. et al., 2017; Ianniello et al., 2019). ZC3H13 can inhibit the
proliferation and invasion of colorectal cancer and regulate the
self-renewal of mouse embryonic stem cells (Zhu D. et al., 2019).
YTHDC1 can retain oncogene mRNA in the nucleus and help to
eliminate abnormally mutated malignant cells subsequently.
These genes are all up-regulated in the high-risk group of
ESCA. Multidrug resistance is the main obstacle to the success
of ESCA chemotherapy. The correlation between risk score and
multidrug resistance genes also provides ideas and guidelines for
clinical treatment. These results all demonstrate the guiding value
of our model in multiple fields.

ICIs mainly represented by PD-L1 (CD274) have shown great
value in researching and treating various malignant tumors
(Nishino et al., 2017). PD-1 inhibits these immune
checkpoints by binding to PD-L1 inhibitors, promotes tumor
immune responses of T cells, and exhibits anti-tumor effects
(Zhang M. et al., 2017). We found a significant positive
correlation between CD274 and SLC2A3, indicating that ESCA
patients with high-expressing SLC2A3 can benefit more from
CD274 immunotherapy. TIDE is composed of genome-wide
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T cell dysfunction and rejection scores. Patients with higher TIDE
scores have a higher chance of anti-tumor immune escape, thus
showing a lower immune checkpoint blockers (ICB) treatment
response rate (Jiang et al., 2018). It can be used to predict tumors
before treatment characteristics predict the clinical response of
ICB (Jiang et al., 2018). We found that TIDE is negatively
correlated with a risk score, which means that high-risk ESCA
patients with lower TIDE scores have more favorable responses to
ICB. In our study, higher PD-L1 and lower TIDE had better
effects in immunotherapy in the high-risk group. These results
suggest that our model can be used as a marker for the efficacy of
immunotherapy. In addition, the sensitivity of chemotherapy
drugs is also an essential evaluation of clinical treatment. The risk
score and the 3 PR-DE-IRFeGs genes are significantly correlated
with the 3 chemotherapy drugs recommended by the NCCN
guidelines, indicating that the expression of these genes may
substantially enhance the treatment effect of these drugs for
patients with ESCA.

Through rigorous screening based on multiple datasets, we
filter out PR-DE-IRFeGs through co-expression analysis for
constructing a novel predictive model, which fills the gap in
signature of the immune-related ferroptosis gene. Our research
has also unearthed the potential biological processes in ESCA
from multiple levels, which may provide some meaningful
starting points for follow-up research. Although the model still
maintains excellent performance and clinical application value
under repeated verification, there are still many shortcomings in
our research. First of all, as a retrospective analysis of shared data,
the model’s actual clinical value needs to be tested in practice.
Limited data sources and sample size affect the accuracy of our
analysis’ results. For this reason, we have worked hard to discover
additional datasets and data types for our analysis. The limited
data types also bring great challenges to the completeness and
accuracy of the conclusions of many mechanisms in our analysis.

However, we still employed complex and comprehensive analyses
with limited data to provide more reliable support for our
conclusions. Secondly, limited by the small number of FRGs
and the need to meet sufficient PR-DE-IRFeGs for subsequent
analysis, we were unable to incorporate strict fold changes to filter
FRGs in our differential analysis.
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GLOSSARY

GEO Gene Expression Omnibus

TCGA The Cancer Genome Atlas database

IRGs immune-related genes

FRGs ferroptosis-related genes

DE-IRGs differentially expressed immune-related genes

DE-FRGs differentially expressed ferroptosis-related genes

DE-IRFeGs differentially expressed immune-related ferroptosis genes

PR-DE-IRFeGs prognostic-related differential expressed immune-
related ferroptosis genes

GO Gene Ontology

KEGG Kyoto Encyclopedia of Genes and Genomes

ROC Receiver Operating Characteristic

C-index concordance index

RMST or RMS restricted mean survival time

ICIs immune checkpoint inhibitors

m6A N6-methyladenosine

TIDE Tumor Immune Dysfunction and Exclusion

GSEA Gene Set Enrichment Analysis

TIME Tumor immune microenvironment

ceRNA competing endogenous RNAs

CNV Copy Number Variation

ESCA esophageal cancer

ESCC esophageal squamous cell carcinoma

miRNA microRNA

N normalN staging

AUC area under the curve

T T staging

M M staging

N normalN staging

IRFR immune-related ferroptosis related

HR hazard ratio

R Correlation coefficient

APC antigen presenting cell

CCR Chemokine Receptor

HLA human leukocyte antigen
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