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A B S T R A C T

Administration of influenza vaccines via the respiratory tract has potential benefits over conventional parenteral
administration, inducing immunity directly at the site of influenza exposure as well as being needle free. In this
study, we investigated the suitability of Advax™, a stable particulate polymorph of inulin, also referred to as
delta inulin, as a mucosal adjuvant for whole inactivated influenza vaccine (WIV) administered either as a liquid
or dry powder formulation. Spray freeze-drying produced Advax-adjuvanted WIV powder particles in a size
range (1–5 μm) suitable for inhalation. The physical and biological characteristics of both WIV and Advax re-
mained unaltered both by admixing WIV with Advax and by spray freeze drying. Upon intranasal or pulmonary
immunization, both liquid and dry powder formulations containing Advax induced significantly higher systemic,
mucosal and cellular immune responses than non-adjuvanted WIV formulations. Furthermore, pulmonary im-
munization with Advax-adjuvanted WIV led to robust memory B cell responses along with an increase of lung
localization factors i.e. CXCR3, CD69, and CD103. A less pronounced but still positive effect of Advax was seen
on memory T cell responses. In contrast to animals immunized with WIV alone, all animals pulmonary im-
munized with a single dose of Advax-adjuvanted WIV were fully protected with no visible clinical symptoms
against a lethal dose of influenza virus. These data confirm that Advax is a potent mucosal adjuvant that boosts
vaccine-induced humoral and cellular immune responses both in the lung and systemically with major positive
effects on B-cell memory and complete protection against live virus. Hence, respiratory tract immunization,
particularly via the lungs, with Advax-adjuvanted WIV formulation as a liquid or dry powder is a promising
alternative to parenteral influenza vaccination.

1. Introduction

Influenza is a highly contagious disease affecting millions of people
worldwide on annual basis [1,2]. Seasonal epidemics and sporadic
pandemics of influenza are caused by the transmission of influenza
virus via aerosols [3,4]. Since the respiratory tract is the portal of in-
fluenza virus entry, in-theory the best means of protection would be to
use a vaccine to generate a local memory immune response able to
neutralize the virus at the site of infection. However, the majority of the
currently available influenza vaccines are administered via

intramuscular or subcutaneous injection [5]. Injected vaccines generate
strong systemic immunity but minimal mucosal immunity [6,7].
Moreover, injected vaccines can cause local reactions including pain,
swelling and redness at the injection site, needle phobia, and trans-
mission of infectious diseases due to needle stick injuries. An influenza
vaccine formulation that could be administered via the respiratory tract
would overcome these drawbacks of current injected formulations, is
therefore needed.

Presently, live attenuated influenza vaccine (LAIV) is the only for-
mulation approved for administration via the intranasal (i.n.) route, but
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due to the live nature of the virus, it is not approved for use in high risk
groups. This problem could be avoided by the use of inactivated in-
fluenza vaccine formulations suitable for delivery via the respiratory
tract. Already in 1969, Waldman et al. reported that pulmonary vaccine
administration was as effective as the conventional i.m. administration
for preventing influenza associated illness [8]. Pulmonary vaccines can
be delivered as liquids or as dry powders [6,9,10]. In pre-clinical stu-
dies, pulmonary delivery of both liquid and dry powder influenza
vaccine formulations has shown to induce mucosal as well as systemic
immune responses [6,7,11,12]. However, the magnitude of immune
responses evoked by these non-adjuvanted vaccines was low with low
mucosal IgA titers and low numbers of memory cells; this might result
in short lived protection against infection [7,12,13]. These issues might
be solved by the use of a suitable adjuvant to boost the immune
memory responses able to be elicited by respiratory tract administration
of influenza vaccine.

Identification of an adjuvant suitable for administration via the re-
spiratory tract is not as easy as for parenteral administration, with no
adjuvant currently approved for intranasal or pulmonary use in clinic.
The problems of developing a mucosal adjuvant for influenza vaccines
are highlighted by the issue of rare cases of facial palsy in clinical trial
subjects who were administered an intranasal inactivated influenza
vaccine containing a latent toxin adjuvant, resulting in the vaccine
being abandoned [14]. Of current approved alternatives, alum, is not
effective in influenza vaccines [15], and in addition causes inflamma-
some activation, local cell necrosis with DNA release and forms in-
soluble aggregates rendering it unsuitable for pulmonary use [16,17].
The only other currently approved influenza vaccine adjuvants are
based on squalene oil emulsions, which are restricted to subcutaneous
or intramuscular use. Moreover, the administration of oil-based emul-
sions to the respiratory tract are most likely detrimental for the normal
balance of the alveolar lining fluid; thus interfering with lung function.
Newer experimental adjuvants such as toll-like receptor agonists work
via activation of NFκB. However, NFκB is a key inducer of inflammatory
responses, and therefore pulmonary administration of these agonists
may induce unacceptable lung inflammation [18]. Hence, the number
of candidate adjuvants likely to be suitable for respiratory tract use is
very limited.

An adjuvant that has shown a good safety and tolerability record
upon parenteral administration with inactivated and recombinant in-
fluenza vaccines in animal models and clinical trials is Advax [19–21].
Advax adjuvant is composed of the insoluble particulate polymorph of
inulin, also referred to as delta inulin. The inulin that makes up Advax
adjuvant is rapidly excreted from the body through renal excretion with
complete clearance within approximately 3 weeks after parenteral ad-
ministration [22]. Advax adjuvant comprises discoidal shape particles
of 1–2 μm in diameter, formed by assembly of a series of lamellar
crystalline sheets [23]. Adjuvantation of parenterally administered
vaccines with Advax has shown to improve the immunogenicity and
protective capacity of several vaccine candidates against hepatitis B,
anthrax, severe acute respiratory syndrome (SARS) coronavirus, listeria
and influenza [21,24–27]. The exact mechanism by which Advax boosts
immune responses upon parenteral administration is still under in-
vestigation [23].

Till date, however, the use of Advax as an adjuvant for vaccines
delivered via the respiratory tract, has been less well investigated. A
single study by Murugappan et al. [28] showed that pulmonary co-
administration of a liquid influenza vaccine formulation with Advax
induced a more balanced Th1/Th2 profile with a modest increase of
only nasal IgA titers [28]. No enhancement in other humoral and cel-
lular immune responses was found at the used Advax dose of 200 μg
[28]. Also, the potential of Advax to boost immune responses by the
alternative more commonly used mucosal route such as intranasal or
when incorporated in alternative physical form such as powders, was
not investigated in that study.

In the present study, we investigated whether Advax adjuvant could

augment immune responses to whole inactivated influenza vaccine
(WIV) administered to the respiratory tract via intranasal (i.n.) or
pulmonary routes as either a dry powder or liquid formulation. Further,
we investigated the mechanisms whereby Advax enhanced the immune
responses to influenza vaccine administered via the respiratory tract.
Lastly, we explored whether a single pulmonary immunization with a
low dose of WIV adjuvanted with Advax would provide protection
against lethal viral challenge.

2. Materials and methods

2.1. Virus preparation

For the immunization study, Influenza A strain NIBRG 23, a re-
assortant virus from A/turkey/Turkey/1/2005 (H5N1) and A/PR/8/34
(H1N1) was grown in embryonated chicken eggs by allantoic inocula-
tion of the seed virus and purified as described previously [12]. For the
challenge experiments, a mouse-adapted Influenza A/PR/8/34 (H1N1)
virus propagated in allantoic fluid of 10-day old embryonated hens eggs
was used.

2.2. Vaccine preparation

Live virus was inactivated by an overnight treatment of 0.1% β-
propiolactone (Acros Organics, Geel, Belgium) in citrate buffer
(125mM sodium citrate, 150mM sodium chloride, pH 8.2) at 4 °C.
Then, inactivated virus was dialyzed overnight against Hepes buffer
(145mM NaCl, 5 mM Hepes, pH 7.4, sterilized by autoclaving) to
completely remove β-propiolactone. Protein content of the WIV pre-
paration was determined by micro-Lowry assay and hemagglutinin
(HA) was assumed to be 1/3rd of the total protein content of the in-
activated virus [12].

2.3. Spray freeze drying

Spray-freeze drying (SFD) was performed by mixing WIV or WIV-
Advax (Advax™ adjuvant, Vaxine Pty Ltd., Adelaide, Australia)
(HA:Advax 1:100 (w/w)) with a water soluble form of inulin which was
used as a lyoprotectant and bulking agent (4 kDa, Sensus, Roosendaal,
The Netherlands). For WIV and WIV-Advax formulations, the HA:inulin
weight ratio was 1:200 and 1:100, respectively, thus obtaining disper-
sions with composition HA:inulin 1:200 (w/w) and HA:Advax:inulin
1:100:100 (w/w/w). The HA:inulin weight ratios of 1:200 and 1:100
were based upon a dose of 5 μg HA with or without 500 μg of Advax in
1mg of SFD powder. A two-fluid nozzle (diameter 0.5mm) of a Buchi
190 Mini Spray Dryer (Buchi, Flawil, Switzerland) was used to pump
the dispersions at a flow rate of 5ml/min which was then sprayed in a
vessel of liquid nitrogen using an atomizing airflow of 600 Ln/h. Drying
was performed in Christ Epsilon 2–4 freeze dryer with a shelf tem-
perature of −35 °C and at a pressure of 0.220mbar; the shelf tem-
perature was gradually increased to 4 °C over a time period of 32 h. For
secondary drying, the temperature was further gradually increased to
20 °C and pressure was lowered to 0.05mbar during the consecutive
12 h. The vaccine powder was collected in a climate box with relative
humidity of 0% and was stored under airtight conditions.

2.4. Characterization of influenza vaccine formulations and Advax
adjuvant

The size of WIV before and after addition of Advax was determined
by Dynamic Light Scattering (DLS) (Malvern Zetasizer ZS90, Malvern,
United Kingdom). Likewise, the size of Advax was also measured before
and after addition of WIV. For sample preparation, WIV and Advax
were either used alone or mixed in an HA:Advax ratio of 1:100 (w/w).
Particle size analysis was done using the Zetasizer software.

Transmission electron microscopy (TEM) images were captured
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using a Philips CM120 transmission electron microscope. SFD powder
containing Advax was reconstituted in sterile filtered water. Liquid and
reconstituted SFD Advax containing formulations were placed on a
plain carbon grid and after rinsing with water samples were stained
twice with 5 μl of 2 wt-% uranyl acetate. Images were taken with a
Gatan type UltraScan 4000SP CCD Camera at a magnification of
17,000×.

The morphology of the SFD powders was analyzed by scanning
electron microscopy (SEM) using a Jeol JSM 6301-F microscope. A
double sided sticky carbon tape on a metal disc was used and powders
were placed on it. Then, the particles were coated with 30 nm of gold
using a Balzer's 120B sputtering device (Balzer, Union, Austria). Images
were captured at a magnification of 500× and 5000×.

Primary particle size distribution of SFD powders, was determined
by laser diffraction. Powders were dispersed at a pressure of 0.1 bar and
RODOS (Sympatec, Clausthal-Zellerfeld Germany) was used as the
disperser. A 100 nm (R3) lens was used. Fraunhofer theory was used to
calculate the geometric particle size distribution.

The receptor binding activity of WIV after SFD was assessed by the
hemagglutination assay as described previously [12]. Briefly, WIV was
reconstituted in PBS and 50 μl was added to 96 V bottom plates con-
taining 50 μl of PBS. Two-fold serial dilutions were prepared after
which 50 μl of 1% guinea pig red blood cells suspension was added to
each well. Plates were incubated for 2 h at room temperature and he-
magglutination titers were read after 2 h. Hemagglutination titers are
expressed as log2 of the highest dilution where RBC agglutination could
be seen.

2.5. Immunization and samples collection

Animal experiments were approved by The Institutional Animal
Care and Use Committee of the Université Catholique de Louvain,
Brussels, Belgium (Permit number: 2012/UCL/MD/006), University of
Groningen, Groningen, The Netherlands (Permit number:
AVD105002016599) and Flinders University, Adelaide, Australia
(Permit number: 838/12). In-vivo experiments were carried out on
6–8weeks old female BALB/c mice (Elevage Janvier, Le Genets-St-Isle,
France). Mice were randomly divided into eight groups consisting of 6
mice/group. In order to investigate whether co-administration of Advax
with influenza vaccine would boost immune responses, a weakly im-
munogenic strain of influenza virus (NIBRG-23) was chosen. Mice were
immunized with WIV, however, as is routine in the influenza vaccine
field given that HA is the dominant protective antigen, the dose used for
immunization is represented by its HA content (~1/3rd of the total
protein content of the inactivated virus). Mice were vaccinated twice at
3 weeks interval with vaccine formulations containing 5 μg HA of
NIBRG-23. For intramuscular (i.m.) vaccination, 50 μl of vaccine for-
mulation containing 5 μg HA without adjuvant was divided over both
hind legs. For intranasal (i.n.) immunization, 15 μl of vaccine for-
mulation containing 5 μg HA with or without 500 μg Advax (HA:Advax
1:100) was slowly administered using a pipette in both nares (7.5 μl in
each nare).

For pulmonary administration of liquid vaccines (Pul Liq), 25 μl of
vaccine containing 5 μg HA with or without 500 μg Advax (HA:Advax
1:100) was administered in the trachea of mice via microsyringe; fol-
lowed by insufflation of 200 μl of air to assure deep lung deposition
[11]. For vaccine powder delivery (Pul Pow), 1mg of powder con-
taining 5 μg HA with or without 500 μg Advax (HA:Advax 1:100), was
administered to lungs of each animal by applying three puffs of 200 μl
air via a dry powder insufflator, as described previously [7]. Negative
control animals were left untreated.

On the day of second immunization, blood was collected by retro-
orbital puncture. One week after the second vaccine dose, mice were
sacrificed and the obtained sera was stored at −20 °C until further
analysis. Nose washes and bronchioalveolar lavages (BAL) were col-
lected by flushing 1ml PBS containing complete protease inhibitor

cocktail tablets (Roche, Almere, Netherlands), through nasopharynx
and lungs, respectively. Lavages were stored at −20 °C until further
use. Spleens and lungs were collected in complete IMDM media con-
taining 100 U/ml penicillin, 100mg/ml streptomycin, 0.05M 2-mer-
captoethanol (Invitrogen, Breda, The Netherlands) and 5% fetal calf
serum (Lonza, Basel, Switzerland). Spleens were processed to single cell
suspensions and passed through cell strainers; followed by RBC lysis
using hypotonic medium (0.83% NH4Cl, 10mM KHCO3, 0.1mM EDTA,
pH 7.2). Bone marrows were treated in a similar way as spleens to
process single cell suspension. Lungs were processed to single cell
suspensions as described previously [29]. Splenocytes and bone
marrow cells were used for individual mice and lung lymphocytes were
pooled per experimental group. Lung lymphocytes were pooled for each
experimental group due to lack of enough cells in individual animals for
a number of the readouts investigated in the study.

2.6. ELISA

Sera, nose washes and BAL were used for the determination of in-
fluenza-specific antibody responses. IgG, IgG1, IgG2a and IgA anti-
bodies were detected by overnight coating of ELISA plates (Grenier Bio-
One, Alphen, The Netherlands) with 500 ng/well of WIV at 37 °C. ELISA
was performed as described previously [7]. Absorbance was measured
at 492 nm using a Synergy HT Reader (BioTek, Winooski, USA). For the
determination of average IgG, IgG1 and IgG2a titers, log10 of the re-
ciprocal of the sample dilution corresponding to an absorbance at
492 nm of 0.2 was used. Nose and lung IgA levels are presented as
average of the absorbance at 492 nm for undiluted nose and lung wa-
shes.

2.7. Hemagglutination inhibition assay

Hemagglutination inhibition (HI) assay was performed as described
previously [30]. Briefly, sera were pooled from each experimental
group and 4 hemagglutination units (4 HAU) of inactivated virus were
added to two-fold diluted serum samples. Sera were pooled as the
sample volume in individual animals was not enough for the assay. HI
titers were recorded as the highest serum dilution capable of preventing
hemagglutination of RBCs.

2.8. Microneutralization assay

Microneutralization assay (MN) was performed as described pre-
viously [29]. Briefly, 50TCID50/well of NIBRG-23 virus were added to
two-fold serial dilution of sera samples and incubated at 37 °C for 2 h.
After 2 h, the virus-serum mixture was transferred to MDCK cells and
incubated at 37 °C for 1 h. Thereafter, virus-serum mixture was dis-
carded and culture supernatants were supplemented with medium
containing 5 μg/ml of TPCK trypsin and were incubated for an addi-
tional 72 h. Subsequently, MN titers were calculated by recording he-
magglutinating activity as the highest serum dilution capable of pre-
venting hemagglutination.

2.9. ELISpot

2.9.1. B-cell ELISpot
B cell ELIspot was performed as previously described with some

modifications [31]. MultiScreenHTS-HA filter plates (Millipore, Bill-
erica, Massachusetts) were coated with 10 μg/ml of NIBRG-23 over-
night at 4 °C. Cells were washed three times with PBS containing 0.01%
Tween 20 and twice with PBS. Plates were then blocked with 1% BSA
for 2 h at 37 °C. 1×106 lymphocytes from lungs or splenocytes in
100 μl IMDM complete medium with 10% FBS were added to wells and
incubated for 4 h at 37 °C with 5% CO2. Following incubation, cells
were washed with PBS containing 0.01% Tween 20. Subsequently, al-
kaline phosphatase labeled anti-mouse IgA antibody (Sigma-Aldrich
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Chemie B.V., Zwijndrecht, The Netherlands) or horse radish peroxidase
labeled anti-mouse IgG antibody (SouthernBiotech, Birmingham, USA)
was added to the wells and incubated for 37 °C for 1 h. Wells were
washed thoroughly with PBS containing 0.01% Tween 20. The numbers
of IgA and IgG antibody secreting cells (ASC) were identified using 5-
bromo-4-chloro-3-indolyl phosphate (BCIP)/nitro blue tetrazolium
(NBT) and 3-amino-9- ethylcarbazole (AEC) substrate (Roche, Almere,
The Netherlands), respectively. Spots were counted by using ELISpot
reader (A.EL.VIS ELISpot reader, Hannover, Germany).

2.9.2. T-cell ELISpot
The number of IFN-γ and IL-4 producing cells in spleens were de-

termined using Ready SET-Go ELIspot kits (eBioscience, Vienna,
Austria). Briefly, 5×105 splenocytes or lymphocytes from lung were
added to MultiScreenHTS-HA filter plates pre-coated with anti-IFN-γ or
anti-IL-4 antibodies. Then, plates were incubated overnight at 37 °C
with 5% CO2 in IMDM complete medium with or without 10 μg/ml WIV
(NIBRG-23). For IFN-γ and IL-4 ELISpot, plates were stained as per
manufacturer's protocols. Spots were counted by using an A. EL.VIS
ELISpot reader.

2.10. Cytokine ELISA

To determine IFN-γ and IL-4 levels in the spleens of immunized
mice, Ready SET-Go ELISA kits (R&D systems Biotechne, Minnesota,
USA) were used according to manufacturer's protocols. Briefly, 5×105

splenocytes or lymphocytes from lung were added to round bottom
plates and incubated overnight at 37 °C with 5% CO2 in IMDM complete
medium with or without 10 μg/ml WIV (NIBRG-23). Cell supernatant
was collected and stored at −20 °C until used.

2.11. Flow cytometry

1×106 cells splenocytes or bone marrow cells from each mouse or
lung lymphocytes pooled per experimental group were added to flow
cytometry tubes (Corning Incorporated, New York, USA). Separate
tubes were used for B and T cell analysis. Cells were washed three times
with fluorescence-activated cell sorting (FACS) buffer containing 0.1%
bovine serum albumin in PBS, pH 7.4, and centrifuged at 1200 rpm for
5min at 4 °C. Pelleted cells were resuspended in 100 μl FACS buffer
containing 1 μg Fc Block (BioLegend, San Diego, USA) for 30min.

For B cell staining, anti-CD19 PerCP, anti-IgM PE/Dazzle™ 594,
anti-IgD PE/Dazzle™ 594, anti-IgG PE/Cy7, anti-CD69 PE (all anti-
bodies from BioLegend), anti-IgA FITC (eBioscience) were added and
incubated for 30min in dark at 4 °C. Cells were washed once and 100 μl
FACS buffer containing 10 μl BD Horizon™ Brilliant Stain Buffer (BD
Bioscience, Vianen, Netherlands) was added to cells. Immediately
thereafter, a mixture of anti-CD38 BV510 (BD Bioscience), anti-CXCR3
BV421 (BioLegend) in 100 μl FACS buffer was added to cells and in-
cubated for 30min in dark at 4 °C. Cells were washed three times with
1ml FACS buffer and analyzed using LSRFortessa™ (BD Bioscience).

For T cell staining, anti-CD3 PerCP, anti-CD4 Alexa Fluro 488, anti-
CD8a PE/Dazzle™ 594, anti-CD44 PE/Cy7, (all antibodies from
BioLegend) were added and incubated for 30min in dark at 4 °C. Cells
were washed once and 100 μl FACS buffer containing 10 μl BD
Horizon™ Brilliant Stain Buffer was added to cells. Immediately there-
after, a mixture of anti-CXCR3 BV421 (BioLegend), anti-CD103 BV786
(BD Bioscience) in 100 μl FACS buffer was added to cells and incubated
for 30min in dark at 4 °C. Cells were washed three times with 1 ml
FACS buffer and analyzed using LSRFortessa™.

Obtained data was analyzed using FlowJo flow cytometry analysis
software version 10.2. Gating strategy for B and T cells is shown in Fig.
S1. Representative FACS plots of B and T cells are shown in Figs. S2 and
S4.

2.12. Challenge study

For the challenge study, female BALB/c mice 6–8weeks of age
(n= 3) were immunized once via pulmonary route with 0.1 μg of A/
PR/8/34 WIV with or without 1mg of Advax adjuvant. The rationale
for the 0.1 μg WIV immunization dose for challenge study was that this
was found to be the optimal vaccine dose to see differences between
groups in clinical outcomes, whereas 5 μg HA was found to be the op-
timal dose to see differences between groups in immunogenicity mea-
sures such as HI and MN. The vaccine was administered under anaes-
thesia using an intratracheal intubation and a microsprayer. Two weeks
after the immunization, animals were challenged with a live virus (A/
PR/8/34). The 50% mouse lethal dose (LD50) of the virus was estimated
in adult BALB/c mice by the Reed-Muench method [32]. One LD50

corresponded to 1250 TCID50 on MDCK cells (data not shown) and the
virus challenge dose used was 10,000 TCID50 (8xLD50) administered
intranasally in a volume of 30 μl which gave 100% lethality in control
non-immunized mice. Daily weights and a sickness scoring system
based on coat condition, posture and activity was used to assess the
extent of clinical disease with mice evaluated daily. Ruffled fur (ab-
sent= 0; slightly present= 1; present= 2), hunched back (absent= 0;
slightly present= 1; present= 2) and activity (normal= 0; re-
duced=1; severely reduced=2). The final score was the addition of
each individual symptom score (e.g. an animal showing slightly ruffled
fur (1), slightly hunched back (1) and reduced activity (1) was scored as
3. Mice were euthanized if they had developed a clinical score of 6.

3. Statistical analysis

Mann Whitney U Test was performed for statistical analysis of data.
A two tailed test was performed to compare non-adjuvanted vs ad-
juvanted or i.m. vs adjuvanted WIV formulations. p values< 0.05 were
considered to be significant. *, ** and *** represent p values less than
or equal to 0.05, 0.01 and 0.001, respectively. A Cox-Mantel log rang
test was used to compare the difference in survival between Advax-
adjuvanted WIV group and WIV alone i.e. without adjuvant.

4. Results and discussion

4.1. Physical and biological characterization of Advax-adjuvanted
formulations

For the use of Advax as a mucosal adjuvant for WIV, it is essential
that it has no detrimental effects on the physical and biological prop-
erties of inactivated virus particles; and that SFD has no impact on the
physical characteristics of Advax. DLS measurements revealed that
mixing with Advax had a negligible effect on the size of WIV with liquid
WIV without adjuvant having a size of ~185 nm and Advax-adjuvanted
liquid WIV formulation having a size of ~186 nm (Fig. 1A). Likewise,
the size of Advax particles remained unaltered for Advax only
(1522 nm) and Advax-adjuvanted WIV formulation (1535 nm).

Furthermore, we evaluated whether SFD had an impact on the
physical appearance of Advax particles. For this, Advax was SFD
without WIV, but in the presence of water soluble inulin as the stabi-
lizer. TEM analysis revealed that Advax particles had comparable
morphology before and after SFD (Fig. 1B).

In order to investigate whether Advax had an effect on the physical
characteristics of SFD powder formulation, the physical appearance of
powder particles was analyzed by SEM. SEM images revealed intact
spherically shaped particles with an interconnected porous structure for
both SFD WIV without adjuvant (Fig. 1C) and SFD Advax-adjuvanted
WIV formulations (Fig. 1D). Further, upon dispersion from RODOS, the
average geometric particle size (X50) of SFD Advax-adjuvanted WIV
formulation was found to be comparable to SFD non-adjuvanted WIV
formulation, i.e. 8.64 and 9.12 μm, respectively (Fig. 1E). An important
criterion for particles to be suitable for inhalation is their aerodynamic
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particle size, which ideally should be 1–5 μm [33,34]. Aerodynamic
particle size was calculated according to the formula described by Bhide
et al. [35]. Aerodynamic particle size of both WIV and Advax-ad-
juvanted WIV after SFD were found to be in the required size range, i.e.
1–5 μm, thus indicating the suitability of both these formulations for
pulmonary immunization (Fig. 1F). Thus, upon SFD of WIV formulated
either with or without Advax, powder particles with a similar size and
morphology were formed making a fair comparison between the non-
adjuvanted and Advax-adjuvanted SFD powders possible.

It is well known that the existence of HA in its native conformation
is crucial for its receptor binding activity and the induction of immune
responses [9]. Thus, in order to evaluate whether or not the receptor
binding activity of HA was preserved after the addition of Advax and
after SFD, hemagglutination assay was performed. All formulations
showed similar hemagglutination titers indicating that admixing WIV
with Advax and SFD did not have destabilizing effects on HA (Fig. 1G).
Overall, the data showed that SFD can be used to produce an Advax-
adjuvanted WIV dry powder formulation suitable for pulmonary ad-
ministration.

4.2. Systemic immune responses

Previous pre-clinical and clinical studies have shown that co-ad-
ministration of influenza vaccine with Advax via the conventional
parenteral route substantially enhanced systemic immunity [19,27,36].
Thus, in order to investigate the potential of Advax as a mucosal ad-
juvant, systemic immune responses were determined either three weeks
after the first (day 21) or one week after the second immunization (day
28) or at both these time points. Non-vaccinated animals were used as
negative control. It had been found in previous studies that im-
munization with Advax alone had no detectable effect on immune
parameters when compared to mice injected with saline (unpublished
data). Moreover, only influenza specific immune responses were mea-
sured. Therefore, any parameters that might be induced by the use of
Advax alone could not be quantified. Hence, Advax alone group was not
included in this study.

We first evaluated the number of IgG or IgA ASC in splenocytes of
mice vaccinated with non-adjuvanted and Advax-adjuvanted WIV for-
mulations (Fig. 2A). We found that respiratory tract immunization with
Advax-adjuvanted WIV formulations either as liquid or powder led to a

Fig. 1. Characterization of Advax-adjuvanted liquid and powder formulations. (A) DLS measurements representing z-average particle size of WIV, Advax and Advax-
adjuvanted WIV formulations (n= 6). (B) TEM images of Advax before and after SFD. SEM images of (C) SFD WIV alone or (D) SFD Advax-adjuvanted WIV. Left and
right side SEM pictures are captured at a magnification of 500× and 5000×, respectively. (E) Geometric particle size of SFD WIV or Advax-adjuvanted WIV after
dispersion from RODOS (n= 6). (F) Aerodynamic particle size of SFD WIV or Advax-adjuvanted WIV (G) Hemagglutination titers of WIV and Advax-adjuvanted WIV
before and after SFD (n= 3); no differences were found among the triplicates within a group. Data are presented as average ± standard error of the mean for
Fig. 1A, E and F.
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significantly higher number of IgG and IgA ASC than immunization
with corresponding non-adjuvanted WIV formulations. As expected,
delivery of WIV via the i.m. route led to the production of only few IgA
ASC but a considerable number of IgG ASC in the spleen (Fig. 2A).

We next evaluated serum anti-influenza IgG titers both after the first
and second immunization. Both i.m. and respiratory tract delivery of

WIV formulations, with or without Advax, induced serum IgG responses
after the first immunization that were further increased after the
booster dose (Fig. 2B). Furthermore, respiratory tract delivery of
Advax-adjuvanted WIV formulations, either as liquid or powder, gen-
erated significantly higher IgG titers than the corresponding non-ad-
juvanted WIV formulations after the second immunization. The higher

Fig. 2. Systemic immune responses after respiratory tract immunization. Mice were immunized twice on day 0 and day 21 with 5 μg HA of NIBRG-23 with or without
500 μg of Advax in liquid or powder form (i.n. or pulmonary). A week after the second vaccination, mice were sacrificed to determine (A) IgG or IgA antibody
secreting splenocytes, (B) Serum IgG titers at day 21 (white bars) and at day 28 (grey bars), (C) Serum IgG1 titers, (D) Serum IgG2a titers, (E) HI titers for sera pooled
per experimental group, (F) MN titers. Data are presented as average ± standard error of the mean unless stated otherwise (n= 6). Levels of significance are
denoted as *p≤ 0.05 and **p≤ 0.01.
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serum IgG titers induced by Advax-adjuvanted WIV formulations were
in line with a significant increase in splenic IgG ASC Serum IgG titers
generated by respiratory tract administered Advax-adjuvanted WIV
formulations were comparable to those generated by non-adjuvanted
WIV formulation given via the i.m. route at both day 21 and day 28
(Fig. 2B). Coherent with IgG titers, IgG1 responses were significantly
enhanced in mice immunized with Advax-adjuvanted WIV formulations
via the respiratory tract versus mice immunized with non-adjuvanted
WIV formulations (Fig. 2C). However, IgG2a responses were only sig-
nificantly enhanced for Advax-adjuvanted WIV formulations, both li-
quid and powder, administered to the lungs but not by i.n. adminis-
tration (Fig. 2D). Moreover, a balanced IgG2a:IgG1 ratio was observed,
indicating that Advax- adjuvanted WIV induces a balanced Th1/Th2
type of immune response in agreement with our previous study where a
balanced Th1/Th2 ratio was observed after pulmonary administration
of a liquid, Advax-adjuvanted WIV formulation [28].

The functional potential of IgG antibodies in serum was assessed by
the HI and MN assay. Both at day 21 and day 28, Advax-adjuvanted
WIV formulations administered to the lungs induced substantially
higher HI titers than non-adjuvanted WIV formulations (Fig. 2E). In line
with the HI titers, approximately five-six fold higher MN titers were
seen for Advax-adjuvanted WIV formulations administered to the re-
spiratory tract than for corresponding non-adjuvanted WIV formula-
tions (Fig. 2F). The higher HI and MN titers for Advax-adjuvanted WIV
were consistent with the higher serum IgG titers, thus indicating the
functional effectiveness of the vaccine-induced IgG antibodies in these
groups.

Thus, Advax-adjuvanted WIV formulations administered to the re-
spiratory tract induced comparable systemic immune responses as WIV
administered via the i.m. route and considerably higher immune re-
sponses than non-adjuvanted respiratory tract administered WIV.

4.3. Mucosal immune responses

An important goal of influenza vaccination is the induction of an-
tibodies in the respiratory tract, the portal of influenza virus entry
[37,38]. The traditional parenteral route of influenza vaccine admin-
istration is inefficient in inducing mucosal immune responses. Simi-
larly, pulmonary immunization with non-adjuvanted WIV generally
induces only low levels of local or mucosal immunity [9,12]. In order to
investigate the potential of Advax to boost local mucosal immunity,
respiratory tract immunity was determined a week after the second
immunization by assessment of nasal IgA and BAL anti-influenza IgA
and IgG levels along with ASC in lungs. As expected, WIV administered
via the i.m. route failed to induce substantial nasal or lung IgA titers
(Fig. 3A, B). Compared to the i.m. route, higher nose IgA titers were
found for Advax-adjuvanted WIV formulations administered to the re-
spiratory tract, which, however, were only significantly higher for the
liquid formulation administered to the nose and the powder formula-
tion administered to the lungs (Fig. 3A). Yet, compared to non-ad-
juvanted WIV formulation, only the Advax-adjuvanted liquid formula-
tion administered to the lungs elicited significantly higher nasal IgA
titers. By contrast, a significant effect of Advax adjuvant was seen on
BAL IgA in both the i.n. and pulmonary vaccine groups with approxi-
mately four-eight-fold higher lung IgA titers than mice immunized with
corresponding non-adjuvanted WIV formulations (Fig. 3B). Hence,
Advax either administered i.n. or into the lungs increased lung but not
nasal IgA production. This might be due to the relatively smaller surface
area of the nasal mucosa compared to that of the lower respiratory tract
[39]. Since 1ml of PBS was used for collecting both nasal and lung
washes, the concentration of IgA in the lung washes would be expected
to be much higher than in the nasal washes if the amount of IgA per
specific surface area in the lung and nose would be the same. The fact
that only pulmonary powder but not liquid delivery where adjuvanted
or WIV alone induced increased nasal IgA, might suggest powder par-
ticles may have been exhaled by the mice back up from the bronchi into

the nasal nares after the insufflation procedure, whereas the liquid
vaccine may have been more likely to instantly adhere to the bronchial
walls and thereby not remain suspended in air and able to escape into
the nose.

Advax-adjuvanted WIV formulations administered to the respiratory
tract significantly increased anti-influenza IgG titers in the lungs in
accordance with the increased serum IgG titers seen in these animals
when compared to corresponding non-adjuvanted WIV immunizations
(Fig. 3C). Interestingly, lung IgG titers of mice immunized with WIV-
Advax formulations administered to the respiratory tract were sig-
nificantly higher than those immunized with non-adjuvanted WIV for-
mulation via the i.m. route (Fig. 3C). The boost in lung IgA and IgG
titers after Advax-adjuvanted respiratory tract immunization of WIV, is
consistent with the increased number of IgA and IgG ASC found in the
lungs of these mice (Fig. 3D).

Hence, the inclusion of Advax in WIV formulations resulted in sig-
nificantly higher mucosal humoral immune responses than non-ad-
juvanted WIV formulation administered via the respiratory tract or via
i.m. route.

4.4. Cellular immune responses

The phenotype of an immune response (skewed Th1 or Th2 or ba-
lanced Th1/Th2) is considered to be of importance for its protective
potential [28,40,41]. A balanced Th1/Th2 response is preferable be-
cause it aids in both virus neutralization and clearance [41]. In order to
investigate whether incorporation of Advax in a WIV formulation and
delivery of the adjuvanted vaccine to the respiratory tract has an in-
fluence on the type and magnitude of cell-mediated immune responses
induced, the frequency of influenza-specific IFN-γ and IL-4 secreting
splenic T cells was determined. In addition, IFN-γ and IL-4 levels were
measured in supernatants of splenocytes stimulated in- vitro with WIV.
Compared to WIV alone, Advax-adjuvanted WIV formulation was as-
sociated with a significant increase in the number of IFN-γ secreting
influenza-specific T cells (Fig. 4A). Likewise, increased production of
IFN-γ was seen in Advax-adjuvanted WIV groups when compared to
non-adjuvanted WIV, although, the differences were only significant for
the pulmonary immunized groups (Fig. 4B). Moreover, Advax-ad-
juvanted WIV was associated with significantly higher frequencies of
both IL-4 secreting T cells as well as significantly higher amounts of IL-4
in the culture supernatants as compared to WIV alone (Fig. 4C, D). By
contrast, i.m. administered WIV induced a high number of IL-4 se-
creting T cells but low numbers of IFN-γ secreting T cells (Fig. 4A, C),
which was matched by the IFN-γ and IL-4 levels measured in the culture
supernatants (Fig. 4B, D).

Thus, immunization with Advax-adjuvanted WIV via the respiratory
tract led to a balanced Th1/Th2 (IFN-γ/IL-4) response whereas i.m.
immunization with WIV alone predominantly induced a Th2-type
(predominant IL-4) immune response.

4.5. Mechanistic insights

4.5.1. Memory B cell responses and expression of lung localization factors
Advax-adjuvanted WIV, administered either as liquid or powder

formulation, induced comparable humoral and cellular immune re-
sponses when administered via the pulmonary route. Hence, only liquid
Advax-adjuvanted WIV was used as a representative formulation for
further mechanistic investigations into the types of B and T cells re-
sponding to immunization.

Antigen-activated B cells undergo isotype class switching and
change the production of antibody subtype from IgM and IgD to IgG,
IgA or IgE [42]. In order to characterize the phenotype of class switched
B cells, we determined the fraction of memory B cells among the total
number of class switched B cells after i.n. or pulmonary delivery of WIV
alone or with Advax adjuvant. A previous study has shown that memory
B cells, particularly in lungs, play a key role in protection against
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influenza re-infection [43]. These memory B cells can be identified by
the expression of CD38 [43–45]. Hence, cells isolated from lungs,
spleen and bone marrow were stained for both IgM/IgD (to identify
IgM/IgD− class switched cells) and the memory B cell marker, CD38
(Fig. 5A–B). Advax-adjuvanted WIV administered via the pulmonary
route led to an 8-fold increase in the frequency of memory B cells in the
lungs, 4-fold in spleen and about 10-fold in bone marrow in comparison
to administration with WIV alone (Fig. 5A–B). Further analysis of these
cells revealed that in lungs and spleen the percentage of memory B cells
was particularly high among IgG producing cells (Fig. 5C, D) while in
bone marrow it was high among IgA producing B cells (Fig. 5D). By
contrast, much lower numbers of CD38+ B cells were seen in the i.n.
immunized groups although still a 2–3 fold increase in lung memory B
cells among IgG or IgA producing cells was observed in the Advax-ad-
juvanted WIV group when compared to the WIV alone group (Fig. 5A,
C). Our data suggests that respiratory tract immunization, in particular,
pulmonary immunization with Advax-adjuvanted WIV induces a large
number of both class-switched IgG+ and IgA+ memory B cells with the
IgG+ memory B cells primarily trafficking to the lungs and spleen and
the IgA+ memory B cells instead trafficking to the bone marrow.

Previous studies have shown that CXCR3 and CD69 promote lung
homing of B cells and effector T cells after infection with influenza virus
[43,46,47]. Pulmonary immunization with Advax-adjuvanted WIV in-
creased the percentage of class-switched B cells expressing the lung

localization marker, CXCR3 (Fig. 5E), by about 4-fold, with a slight
increase in the percentage expressing CD69 (Fig. 5F). Interestingly, i.n.
immunization with Advax-adjuvanted WIV induced a 2-fold increase in
CD69+ B cells but no increase in CXCR3 expressing B cells (Fig. 5E, F).
Likewise, pulmonary but not i.n. immunization of Advax-adjuvanted
WIV enhanced the number of class-switched B cells expressing CXCR3
(Fig. S3).

Overall, respiratory tract delivery, in particular pulmonary delivery,
of Advax-adjuvanted WIV increased the frequency of class-switched
memory B cells and enhanced the expression of localization factors i.e.
CXCR3 and CD69 on these class-switched B cells.

4.5.2. Memory T cell responses and expression of lung localization factors
Memory CD4+ T cells are assumed to be the key players in pro-

moting the production of long-lived ASC and memory B cells, thus fa-
cilitating rapid production of antibodies in cases of antigen recall
[48,49]. Effector/memory T cells are identified by the expression of
CD44 and absence of CD62L and are thus denoted as CD44+CD62L−.
Pulmonary immunization with Advax-adjuvanted WIV led to a ~ 3-fold
increase in lung effector/memory CD4+ T cells in comparison to ad-
ministration of WIV alone (Fig. 6A). Previous studies have shown that
even in the absence of B cells and CD8+ effector/memory T cells, CD4+

effector/memory T cells can provide at least partial protection against
influenza infection with recruitment of CD4+ T effector/memory cells

Fig. 3. Mucosal immune responses after respiratory tract immunization. Mice were immunized twice on day 0 and day 21 with 5 μg HA of NIBRG-23 with or without
500 μg of Advax in liquid or powder form (i.n. or pulmonary). A week after the second vaccination, mice were sacrificed to determine (A) Nose IgA, (B) BAL IgA, (C)
BAL IgG, (D) IgG or IgA antibody secreting lung lymphocytes pooled per experimental group. Data are presented as average ± standard error of the mean (n= 6)
unless stated otherwise. Levels of significance are denoted as *p≤ 0.05 and **p≤ 0.01.
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to the lungs [50,51]. This recruitment is facilitated by the expression of
lung localization factors on effector/memory T cells [46].

Tissue resident memory T cells (TRM) are a subset of memory T cells
that express CD103 and lack the property of recirculation, so they re-
main restricted within tissues thereby making them readily available to
protect against local infection [52,53]. Besides CD103, the expression
of CXCR3 on effector/memory is known to promote their migration and
localization to infected lungs [46,47,54]. We therefore characterized
CD4+ effector/memory T cells for the expression of the lung localiza-
tion factor CXCR3 and the tissue resident T cell marker CD103. I.n.
immunization with Advax-adjuvanted WIV formulation showed a
minor increase in the percentage of CXCR3+ cells as compared to the
corresponding non-adjuvanted WIV formulation. By contrast, pul-
monary administration of Advax-adjuvanted WIV enhanced the per-
centage of CD4+ effector/memory expressing CXCR3 by 3-fold
(Fig. 6B). Consistent with previous studies we also found that the
augmented expression of CXCR3 on effector/memory T cells led to an
increase in the migration of these cells to the lungs (Fig. 6A). Staining of
the TRM marker, CD103, revealed that adjuvantation with Advax led to
an approximately 2-fold increase in CD4+ TRMs in the lungs for pul-
monary as well as for i.n. administered vaccine (Fig. 6C). Thus, im-
munization of mice with Advax-adjuvanted WIV, in particular via the
pulmonary route, increased effector/memory T cells with augmentation

in the expression of CXCR3 and CD103 cells in the lungs. This is con-
sistent with previous studies, which showed that mucosal administra-
tion of an antigen is necessary for the generation of local T cell re-
sponses [53,55,56].

Conclusively, co-administration of WIV with Advax resulted in an
enhanced number of effector/memory CD4+ T cells with a moderate
increase in the expression of lung localization factors and TRM cell
markers.

4.6. Challenge study

Respiratory tract immunization (i.n. and pulmonary) with Advax-
adjuvanted WIV has shown in the experiments above to boost humoral
and cellular immunity both systemically and locally in the lung.
However, in the mechanistic studies, mainly, pulmonary immunization
with Advax-adjuvanted WIV was found to boost memory responses and
the expression of lung localization factors. Hence, the pulmonary route
was chosen for a challenge study. In the challenge study, we explored
whether the enhanced immunity translated into enhanced protection if
mice were exposed to a lethal dose of influenza virus. To maximize the
stringency of the model, mice received just a single dose of pulmonary
WIV (A/PR/8/34) with or without Advax. An Advax alone (without
antigen) control group was not included as in previous studies we

Fig. 4. Cellular immune responses after respiratory tract immunization. Mice were immunized twice on day 0 and day 21 with 5 μg HA of NIBRG-23 with or without
500 μg of Advax in liquid or powder form (i.n. or pulmonary). One week after the second vaccination, mice were sacrificed to determine (A) Frequency of IFN-γ
secreting splenocytes and (B) IFN-γ levels. (C) IL-4 secreting splenocytes and (D) IL-4 levels. Data are presented as average ± standard error of the mean (n=6).
Levels of significance are denoted as *p≤ 0.05 and **p≤ 0.01.
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observed no effect of administering Advax alone on influenza disease,
with recipients of Advax alone having the same clinical scores and
dying at the same rate as saline-injected controls, whether the Advax
was given i.m. [27] or via the pulmonary route (unpublished data).
Since a highly immunogenic influenza virus strain was used, a low dose
of 0.1 μg WIV with or without 1mg of Advax was found to be optimal to
avoid complete protection that might be induced by antigen alone

(without adjuvant) with a high dose. After lethal viral challenge, we
found that, mice that received non-adjuvanted WIV were not protected
against influenza infection, as evidenced by a rapid weight loss and a
clinical sickness score of 6 within 8–9 days after challenge (Fig. 7A–C).
By contrast, mice that received a single pulmonary dose of WIV for-
mulated with Advax adjuvant were fully protected with no weight loss
and no clinical disease symptoms after challenge (Fig. 7A–C). A Cox-

Fig. 5. Effects of respiratory tract immunization on memory B cells and expression of lung localization factors. Percentage of memory B cells among total class
switched B cells (% CD38+ among CD19+ IgM/IgD−) in lungs (A), spleen and bone marrow (B). Percentage of memory B cells among class switched IgG+ or IgA+

cells (% CD38+ among CD19+ IgM/IgD− IgG+ or IgA+) in lungs (C), spleen and bone marrow (D). Percentage of lung cells expressing CXCR3 (E) or CD69 (F) among
total class switched B cells (% CXCR3+ or % CD69+ among CD19+IgM/IgD−) The frequencies of cells are shown for pooled lung lymphocytes from each ex-
perimental group while data for spleen and BM data are presented individually as average ± standard error of the mean. Levels of significance are denoted as
*p≤ 0.05 and **p≤ 0.01.
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Mantel log rank test revealed that the difference in survival between
non-adjuvanted WIV and Advax-adjuvanted WIV group was significant
(p=0.029). Similar outcome was obtained upon repetition of the ex-
periments twice.

5. Conclusions

In the current study, we demonstrate that administration of Advax-
adjuvanted WIV to the respiratory tract, either as liquid or dry powder,
has the potential to boost influenza induced systemic, mucosal and
cellular immune responses. To our knowledge, this is the first study to
show that an effective Advax-adjuvanted dry powder influenza vaccine
formulation with full retention of biological activity of the WIV antigen
and the Advax adjuvant can be prepared by SFD. Though both liquid
and dry powder influenza vaccine formulations can be used for pul-
monary administration, a dry powder formulation is preferable due to
its long-term stability at ambient temperatures, which facilitates
stockpiling [10,57,58]. In cases of an influenza pandemic, a stockpiled
dry powder formulation would be readily available and easy to ad-
minister in mass vaccination campaigns. For Advax-adjuvanted influ-
enza formulations, the i.n. and pulmonary route were found to be
equally effective in boosting humoral and cellular immunity, however,
pulmonary route was found to be superior for the augmentation of
memory responses as well as lung localization factors. Moreover,

pulmonary immunization with Advax-adjuvanted WIV was found to be
equally effective as an i.m. immunization with WIV in terms of induc-
tion of systemic and cellular immunity and was superior in terms of
mucosal immunity. In addition, a single pulmonary administration with
Advax-adjuvanted WIV at a low dose of 0.1 μg WIV not only protected
the animals from weight loss and observable clinical symptoms but also
led to their complete survival which is in contrast to the animals im-
munized with WIV alone. Moreover, no adverse effects (weight loss,
sickness) were seen in animals that received pulmonary immunization
with Advax adjuvant. Hence, inhalation of Advax-adjuvanted influenza
vaccine as either a liquid or a dry powder formulation may be a pro-
mising alternative to conventional parenteral influenza vaccines.

Study limitations include the fact that the impact of the vaccine on
direct measures of virus replication in the lung were not assessed, nor
were studies of lung histology performed. These more detailed aspects
of the mechanism of protection and of pulmonary adjuvanted vaccine
safety will need to be studied in the future. However, we expect that the
enhanced protection against clinical disease with WIV plus Advax,
would be reflected in lower lung virus titers post-challenge. In future
studies, it would also be interesting to investigate how the increased
tissue resident memory B and T cell responses elicited after pulmonary
immunization with Advax-adjuvanted WIV might contribute to long-
term protection against influenza, as only short term protection was
assessed in this study.

Fig. 6. Effects of respiratory tract immunization on memory B cells and expression of lung localization factors. (A) Percentage of effector/memory CD4+ T cells in
lungs (% CD44+ CD62L− among CD4+ cells), (B) Percentage of migratory CD4+ T cells in lungs (% CXCR3+ among CD4+ CD44+ CD62L− cells), (C) Percentage of
tissue-resident memory CD4+ T cells in lungs (% CD103+ among CD4+ CD44+ CD62L− cells). The frequencies of cells are shown for pooled lung lymphocytes from
each experimental group.
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Conclusively, we have demonstrated that Advax is a highly effective
mucosal adjuvant which can be formulated with influenza vaccine into
dry powders and enables complete protection against lethal influenza
virus challenge with just a single low dose of antigen. This approach
may thereby provide a convenient needle free approach for influenza
vaccination.

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.jconrel.2018.09.006.
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