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Abstract: Denitrification and anammox occur widely in aquatic ecosystems serving vital roles in nitro-
gen pollution removal. However, small waterbodies are sensitive to external influences; stormwater
runoff carrying nutrients and oxygen, flows into waterbodies resulting in a disruption of geochemical
and microbial processes. Nonetheless, little is known about how these short-term external inputs
affect the microbial processes of nitrogen removal in small waterbodies. To investigate the effects
of NO3

−, NH4
+, dissolved oxygen (DO) and organic C on microbial nitrogen removal in pond

sediments, regulation experiments have been conducted using slurry incubation experiments and
15N tracer techniques in this study. It was demonstrated the addition of NO3

− (50 to 800 µmol L−1)
significantly promoted denitrification rates, as expected by Michaelis-Menten kinetics. Ponds with
higher NO3

− concentrations in the overlying water responded more greatly to NO3
− additions.

Moreover, N2O production was also promoted by such an addition of NO3
−. Denitrification was

significantly inhibited by the elevation of DO concentration from 0 to 2 mg L−1, after which no
significant increase in inhibition was observed. Denitrification rates increased when organic C was
introduced. Due to the abundant NH4

+ in pond sediments, the addition demonstrated little influence
on nitrogen removal. Moreover, anammox rates showed no significant changes to any amendment.

Keywords: external impact; regulation experiments; nitrate; dissolved oxygen; nitrogen removal;
nitrous oxide

1. Introduction

Freshwater sediments, especially those of small waterbodies, are sensitive to flow
confluence either from human discharge or stormwater runoff [1,2]. During rainfall, runoff
accumulate pollutants from farmland, roads and roofs, and deposits them in receiving
waterbodies [3]. Many contaminants in runoff, such as soil particles with heavy metals,
can deteriorate water quality and lead to a loss of biodiversity [4,5]. Nutrients are com-
monly observed in runoff, including organic and inorganic compounds [6]. Notably, NO3

−

of high mobility and NH4
+ attached to soil particles are common soluble species and as

such are more likely to be brought into small waterbodies [7]. They can have great impact
on waterbodies because they are readily absorbed by simple organisms [8], leading to eu-
trophication and a reduction in biodiversity [9]. Furthermore, organic matter in runoff will
consume dissolved oxygen in waters, resulting in negative hypoxia conditions [10], but the
higher levels of dissolved oxygen found in runoff due to greater air contact during the flow,
can temporarily alleviate states of hypoxia in receiving waterbodies [11]. The nutrients and
oxygen carried by the runoff may overwhelmingly alter the physicochemical properties
and microbial processes of waterbodies of smaller size [12–14].

The nitrogen cycle is recognized as one of the most important biogeochemical processes
on earth [15]. Environmental factors such as redox conditions and substrate availability
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stand to regulate the operation and intensity of these pathways, but these are easily altered
and thus highly fluctuating in aquatic systems [16]. Denitrification and anammox are
important processes transforming inorganic nitrogen to dinitrogen gas [17] and are vital for
the removal of nitrogen pollution in aquatic ecosystems [18,19]. Among the components
that are easily carried by runoff into the waterbodies, NO3

− and NH4
+ provide substrates

for denitrification and anammox processes, which can directly affect the microbial nitrogen
removal [20,21]. The responses of denitrification and anammox processes to organic C
addition are significantly different: being a heterotrophic process, denitrification can use
organic C as an electron donor and is thus promoted by the addition of organic C [22];
while anammox, an autotrophic process, is instead reduced by the presence of organic C
due to competition with denitrification [23]. The confluence of runoff into waters may bring
in dissolved oxygen which can indirectly affect the anaerobic processes of denitrification
and annamox by influencing enzyme activities and metabolism [24,25]. Although several
studies have correlated environmental factors to microbial nitrogen removal processes
in natural habitats [21,26,27], the means by which these factors regulate the intensity of
denitrification and anammox activities in small waterbodies remain unknown.

What are the short-term effects of runoff into waterbodies on the microbial nitrogen
removal processes? In this context, slurry incubation experiments combined with 15N
tracer techniques were used in this study to investigate the influence of NO3

−, NH4
+,

DO and TOC on nitrogen removal rates in pond sediments. The objective of this study was
to (i) identify factors influence the denitrification process and to (ii) quantify their effects
on the sediments of small waterbodies.

2. Materials and Methods
2.1. Sample Collection and Physicochemical Analysis

Samples were collected from three ponds (pond #1, #2 and #3) located in Chongqing,
southwest China (29◦56′56′′–29◦57′43′′ N, 106◦37′12′′–106◦38′13′′ E) in July 2021. Precip-
itation in July was 189 mm which was relatively high throughout the year with annual
mean of 109 mm in 2021 and resulted in runoff confluence into ponds regularly in this
season. At each pond, three parallel surface sediments (0–10 cm) and overlying water
were sampled. Field samples were stored in sterile plastic bags and transported to the
laboratory in a cooler box (4 ◦C) for subsequent analysis. One subsample was stored in
4 ◦C refrigerator for microbial nitrogen removal regulatory experiments, and the second
subsample was used for physicochemical analyses. All samples were analyzed in triplicate,
and the values were averaged to represent site conditions.

NH4
+, NO2

−, NO3
− in overlying water were determined via a spectrophotometric de-

tection assay [28]. pH in overlying water was determined with a Mettler Toledo Ph analyzer
(S220, Switzerland). Sediment NH4

+, NO2
−, NO3

− were extracted from 5 g of fresh sedi-
ment/soil with 25 mL of 2 M KCl (1:5 w/v). The supernatant was filtered through a 0.22 µm
membrane filter and the compounds were determined via a spectrophotometric detection
assay. Moisture content was measured by oven-drying at 105 ◦C until a constant weight was
achieved. The pH was determined in 1:2.5 sediment/water (w/v) suspensions after shaking
and centrifugation, with a Mettler Toledo pH analyzer (S220, Switzerland). Organic matter
(OM) was measured as loss on ignition at 550 ◦C (LOI 550) using a Muffle furnace. The TN
and TP were determined with the potassium persulfate oxidation-ultraviolet spectrometry
method [29], using a UV spectrophotometer (UVmini-1240, Shimadzu, Japan).

2.2. DNA Extraction, Sequencing, and qPCR Analysis

DNA was extracted from sediment samples (approximately 0.5 g) using the FastDNA
SPIN Kit for Soil (MP Biomedicals, Irvine, CA, USA) following the manufacturer’s protocol.
The concentration of extracted DNA was measured with a NanoDrop Lite (Thermo Fisher
Scientific, Wilmington, DE, USA), and the DNA quality determined by means of 1% (w/v)
agarose gel electrophoresis.
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The nirS gene amplified by PCR using primers cd3aF and R3cd was used to study the
denitrification bacterial community [30]. Primers A438f and A684r was used to amplify
Anammox-specific 16S rRNA genes [31]. More details about the conditions of PCR amplifi-
cation are presented in Table S1. Before high-throughput sequencing, the PCR products
were purified using the MiniBEST Agarose Gel DNA Extraction Kit (TaKaRa Bio, Japan).
Subsequently, purified amplicons were pooled in equimolar and paired-end (PE) sequenced
(2 × 300) on an Illumina MiSeq PE300 platform. Raw sequences were merged and quality
filtered in Quantitative Insights in Microbial Ecology (QIIME) [32] and Mothur [33]. OTUs
with identity thresholds (93% for nirS and 97% for anammox 16S rRNA) were defined
by Usearch (v. 7.0 http://drive5.com/uparse/, accessed date: 10 June 2022). Rare OTUs
with less than 0.01% of the total sequences were excluded. To avoid biases arising from
sequencing depth and to make samples comparable, sequences were rarefied to a uniform
sequencing depth based on the sample with the lowest sequences. The raw sequences
of nirS and Anammox-specific 16S rRNA genes used in this study were deposited in the
Sequence Read Archive (SRA, https://submit.ncbi.nlm.nih.gov/subs/sra/, accessed date:
10 June 2022) of NCBI under the accession numbers PRJNA844121.

The abundance nir gene (nirS and nirK), nosZ gene (nosZ I and nosZ II) and anammox-
specific 16S rRNA genes in sediments were quantified by a LightCycler® R480 II Real-Time
PCR (Roche, Basel, Switzerland). Each sample was analyzed in triplicates. The standard
curves used for calculation were achieved with plasmid DNA with known concentrations
and copy numbers. Results of qPCR with high amplification efficiency (90–110%) and
correlation coefficient values of the standard curve (r2 > 0.97) were included in the analysis.
The specificity of PCR amplifications was defined by melting curve analysis and gel
electrophoresis. Primers, reaction systems and procedures are shown in Table S1.

2.3. Experimental Set Up

Four parallel incubations were performed to investigate the effects of NO3
−, NH4

+,
dissolved oxygen (DO) and organic C (as glucose) concentrations on the rates of deni-
trification, anammox and N2O production in pond sediments. In the nitrogen addition
experiments, five concentration gradients of 15NO3

− (50, 100, 200, 400 and 800 µmol L−1)
and five concentration gradients of NH4

+ (0, 20, 40, 80 and 120 µmol L−1) were set up in
the incubations. The regulation of DO was achieved through replacement, by injecting
oxygen-rich water (12 mg L−1) to replace the supernatant to reach different DO gradients
(0, 1, 2, 4, 6 mg L−1). The organic C experiments were set up at 0, 100, 200, 400 and 600 µmol
glucose L−1, respectively. Four sets of parallel regulation experiments were conducted on
three different ponds (pond #1, #2 and #3) and each gradient was incubated in triplicate.

2.4. Measurements of Potential Denitrification, Anammox and N2O Production Rates

The potential nitrogen removal rates of sediments were measured using slurry incuba-
tion and isotope pairing techniques [34]. Fresh sediments were mixed with water at the
ratio of 1:7 (sediment: water), and the resulting slurries were flushed with ultrahigh purity
He for 30 min until an anaerobic state was reached. To remove existing NOx

− (NO3
− and

NO2
−) and DO, the slurries were pre-incubated in the dark at an in situ temperature (28 °C)

for 36–48 h. After pre-incubation, the slurries were transferred to 12.5 mL tubes (Exetainers,
Labco, UK). The tubes were injected with the designed substrates and incubated in the incu-
bator at in situ temperature. The final concentration of NO3

− was fixed at 100 µmol L− for
treatments concerning addition of DO, organic C and ammonium. The slurries incubation
was thereafter terminated by adding 200 µL of 50% ZnCl2 at 0 and 2 h from the beginning
of incubation. 29N2 and 30N2 signals in the tubes were detected with a membrane inlet mass
spectrometry (MIMS, HPR40, Hiden, Warrington, UK). Detailed methods are described in
Cai, et al. [35].

N2O production rates were measured with headspace equilibrium gas chromatogra-
phy using the samples prepared as described above [36]. The tubes were injected with
5 mL of ultrahigh-purity He gas to replace the water phase and create headspace after

http://drive5.com/uparse/
https://submit.ncbi.nlm.nih.gov/subs/sra/
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inactivation and settling. Then, the tubes were violently shaken for 1 h to achieve gas-liquid
equilibrium. The concentration of N2O in the headspace gas was detected by means of gas
chromatography (GC-2014C, Shimadzu, Kyoto, Japan). Detailed methods are described in
Cai, et al. [35].

2.5. Statistical Analysis

One-way analysis of variance (ANOVA) with Tukey’s post hoc analysis was used to
test significant differences in potential rates among different concentration gradients (SPSS
Statistics 24.0, IBM, Armonk, NY, USA). Linear and Michaelis-Menten kinetics were fitted
to the data using the regression function of the Prism 8 software (version 8.0.2).

3. Results
3.1. Physicochemical Parameters of Water and Sediment

The overlying water of the three ponds studied had pH values ranging from 7.4 ± 1.2
to 7.6 ± 0.9 (Table 1). The concentrations of NO3

− was highly varied with values of
58.3 ± 5.8, 103.8 ± 7.3 and 10.5 ± 1.7 µmol L−1 in pond 1#, 2# and 3# respectively.
NH4

+ concentrations were determined at 7.8 ± 0.7, 24.4 ± 3.5 and 7.6 ± 1.8 µmol L−1

while the NO2
− concentrations in the overlying water were 3.5 ± 1.2, 7.3 ± 1.1 and

12.6 ± 4.1 µmol L−1, respectively.

Table 1. Physicochemical characteristics of three ponds.

Site Pond 1# Pond 2# Pond 3#

Overlying water

pH 7.4 ± 1.2 7.6 ± 0.9 7.5 ± 0.1
NH4

+ (µmol L−1) 7.8 ± 0.7 24.4 ± 3.5 7.6 ± 1.8
NO3

− (µmol L−1) 58.3 ± 5.8 103.8 ± 7.3 10.5 ± 1.7
NO2

− (µmol L−1) 3.5 ± 1.2 7.3 ± 1.1 12.6 ± 4.1

Sediment

Moisture (%) 73.8 ± 6.3 45.0 ± 5.0 59.4 ± 6.1
pH 6.9 ± 1.0 7.5 ± 0.8 7.6 ± 0.5

NH4
+ (mg kg−1) 13.0 ± 2.4 21.2 ± 1.9 8.6 ± 1.5

NO3
− (mg kg−1) 0.6 ± 0.0 0.5 ± 0.1 0.4 ± 0.1

NO2
− (mg kg−1) 0.3 ± 0.1 0.3 ± 0.0 0.2 ± 0.0

DIN (mg kg−1) 13.9 ± 2.5 21.9 ± 1.9 9.1 ± 1.8
TN (g kg−1) 2.2 ± 1.1 3.0 ± 0.8 6.7 ± 1.2
TP (g kg−1) 0.2 ± 0.0 1.1 ± 0.3 1.5 ± 0.2

OM (g kg−1) 113.0 ± 15.7 65.2 ± 11.2 105.0 ± 12.8

In sediments, pH in pond 1# (6.9 ± 1.0) was lower than the two other ponds (7.5 ± 0.8
and 7.6 ±0.5). The NH4

+ concentration was measured to be 13.0 ± 2.4, 21.2 ± 1.9 and
8.6 ± 1.5 mg kg−1 in the three ponds, and was the main form of dissolved inorganic
nitrogen (DIN) accounting for 93.5, 96.4 and 93.5% of DIN, respectively. The contents of TN
and TP were 2.2 ± 1.1, 3.0 ± 0.8, 6.7 ± 1.2 g kg−1 and 0.2 ± 0.0, 1.1 ± 0.3, 1.5 ± 0.2 g kg−1,
in the three respective ponds. All ponds had a high OM, although the lowest value
was found in pond 2# (65.2 ± 11.2 g kg−1), while the other two ponds were higher, i.e.,
113.0 ± 15.7 g kg−1 in pond 1# and 105.0 ± 12.8 g kg−1 in pond 3#.

3.2. Microbial Community of Nitrogen Removal

The abundance of denitrification- and anammox-related genes in the three ponds
are reported in Figure 1. The nir genes, genes related to denitrification, was the group
of genes most highly abundant in all three ponds. nirS gene abundance was observed
at (1.8 ± 0.0) × 108, (6.4 ± 0.2) × 108 and (5.2 ± 0.0) × 108 copies g−1, for pond 1#, 2#
and 3#, respectively. The abundance of nirK gene was determined to be (1.5 ± 0.1) × 108,
(5.2 ± 0.2) × 107 and (5.5± 0.3)× 107 copies g−1 in the three ponds, respectively. The genes
related to N2O-reduction were of lower abundance than nir gene, of which nosZ I was
found to be present at (1.1 ± 0.0) × 106, (1.2 ± 0.7) × 106 and (4.2 ± 0.0) × 106 copies g−1.
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The abundance of the nosZ II gene in pond surface sediments was determined to be
(2.8 ± 0.5) × 107, (1.4± 0.3)× 107 and (12.1± 1.7)× 107 copies g−1. Additionally, the abun-
dance of the anammox bacterial 16S rRNA gene was 2–4 magnitudes lower than the
denitrification functional genes, which varied from 1.5 × 104 to 2.8 × 104 copies g−1.
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Figure 1. Abundances of nitrogen removal related genes including nirS, nirK, nosZ I, nosZ II and
anammox 16S rRNA in sediments of the three ponds (Pond 1#–Pond 3#).

For denitrifiers, the 40 most abundant OTUs, containing 92.4% of nirS sequences,
all affiliated to Proteobacteria. At the genus level, three genera including Steroidobacter,
Azoarcus and Dechloromonas were identified across the pond sediments (Figure 2a).
Azoarcus was the most dominant genus in all three pond sediments (62.7%, 62.5% and
62.1% in the three respective ponds) (Figure 2c). The relative abundance of Steroidobacter
ranged from 8.3% to 35.7%, while Dechloromonas constituted 29.0%, 12.4% and 2.1%
of the total sequences in the three ponds, respectively. For anammox bacteria in pond
sediments, the dominant OTUs (40 OTUs, covering 99.3% of the sequences) were affiliated
to Planctomycetes. 16 OTUs belonged to the anammox genus Ca. Brocadia, 7 OTUs to
Ca. Kuenenia, and the remaining were divided into an unclassified cluster (Figure 2b).
Pond sediments were dominated by Ca. Kuenenia (91.3%, 63.7% and 73.0%, respectively).
The relative abundances of Ca. Brocadia were lower than that of Ca. Kuenenia at 5.5%,
12.9% and 4.4%, respectively (Figure 2d).

3.3. Effect of NO3
− and NH4

+ Addition

The potential rates of denitrification significantly increased from 12.4 ± 2.2 to
26.6 ± 5.9 nmol N g−1 h−1 with the addition of NO3

− from 50 to 200 µmol L−1 (Tukey’s,
p = 0.011, Figure 3a). However, there was no further significant increase in denitrification
rate as NO3

− concentration increased from 200 to 800 µmol L−1 (ANOVA, p = 0.463).
The response of potential denitrification rates to increasing NO3

− concentrations was in
accordance with the Michaelis-Menten kinetics, demonstrating a maximum denitrification
rate (Vmax) of 39.0 nmol N g−1 h−1 and an affinity constant (Km) of 109.5 µmol L−1. Ponds
with higher NO3

− concentrations in the overlying water had a greater response to NO3
−

addition in sediment (Figure S1a). In this way, pond 1# and 2#, which both had higher
NO3

− concentrations in the overlying water than pond 3#, showed more significant en-
hancements of potential denitrification rates at a maximum 1.9 and 2.5-fold increase with
NO3

− addition. In pond 3#, the maximum increase of potential denitrification rate was
only 1.0-fold as NO3

− was added to the sediment.
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The potential anammox rates showed no response to the addition of NO3
− (ANOVA,

p = 0.463), and remained low at 0.3 ± 0.4 nmol N g−1 h−1 (Figure 3a) The relative contri-
bution of anammox to nitrogen removal (ra%) was also low (<10%). With the increasing
NO3

− concentration, the potential rate of N2O production increased from 5.7 ± 2.6 to
9.0 ± 1.4 nmol N g−1 h−1. The response of N2O production rates to the increasing NO3

−

concentrations also fitted with the Michaelis-Menten equation demonstrating an affinity
constant (Km) of 41.8 µmol L−1 and a maximum rate (Vmax) of 8.8 nmol N g−1 h−1. N2O
production rates in pond 2#, the pond with the highest NO3

− concentration in the overly-
ing water, were enhanced 1.6-fold, while the pond with the lowest NO3

− concentration,
pond 3#, showed only a 0.3-fold increase (Figure S1b).

The addition of NH4
+ had no significant effects on the potential denitrification rates

which ranged from 16.8 to 18.9 nmol N g−1 h−1 (ANOVA, p = 0.978, Figure 3b). As for
potential anammox rates, no clear variation was found when the NH4

+ concentration in-
creased from 20 to 120 µmol L−1 (ANOVA, p = 0.994). The relative contribution of anammox
to nitrogen removal (ra%) was low, varying from 4.8 to 11.6%. Similarly, the addition of
NH4

+ exerted no effect on the N2O production rates and the relative proportions of N2O to
N2 and N2O (ANOVA, p = 0.775 and 0.958, respectively).
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3.4. Effect of DO and Organic C Introduction

Generally, denitrification in the sediment was observed to be inhibited by the elevation
of oxygen (p = 0.011, R2 = 0.40, Figure 4a). Until a concentration of 2 mg L−1, the intro-
duction of DO significantly decreased denitrification rate from 20.0 to 15.1 nmol N g−1 h−1

(ANOVA, p = 0.019), but hereafter no significant change was observed when the DO con-
centration was further increased (ANOVA, p = 0.825). There was no significant correlation
between DO and anammox rates (ANOVA, p = 0.986), whose rates ranged from 1.1 to
1.2 nmol N g−1 h−1. Furthermore, the relative contribution of anammox to nitrogen re-
moval was always lower than 10%. As the DO concentration increased, N2O production
rates showed no significant change, varying from 3.4 to 5.4 nmol N g−1 h−1 (ANOVA,
p = 0.639). An increase in DO also had no effect on the relative proportions of N2O (ANOVA,
p = 0.556).
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among the treatments (Tukey test, p < 0.05).

Potential denitrification rates can be enhanced by the addition of glucose (Figure 4b).
Until a concentration of 200 µmol L−1, glucose addition resulted in significantly higher
denitrification rates, which increased from 13.3 to 23.5 nmol N g−1 h−1 (ANOVA, p = 0.027).
No significant changes were observed with further glucose addition beyond 200 µmol L−1

(ANOVA, p = 0.791). However, the response of the potential denitrification rate to the
addition of glucose in the various pond sediments was related to the OM contents in
sediments (Figure S2). With the addition of glucose until a concentration of 600 µmol L−1,
denitrification rates increased more greatly in pond 2# (0.9-fold increase) which had lower
OM content, than in pond 1# and 3#, which both had higher OM contents (0.5- and
0.4-fold increase, respectively). Anammox rates ranged from 1.6 to 1.8 nmol N g−1 h−1
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(ANOVA, p = 0.950), but showed no response to the addition of glucose. In contrast to the
group without glucose addition, the N2O production rates were significantly higher when
glucose concentration was 200 µmol L−1 (Tukey’s, p = 0.045). With the addition of glucose,
no significant change to the relative proportions of N2O was observed (ANOVA, p = 0.899).

4. Discussion

Small waterbodies frequently receive high loads of pollution from human activities and
stormwater runoff due to their small area and close proximity to human settlements [37,38].
Compared to large waterbodies, small waterbodies have relatively low buffer capacity
against the impact of pollution discharge and stormwater runoff, and thus their physico-
chemical properties may shift dramatically [13]. Among these physicochemical properties,
the dissolved inorganic nitrogen (DIN), organic C and dissolved oxygen levels are particu-
larly important for the microbial nitrogen cycle [39–41].

Our study showed that the NO3
− was the most important parameter altering the

microbial nitrogen cycle in sediment. The artificial addition of NO3
− significantly in-

creased the potential denitrification rates 1.8-fold when the NO3
− concentration increased

from 50 to 800 µM. These results suggest that the denitrification process in such small
waterbodies was limited by NO3

−, which are consistent with studies conducted on rivers,
estuary sediments and paddy soils as the addition of NO3

− alleviates the limitation of
substrate deficiency process [21,42,43]. However, in contrast with rivers and estuaries,
in natural conditions, these changes are prone to occur in small water bodies, whose
environments may be dramatically influenced by runoff confluence [13]. Furthermore,
the denitrification genes (nirS, nirK, nosZ I and nosZ II) were detected with high copy
numbers (106–109 copies g−1) in pond sediments, being higher than those reported for
marine and freshwater sediments [44–49]. Previous studies found that the higher the
NO3

− concentrations the better the denitrification genes expressed [50]. Thus, for pond
sediments, elevated NO3

− may induce more expression of denitrification genes, leading to
more NO3

− being reduced to gas and released. Since the anammox rates remained low in
the present study, we can conclude that the nitrogen removed mainly occurred through
added NO3

− via denitrification. In the meantime, denitrification functional genes were
2–4 magnitudes more abundant than the anammox functional genes, which could explain
the domination of denitrification process. Moreover, the sediment with a lower NO3

−

concentration in the overlying water (pond 3#) showed a lower Vmax for denitrification
with NO3

− addition. This can be explained by microbial denitrifiers in poor NO3
− habitats

being well-adapted to such environments, and so their denitrification rates respond weakly
to NO3

− additions [51]. There were no significant differences in the abundance of denitrifi-
cation genes among any of the three ponds. The contrasting response to NO3

− addition of
the three ponds sediment may be ascribed to their community compositions which showed
significant difference [52]. The addition of NH4

+ exerted no effect on denitrification and
anammox rates in pond sediments. This is probably due to NH4

+ usually being in surplus
and is therefore not a limiting factor for denitrification in sediments [53].

The addition of glucose was found to promote the denitrification rates 0.8-fold when
the concentration was increased to 200 µmol L−1. Organic C acts as an electron donor in
heterotrophic denitrification [39]. Therefore, it can be suggested that organic C plays a
significant role in promoting denitrification in various habitats [21,54]. However, it should
be noted that the 15NO3

− was also added into the simulation system (final concentration at
100 µmol L−1) to measure the denitrification and anammox rates in the test of organic C
addition. As the substrate of denitrification, NO3

− often acts as a limiting factor in such
habitats [55]. Therefore, the addition of organic C only may not promote denitrification
when NO3

− is deficient in situ. On the contrary, DO elevation exerted negative effects on
denitrification. Lower DO levels create ideal reduction conditions for the denitrification
process [56,57]. Furthermore, NO2

− reductase (encoded by nirS and nirK gene) could
be inhibited by high DO concentrations, leading to the accumulation of NO2

−, which
consequently limits denitrification [58–60]. However, the presence of oxygen may enhance
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the ammonia oxidation processes that provide substrates (NO2
−) for denitrification and

anammox. Although the nitrogen removal from the sediment was inhibited immediately
after the elevation of DO, the nitrogen could still be removed in the long term.

N2O emission during denitrification is also of concern. The denitrification genes
nir (N2O producer) and nosZ (N2O reducer) are often used as genetic markers for N2O
production [61]. The proportion between N2O-producing and N2O-reducing microorgan-
isms (nir/nosZ ratio) can partly explain N2O emissions, which were positively correlated
in some studies [62,63]. Nevertheless, negative correlation between the nir/nosZ and
N2O/(N2O + N2) ratio were also observed in previous studies [64,65]. Therefore, N2O
emissions are not only controlled by genetic potential, but also by transcriptional regulation
and enzymatic activity [66]. However, environmental factors play an essential role in the
processes. In this study, NO3

− also significantly influenced the N2O production not only
denitrification. Although N2O production increased, the proportion of N2O production
in nitrogen loss (N2O/(N2 + N2O)) decreased. The addition of NO3

− may promote the
expression of N2O production and reduction genes [50], so N2O increased less than N2.
In other words, the addition of NO3

− not only promoted nitrogen removal, but also re-
duced greenhouse gas emissions, which is more environmentally beneficial. It was found
that the addition of C sources such as glucose increased the abundance and expression of
nosZ gene, but had no effect on nirS gene [67,68]. Furthermore, the introduce of DO could
inhibit NO2

− reductase, which consequently reduced production of N2O and N2 [58–60].
External inputs usually carry NH4

+, DO, NO3
− and organic C from domestic pollution,

rainfall runoff, and agricultural pollution to waterbodies. The present results showed that
NO3

− and organic C promoted denitrification and nitrogen removal from water sediments
until a certain extend. Although DO inhibited denitrification in the short term, nitrification
could be activated over time, which supplies substrates for the denitrification process
and can thereby promote nitrogen removal. Since NH4

+ in the sediment was in surplus,
the addition of NH4

+ showed no significant effect on nitrogen removal from the pond. Small
waterbodies play an essential role in agricultural watersheds to store nitrogen and mitigate
the pollution output from the watersheds [35]. NO3

− is the dominant form of nitrogen
in runoff [69], primarily due to mineralization and nitrification of nitrogen fertilizers in
agricultural watersheds [70], and the higher mobility of NO3

− [7]. Our study demonstrated
that rainfall runoff into the pond may create a “hotspot moment” of microbial nitrogen
removal, thereby reducing nitrogen pollution in the watershed.
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− addition. Figure S2: Potential rates of denitrification
between three ponds under varying concentrations of glucose addition. References [30,31,71–73] are
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