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Abstract: While immune-checkpoint blockade
(ICB) has revolutionized treatment of metastatic
melanoma over the last decade, the identification
of broadly applicable robust biomarkers has been
challenging, driven in large part by the hetero-
geneity of ICB regimens and patient and tumor
characteristics. To disentangle these features,
we performed a standardized meta-analysis of
eight cohorts of patients treated with anti-PD-1
(n=290), anti-CTLA-4 (n=175), and combination
anti-PD-1/anti-CTLA-4 (n=51) with RNA sequencing
of pre-treatment tumor and clinical annotations.
Stratifying by immune-high vs -low tumors, we
found that surprisingly, high immune infiltrate was
a biomarker for response to combination ICB, but
not anti-PD-1 alone. Additionally, hypoxia-related
signatures were associated with non-response
to anti-PD-1, but only amongst immune infiltrate-
high melanomas. In a cohort of scRNA-seq of
patients with metastatic melanoma, hypoxia also
correlated with immunosuppression and changes
in tumor-stromal communication in the tumor
microenvironment (TME). Clinically actionable
targets of hypoxia signaling were also uniquely
expressed across different cell types. We focused
on one such target, HIF-2α, which was specifically
upregulated in endothelial cells and fibroblasts
but not in immune cells or tumor cells. HIF-2α
inhibition, in combination with anti-PD-1, enhanced
tumor growth control in pre-clinical models, but
only in a more immune-infiltrated melanoma model.
Our work demonstrates how careful stratification
by clinical and molecular characteristics can be
leveraged to derive meaningful biological insights
and lead to the rational discovery of novel clinical
targets for combination therapy.
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Introduction
Immune checkpoint blockade has dramatically
transformed the treatment approach for advanced
melanoma, leading to impressive and long-lasting treat-
ment outcomes in a subset of patients [1, 2, 3]. Several
ICB regimens are approved for treating patients with
metastatic melanoma, including anti-CTLA-4 blockade,
anti-PD-1 blockade, and combination therapies includ-
ing anti-CTLA-4/anti-PD-1 blockade and, more recently
anti-PD-1/anti-LAG3. ICB regimens in melanoma have
important differences in response rate and toxicity:
the highest response and survival rates are seen
in combination anti-PD-1/anti-CTLA-4 (52% overall
survival at 5 years), but so are the highest rates of
toxicity (59% of Grade 3 or 4 treatment-related adverse
events, compared to 21% and 28% in anti-PD-1 and
anti-CTLA-4 monotherapies respectively) [4]. Under-
standing how underlying patient-to-patient variability
contributes to why patients do or do not respond to
different checkpoint blockade regimens is important
both for clinical practice, in matching patients to the ap-
propriate therapy based on likely response and toxicity,
and in the development of more efficacious combination
therapies. Identifying features associated with response
to ICB has been a topic of great interest over the past
decade [5], and many response-associated biological
features have been identified through analyzing ge-
nomic and transcriptomic data from clinical cohorts.
These include tumor mutational burden (TMB) and
neoantigen load [6, 7], protein-level expression of
PD-L1 and CD8 [8], transcriptional signatures related
to mesenchymal transition and extracellular matrix
remodeling (IPRES) [9], genetic alternations resulting
in loss of antigen presentation [10, 11], interferon
gamma (IFNγ) signaling pathways [12, 13], tumor het-
erogeneity and ploidy [14], and, recently, deactivation
of ligand-receptor interactions enhancing lymphocyte
infiltration [15]. However, these observations have
often been made in heterogeneous clinical cohorts,
combining different melanoma subtypes, ICB regimens,
and prior treatments. More recent studies have found
that the association of these signatures with response
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is impacted by clinical treatment history, highlighting
differences in responders to anti-PD-1 monotherapy
and combination ICB [16, 17] as well as differences
in patients with and without previous exposure to
anti-CTLA-4 blockade [18, 19]. Additional work has
focused on patient characteristics, such as age [20].

Given the growing amount of clinical data with high-
dimensional molecular characterization, we hypothe-
sized that stratified meta-analysis of a well-annotated
cohort of patients would enable us to disentangle fea-
tures predicting differential response to ICB in het-
erogeneous populations of patients. Thus, we per-
formed an integrative analysis seeking to understand
the biology of response to ICB under different treat-
ment regimens (Fig. 1a). First, we combined sequenc-
ing and clinical data from eight previously published
cohorts (693 patient samples total) [6, 21, 22, 16,
18, 23, 19, 24], with comprehensively annotated and
sequenced pre-treatment tumors from patients with
metastatic melanoma treated with anti-CTLA-4, anti-
PD-1, and combination ICB. Upon observing large vari-
ation in immune infiltrate across the cohort through bulk
RNA-sequencing analysis, we then stratified the cohort
into “immune-high” and “immune-low,” and character-
ized transcriptomic features to identify biological path-
ways associated with response and resistance within
those groups. We then utilized several unrelated cohorts
of metastatic melanoma patients (55 samples total) with
single cell RNA-sequencing of pre-treatment tumors to
further investigate these pathways. Among other key
findings, our analysis suggested that hypoxia was a
biomarker of non-response to anti-PD-1 specifically in
patients with immune-high tumors and correlated with
functional changes in the TME. We identified HIF-2α
as a novel hypoxia-related target uniquely expressed
by fibroblasts and endothelial cells but not by tumor or
immune cells in melanomas. We then tested the po-
tential for targeting HIF-2α combined with anti-PD-1 in
pre-clinical models. Combination treatment delayed tu-
mor growth in an immune-high but not an immune-low
model.

Results
Clinical characteristics of aggregated cohort
We formed a meta-cohort from eight cohorts of immune
checkpoint blockade (ICB)-treated (anti-PD-1 alone,
anti-CTLA-4 alone, and combination) melanoma pa-
tients with whole-transcriptome sequencing (RNA-seq)
or whole-exome sequencing (WES) of pre-treatment tu-
mor and clinical annotations (n=693) [6, 21, 22, 16, 18,
23, 19, 24]. To our knowledge, these eight cohorts com-
prise all available cohorts of pre-treatment tumor with
sequencing and comprehensive clinical annotations.
Overall, 77.1% were cutaneous melanomas (534/693),
5.9% were mucosal (41/693), 3.2% were acral (22/693),
3.8% were uveal (26/693), and 10.1% were occult or
unknown in origin (70/693). For our analysis, we fo-

cused on patients with cutaneous melanoma and ex-
cluded a small number of patients with prior anti-PD-1
or prior combination anti-CTLA-4/anti-PD-1, as well as
patients treated with combination targeted therapy and
ICB, leaving a final cohort of n=528 (Fig. 1b). Given that
patients with a prior treatment history of anti-CTLA-4
have been shown to have distinct features of response
[18], we divided the cohort into four treatment groups:
anti-PD-1, anti-CTLA-4, anti-PD-1 with prior anti-CTLA-
4, and combination anti-PD-1/anti-CTLA-4 (Fig. 1b). Full
details of the meta-cohort can be found in Supplemen-
tary Table 1.

495 out of 528 samples were annotated as respon-
ders or non-responders (n=222 responders, 273 non-
responders, Supplementary Fig. 1a, Methods). As ex-
pected, we saw the highest response rates in combi-
nation anti-PD-1/anti-CTLA-4 (35/51, 68.6%), followed
by single agent anti-PD-1 (98/182, 53.8%) and anti-
CTLA-4 (49/169, 29.0%), with anti-PD-1 with prior anti-
CTLA-4 having response rates in between anti-PD-1
and anti-CTLA-4 (40/93, 43.0%) (Fig. 1c), with simi-
lar trends within each independent cohort (Supplemen-
tary Fig. 1b). Consistent with response rates, overall
and progression-free survival (OS and PFS) were sig-
nificantly different between the four treatment groups in
the discovery cohort (Fig. 1d, Supplementary Fig. 1c).
Overall, ICB response and survival in our cohort are
consistent with previous reports [4].

Stratification of bulk cohort by immune score
Previous analyses utilizing clinical data have ex-
plored genomic features associated with response in
melanoma [18, 14, 23]. In our analysis, we stratified by
transcriptomic features to evaluate the effects of het-
erogeneity in the TME on predicting response to ICB.
We processed all pre-treatment tumor samples in our
meta-cohort with bulk RNA-seq using a standardized
computational pipeline with batch correction (Supple-
mentary Fig. 2a-e, Methods). Batch-corrected RNA-seq
data with associated metadata can be found in Supple-
mentary Tables 2 and 3. Utilizing cell type and microen-
vironmental signatures from Bagaev et al. 2021 [25],
we calculated a signature score for each sample, for
each cell type. In principal component analysis (PCA),
the first principal component (PC) explained 50% of the
variance of the dataset. The loadings of the first PC in-
dicate the contribution of each variable, with higher ab-
solute values signifying greater importance; we found
that immune cell type signatures contributed the most to
the first PC (Supplementary Fig. 3a). Immune cell type
signatures were also all highly co-correlated (Supple-
mentary Fig. 3b). Through hierarchical clustering solely
on the immune signatures, we separated tumors by im-
mune state, categorizing them as either “immune-high”
(n=211) or “immune-low” (n=127) (Fig. 2a).

To represent an overall “immune score”, we cal-
culated an overall global mean of immune signatures
(Methods), and we investigated how it related to other
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metrics which have been proposed to be relevant to pre-
dicting response to ICB. Using the same data, we inves-
tigated nine other immune-related metrics: the IFNγ 10-
gene and the 28-gene expanded signature from Ayers
et al. 2017 [12], the Hallmarks interferon gamma sig-
nature [26], tertiary lymphoid structure (TLS) markers
genes and a TLS signature from Cabrita et al. 2020
[27], and several signatures estimated using CIBER-
SORTx [28]: the proportion of immune cells and the
proportion of CD8+ T cells inferred using two differ-
ent reference matrices (Methods). These metrics were
highly correlated with each other and the immune score
(Fig. 2b). The immune score was most highly corre-
lated with the expanded interferon gamma signature
(Spearman’s ρ = 0.94) and least correlated with the TLS
and the CIBERSORTx-estimated CD8+ T cell propor-
tion (Spearman’s ρ = 0.56,0.64, respectively). Addition-
ally, in samples with paired whole exome sequencing,
the immune score was independent of TMB (Pearson’s
R = 0.027, p = 0.75, Supplementary Fig. 3c) but nega-
tively correlated with tumor purity (Pearson’s R = −0.6,
p < 0.001, Fig. 2c). The immune score also was not as-
sociated with biopsy site (Fisher’s Exact Test p = 0.735;
biopsy site categories including lymph node, skin, and
other) or antigen presentation mutations (Fisher’s Exact
Test p = 0.87; see Methods). The immune score thus
provides a coarse-grained representation of the degree
of immune infiltrate in the tumor microenvironment.

An “immune-high” but not “immune-low” score
separates response to combination versus single-
agent ICB

Next, we examined how the immune score correlated
to response (Fig. 2d). Consistent with prior observa-
tions [18], the immune score was higher in respon-
ders versus non-responders in patients treated with
anti-PD-1 with prior anti-CTLA-4 treatment (Wilcoxon
rank-sum p=0.00043). However, interestingly, the im-
mune score was not significantly associated with re-
sponse to single agent anti-PD-1 or anti-CTLA-4 but
was strongly associated with response to combination
anti-PD-1/anti-CTLA-4 (Wilcoxon rank-sum p=0.00416).
To model this effect, we constructed a multi-variable lo-
gistic regression model predicting response from the im-
mune score, treatment, and their interaction (Methods,
Supplementary Table 4, using anti-PD-1 as a reference.
The model predicted that anti-CTLA-4 treatment has
worse response rates (OR=0.364, p=0.0008), and that
combination ICB has better response rates (OR=3.031,
p=0.0528), relative to anti-PD-1, as expected. Further-
more, only in the combination ICB, a greater immune
score predicted even better response rates (OR=8.680,
p=0.0226). Concordant results were observed stratify-
ing the cohort into “immune-high” and “immune-low”
clusters (Fig. 2a). In combination ICB and anti-PD-
1 with prior anti-CTLA-4, immune-high samples have
higher response rates compared to immune-low sam-
ples (Fig. 2e-f). For combination blockade, the odds of

response were 6.67 higher in patients with immune-
high versus immune-low samples (Fig. 2g, Fisher’s Ex-
act Test p=0.035). These data demonstrate that im-
mune infiltrate may be useful for predicting response
to combination anti-PD-1/anti-CTLA-4, and affirm that
prior history of anti-CTLA-4 treatment alters the re-
sponse to subsequent anti-PD-1 monotherapy. We also
compared response rates between treatment groups
(Fig. 2h). Immune-high patients treated with combi-
nation ICB had a significantly increased odds of re-
sponse compared to anti-PD-1 (OR=5.191, Fisher’s Ex-
act Test p=0.011). However, responses between com-
bination ICB and anti-PD-1 were similar in the immune-
low group, irrespective of treatment (OR=0.744, Fisher’s
Exact Test p=0.746). Therefore, patients with immune-
high tumors are much more likely to respond to combi-
nation ICB, but those with immune-low tumors are not.

Hypoxia-related signatures are enriched in immune-
high environments of non-responders to anti-PD-1

We reasoned that bulk RNA-sequencing transcriptomes
in immune-high and immune-low states likely repre-
sent different proportions of immune cells and tu-
mors. No significant differences were seen in individ-
ual gene expression between responders and non-
responders for each treatment group after multiple hy-
pothesis test correction (Supplementary Table 5). We
thus tested how gene pathways or signatures were as-
sociated with response or non-response for each treat-
ment group and whether the addition of our immune
score further stratifies response to treatment. Using
254 gene sets of biological processes from the Hall-
marks and Kegg databases, we also performed pre-
ranked gene set enrichment analysis (GSEA) by treat-
ment groups and immune states. While some signa-
tures were enriched in responders across treatments
and immune states (e.g. T cell signaling related signa-
tures, labelled “T cell signaling” on Fig. 3a), other sig-
natures were specific to either immune-low or immune-
high states (e.g. a set of metabolic signatures largely
enriched in non-responders for immune-low tumors, la-
belled “metabolism 2” on Fig. 3a). Additional manually
identified categories of signatures are shown in Fig. 3a;
full results can be found in Supplementary Table 6.

We then examined pathways that were enriched in
responders and non-responders differentially between
immune-high and immune- low tumors (), with a fo-
cus on anti-PD-1 monotherapy (Supplementary Fig. 4a,
Supplementary Fig. 5a-b). Interferon gamma response
was significantly enriched in non-responders in tu-
mors with immune-low states (NES=-1.30, FDR=0.003,
Supplementary Fig. 4a), but not significantly en-
riched in non-responders in tumors with immune-high
states (NES=0.95, FDR=0.33). Interestingly, a set of
hypoxia-related signatures, including the Hallmarks hy-
poxia signature (NES=-1.34, FDR=0.0073), glycoly-
sis (NES=-1.25, FDR=0.0005), epithelial-mesenchymal
transition (EMT, NES=-1.21, FDR=0.024), TGFβ sig-
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naling (NES=-1.38, FDR=0.10), angiogenesis (NES=-
1.04, FDR=0.23), and VEGF signaling (NES=-1.20,
FDR=0.16), were enriched in non-responders with
immune-high states (Fig. 3b). In contrast, several of
these signatures (hypoxia, glycolysis, and EMT) trended
oppositely among non-responders with an immune-low
state (Supplementary Fig. 4a).

Further, we calculated a single-sample gene set en-
richment score (ssGSEA) for the hypoxia signature in
each sample. Uniquely in immune-high samples, ss-
GSEA scores in samples from patients treated with
anti-PD-1 are significantly higher in non-responder com-
pared to responder samples (Fig. 3c, p=0.0051 by
Wilcoxon rank-sum). This pattern was not observed in
patients with prior anti-CTLA-4 (Supplementary Fig. 4b,
n.s. by Wilcoxon rank-sum). This trend was also ob-
served with ssGSEA scores using the glycolysis sig-
nature (Supplementary Fig. 4c, p=0.036 by Wilcoxon
rank-sum) but not for the epithelial-mesenchymal tran-
sition signature or the angiogenesis signature (Supple-
mentary Fig. 4d-e, n.s. by Wilcoxon rank-sum). To af-
firm that our observations were not overly influenced
by the specific set of genes found in the Hallmarks hy-
poxia signature, we also calculated the ssGSEA score
for three other previously published hypoxia signatures
[29, 30, 31] and found a significant increase in these sig-
natures in non-responders as well (Supplementary Fig.
4f-h). These data suggest that hypoxia is a biomarker of
resistance to anti-PD-1 in metastatic melanoma specifi-
cally in immune-high tumors.

Single cell RNA-seq analysis shows that hypoxia
correlates with an immunosuppressive microenvi-
ronment in metastatic melanoma

The hypoxic microenvironment contributes to tumor
progression and resistance to therapy through mul-
tiple mechanisms, including angiogenesis, epithelial-
mesenchymal transition (EMT), and immune suppres-
sion. Hypoxia can impact the TME either directly,
through restricting available oxygen [32], or indirectly,
via changes in metabolite availability (e.g. lactate,
adenosine, etc.), chemical changes (e.g. reactive oxy-
gen species), vascular structure, etc. [33]. To investi-
gate the role of hypoxia in the TME of melanoma, we
analyzed a separate cohort of patients with metastatic
melanoma with available single cell RNA-sequencing
(scRNA-seq). We utilized a subset of pre-treatment
samples from the Yang et al. 2024 scRNA-seq cohort
(25 samples from 17 patients, Supplementary Fig. 6,
additional clinical information in Supplementary Table
7) [24]. We focused our analyses on the pre-treatment
scRNA-seq samples to more closely mirror our bulk
RNA-seq analyses. After initial quality control filter-
ing, pre-processing, clustering, and removal of doublets
and contaminating cells, we had approximately 170,000
cells with cell type annotations at several levels of gran-
ularity (Fig. 4a, see details in Supplementary Fig. 7,
Methods).

We then calculated a “hypoxia score” for each sam-
ple (Methods). After scoring each cell for the Hallmarks
hypoxia signature (per-cell values can be found in Sup-
plementary Table 8), we created high, mid, and low
hypoxia categories by dividing the cohort by tercile of
the mean hypoxia score per sample (Fig. 4b). Then,
to evaluate whether the levels of the hypoxia signature
were driven by a global cellular response to an environ-
mental hypoxia or a melanoma-intrinsic pseudohypoxia
[34, 35], we examined the correlation of the mean lev-
els of hypoxia signature expression between the tumor,
immune, and stromal compartments. The hypoxia sig-
nature was robustly correlated between the tumor cells
and other compartments (Pearson’s correlation of 0.66,
Fig. 4c), which is more consistent with a global cellular
response to hypoxia. More hypoxic samples also tended
to be immune excluded (Fig. 4d), consistent with our ex-
pectations [36].

To investigate changes in the immune milieu, we sub-
set the immune cells, defined by high expression of
PTPRC (CD45), and performed dimensionality reduc-
tion, clustering, and cluster annotation to identify im-
mune cell subsets (Fig. 4e), Supplementary Fig. 7b).
Subtle shifts in the composition of the immune microen-
vironment, both in more hypoxic and immune excluded
samples were apparent but not significant in this co-
hort (Supplementary Fig. 8a-f). Then, we tested the re-
lationship between immune cell type genes most as-
sociated with overall sample levels of hypoxia using a
pseudobulk approach. We first fit linear models predict-
ing gene expression from the hypoxia score for each
gene (Supplementary Table 9). We then performed a
similar pre-ranked gene set enrichment analysis as with
the bulk RNA-seq analysis, utilizing the same 254 gene
sets with four hypoxia-related signatures. Hierarchical
clustering of the signature scores revealed a cohesive
set of signatures which broadly associated with sample-
level hypoxia (Fig. 4f). Across all cell types in more hy-
poxic samples, we observed upregulation of hypoxia re-
sponse and EMT genes, and downregulation of oxida-
tive phosphorylation (consistent with a progressive loss
of mitochondria and oxidative metabolism in a hypoxic
TME [37]), interferon gamma response, adhesion, and
DNA repair.

Within CD8+ T cells, we found that higher sample-
level hypoxia associated with higher levels of CXCL13
(a marker which has been shown to have discriminat-
ing power for antigen specificity in CD8+ T cells in
the TME [38]) and ENTPD1 (CD39), which have been
previously associated with CD8+ T cell exhaustion in
the TME [39, 40] (Fig. 4g). Accordingly, an LCMV sig-
nature for effector versus exhausted T cells also de-
creases as hypoxia increases (Fig. 4h, additional ex-
haustion signatures shown at Supplementary Fig. 8g-
h) [41, 42]. We also found that the tumor-associated
macrophage (TAM) cluster had high levels of immuno-
suppressive markers, such as CXCL8, CSF1, CD163,
and SPP1 (Fig. 4i-j, additional TAM signatures shown
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at Supplementary Fig. 8i-j), which has been found to be
upregulated in tumor-associated macrophages in previ-
ous studies [43]. More pro-inflammatory TAM markers,
such as C1QB and TNF were not as strongly associ-
ated with hypoxia. Overall, we observed a depletion of
immune cells in more hypoxic samples, as well as a po-
tentially more immunosuppressive microenvironment.

Further, we found similar trends in two independent,
previously published scRNA-seq cohorts of patients
with metastatic melanoma, Jerby-Arnon et al. 2018
(Supplementary Fig. 9a-d) [44] and Sade-Feldman et
al. 2018 (Supplementary Fig. 10a) [11]. Since the Sade-
Feldman dataset did not contain tumor or stromal cells,
the analysis was reduced and adapted (see Methods for
details). Looking only at untreated metastatic samples,
we performed a similar hypoxia stratification (Supple-
mentary Fig. 9e-g and 10b) and found that hypoxia also
associated with immune exclusion (Supplementary Fig.
9h). Despite the lower cell counts in these datasets, we
observed similar expression patterns of EPAS1, FLT1,
HIF1A, KDR, and VEGFA across tumor, stromal (fi-
broblasts, endothelial cells), and immune cells (T cells,
myeloid cells) in these cohorts (Supplementary Fig. 9i
and 10e). Although the enrichment of the specific gene
signatures varied in this external dataset, we observed a
similar enrichment of a more terminally exhausted phe-
notype in CD8+ T cells and a more immunosuppressive
phenotype in the TAM population (Supplementary Fig.
9j-o and 10f-h).

Hypoxia associates with unique stromal-tumor in-
teractions
We hypothesized that the impact of hypoxia on non-
immune cells, like cancer-associated fibroblasts and en-
dothelial cells (ECs), could also play a role in resis-
tance to checkpoint blockade. The hypoxia score was
highest in tumor and stromal cells (keratinocytes, ECs,
and fibroblasts, p < 0.05 for each group in one versus
rest Wilcoxon rank-sum, Fig. 5a). The expression of
the key hypoxia-sensing transcription factors HIF1A and
HIF2A as well as the downstream angiogenesis-related
genes VEGFA, FLT1 (VEGFR1), and KDR (VEGFR2)
were also high in these subsets (Fig. 5b). HIF1A was
expressed across all cell types, but was significantly
higher in ECs, fibroblasts, and myeloid cells. In con-
trast, HIF2A (EPAS1 gene) was primarily expressed
in ECs and fibroblasts. VEGFA was significantly high
in tumor cells, fibroblasts, and myeloid cells. Fibrob-
last frequency was associated with higher hypoxia (Fig.
5c), and they also showed increased expression of cer-
tain chemokines and cytokines in more hypoxic sam-
ples (Fig. 5d). Sample-level hypoxia did not correlate
with EC frequency (Fig. 5e). However, in more hypoxic
samples, ECs expressed genes promoting angiogene-
sis, whereas in less hypoxia samples, ECs expressed
genes promoting adhesion and certain chemokines, like
CXCL10 (Fig. 5f).

Given the high expression levels of hypoxia- and

angiogenesis-related transcription factors, as well as
the phenotypic changes in stromal cells, we wanted to
understand if and how stromal cells could be interact-
ing with tumor cells. So, we inferred cell-cell interactions
based on the gene expression of receptor-ligand pairs
using CellPhoneDB [45] (Supplementary Table 10). The
number of significant stromal-tumor interactions posi-
tively correlated with hypoxia score for both ECs and
fibroblasts (Fig. 5g-h). Other interactions, such as the
frequency of stromal-immune interactions, were largely
not correlated with the sample-level hypoxia score (Sup-
plementary Fig. 11a-b). We then examined stromal-
tumor interactions consistently found only in hypoxic
samples by identifying interactions found in ≥75% of
the samples (i.e. 6/8) in a particular hypoxia tertile (high,
mid, or low; Fig. 5i-j). Fibroblasts in the high- and mid-
hypoxia groups were identified to consistently have FN1
(fibronectin)-integrin and NRP1-VEGF interactions with
tumor cells. However, several fibroblast-tumor interac-
tions were only observed in the high-hypoxia group:
fibroblast expression of EGFR interaction with COPA,
GRN, and MIF on tumors, as well as CSF1 expres-
sion on fibroblasts interacting with markers expressed
on tumors. ECs in mid- and high-hypoxia samples also
had NRP1-VEGF interactions, in addition to many an-
giogenic signals downstream of HIF1A and HIF2A, in-
cluding FLT (VEGFR1) to VEGFA/B, KDR (VEGFR2)
to VEGFA. Unique to the ECs in high-hypoxia sam-
ples were interactions involving ECs expression of in-
tegrins as well as an increase in EC expressed DLL4
and JAG2 to tumor expressed NOTCH receptors. Alto-
gether, these signals reveal a concert of stromal interac-
tions which may be reinforcing or responding to hypoxia
in the melanoma TME and subsequently promoting an-
giogenic and immunosuppressive signals.

Targeting HIF-2α signaling in combination with anti-
PD-1 in pre-clinical models improves tumor control

We hypothesized that more proximal inhibition of
hypoxia-associated pathways may lead to greater clini-
cal benefit. Based on our single-cell RNA-seq analysis,
we identified EPAS1 (HIF-2α) as being highly and se-
lectively expressed on endothelial cells and fibroblasts
within the TME (Fig. 5b, Supplementary Fig. 9i). HIF-
2α inhibitors have recently been FDA-approved for clear
cell renal cell carcinoma (ccRCC), a tumor which ex-
presses HIF-2α. On the other hand, melanoma, along
with infiltrating immune cells, expresses HIF-1α (Fig.
5b). In the treatment of melanoma, we therefore rea-
soned that inhibiting HIF-2α may operate indirectly,
specifically targeting stromal and endothelial cells (as
opposed to tumor cells) without impairing immune ef-
fector function. Moreover, we hypothesized that inhibit-
ing HIF-2α would be more effective in immune-high tu-
mors.

To test this hypothesis, we used a syngeneic murine
melanoma tumor model, B16.F10 (B16). The tumor mi-
croenvironment of B16 recapitulates several features
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that we observed from the human clinical setting in our
scRNA-seq analysis. We analyzed a previously pub-
lished dataset of bulk RNA-sequencing of B16 tumors
(GSE96972) [46] and found that, similarly to the human
clinical context, B16 tumors expressed very low levels
of Epas1 (HIF-2α, Supplementary Fig. 12a). Addition-
ally, from previously published single-cell sequencing of
the TME of B16 tumors, Hif1a was broadly expressed
across immune and stromal cells, but only fibroblast and
endothelial cells had relatively higher expression levels
of Epas1 (Supplementary Fig. 12b). Then, to compare
the immune-high and immune-low settings, we also uti-
lized B16.F10 expressing the model antigen ovalbu-
min (B16-OVA). Respectively, B16 and B16-OVA rep-
resent a poorly immune-infiltrated tumor that is unre-
sponsive to anti-PD-1 alone and a more highly immune-
infiltrated tumor that is partially responsive to anti-PD-
1 [47, 48, 49]. Mice were implanted with B16 or B16-
OVA tumors, and treated with either anti-PD-1, a small
molecule inhibitor of HIF-2α, PT2399, or the combina-
tion of anti-PD-1 with PT2399 (Fig. 6a). Mice implanted
with B16-OVA tumors and treated with the combination
anti-PD-1/PT2399 showed delayed tumor growth rela-
tive to control or each treatment administered alone
(Fig. 6b). In contrast, mice implanted with the relatively
immune-excluded B16 parental tumor did not see sig-
nificantly improved tumor growth control when treated
with the combination anti-PD-1/PT2399 (Fig. 6c). This
suggests that the benefit of HIF-2α inhibition occurred
in combination with immunotherapy and in tumors more
sensitive to anti-PD-1.

To understand the immunologic mechanism by which
the combination anti-PD-1/PT2399 exerted its effects,
we conducted cellular analyses of T cells isolated from
B16-OVA tumors on day 4-5 after initiation of treatment
(Supplementary Fig. 13, 14, 15). We observed no sig-
nificant numerical advantage in CD8+ T cells or de-
crease in regulatory T cells (Fig. 6d-f). Furthermore,
despite differences in tumor growth, we saw no dif-
ference in CD8+ T cell phenotype or function, includ-
ing co-inhibitory receptors (PD-1, TIM-3), proliferation
(Ki-67), or granzyme B expression between the anti-
PD-1 treated group and the anti-PD-1/PT2399 group
(Fig. 6g-i, Supplementary Fig. 12c). Likewise, we saw
no differences in the CD8/Treg ratio (Supplementary
Fig. 12d) or the regulatory phenotype based on PD-1,
Ki-67, or CD25 expression (Supplementary Fig. 12e-
g). Given the high expression of HIF-2α in fibroblasts
and endothelial cells relative to melanoma or immune
cells (Fig. 5b, Supplementary Fig. 9i), we suspected
that the HIF-2α function may be greater on stromal
and endothelial cells, and that re-modeling of the tu-
mor microenvironment could be responsible for slow-
ing tumor growth, and also performed flow cytome-
try on CD45-CD31+ cells, which represent endothelial
cells and some stromal cells (Supplementary Fig. 16
and 17). Consistent with this hypothesis, intra-tumoral
CD31+ cells showed an increase in HIF-1α expres-

sion in anti-PD-1/PT2399 treated mice, demonstrating
that non-immune cells are impacted by the combina-
tion therapy (Fig. 6j). These findings suggest that com-
bined anti-PD-1/HIF-2α inhibition may compensate for
the lack of HIF-2α signaling by up-regulating HIF-1α on
non-immune cells in the tumor microenvironment, and
thereby improve tumor growth control.

Discussion
In this study, we performed a meta-analysis of all pre-
viously published cohorts of patients with advanced
melanoma treated with anti-CTLA-4, anti-PD-1, and
combination anti-CTLA-4/anti-PD-1 for whom clinical
annotations and bulk RNA-seq data were available. In
stratifying patient populations by immune state, we iden-
tified several important patterns of response between
treatment groups. First, we recapitulated the observa-
tion that an immune-high microenvironment predicted
response to anti-PD-1 only in prior anti-CTLA-4 treated
patients [18], highlighting the confounding effects of
prior immunotherapy on biomarkers of response. We
emphasize that features of response and non-response
are sufficiently distinct for patients with and without prior
anti-CTLA-4 that they ought to be considered separate
populations; to this end, we have provided an updated,
organized data table for all cohorts included in our anal-
ysis as a resource for future analyses (Supplementary
Table 1). Second, we found that the increased response
rates of combination blockade over single agent anti-
PD-1 occurs in tumors classified as immune-high, but
not immune-low, supporting a “rich-get-richer” scheme
for response to combination blockade. Our analysis sug-
gests that patients with immune-high tumors may be the
specific incremental beneficiaries of combination block-
ade, and that, counter-intuitively, toxicity could be de-
creased while maintaining efficacy by giving anti-PD-1
monotherapy to patients with immune-low tumors. Addi-
tional work would certainly be required to translate our
transcriptomic metric of immune infiltrate into the clinic,
though the rapid development and increasing power of
computer vision models to quantify and classify features
from hematoxylin and eosin (H&E) staining [50] or other
common clinical assays provides a potential path for-
ward.

Our immune-high versus immune-low classification
also provides a framework in which to separate mecha-
nisms of resistance to ICB. An immune-high microen-
vironment suggests that the immune response has
been partially successful: immune cells have infiltrated,
but the anti-tumor killing process has been stymied.
While previous clinical analysis have suggested hypoxia
broadly associates with resistance to ICB [9] and other
solid tumors [51], our analysis demonstrated an asso-
ciated of hypoxia with poor response that is specifically
enriched in immune-high tumors and underscores the
importance of heterogeneity within the TME. Our data
therefore suggest that therapies targeting hypoxia in the
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tumor microenvironment may be more effective in highly
immune-infiltrated tumors.

In melanoma, clinical trials targeting angiogenesis
alone have been met with relatively little success [52]. In
more recent years, there have been several trials com-
bining hypoxia inhibitors or anti-angiogenic therapeutics
with immune-checkpoint blockade [53, 54], demonstrat-
ing some promise for the combination [55, 56]. However,
the LEAP-003 trial [57], testing lenvatinib (multiple ty-
rosine kinase inhibitor whose targets include VEGF re-
ceptors) and pembrolizumab (anti-PD-1) as a first-line
combination therapeutic and focusing on overall survival
(OS) outcomes, was discontinued due to a lack of im-
provement in OS relative to anti-PD-1 alone [58]. Given
our results, it is possible that an immune-stratified anal-
ysis of previous, ongoing, and upcoming trials involving
combination angiogenesis inhibitors and ICB could en-
rich for a responding patient population.

While hypoxia is considered a general feature of solid
tumors, in our scRNA-seq analysis of pre-treatment
metastatic melanomas, we observed varying levels of
hypoxia response in different samples (Fig. 4b, Sup-
plementary Fig. 9f and 10). Differences in levels of hy-
poxia then corresponded to varying degrees of the im-
munosuppressive and tissue remodeling impacts of hy-
poxia. Hypoxia was associated with decreased immune
infiltration overall, and the immune cells which were
present had different phenotypes: T cells tended to be
more terminally exhausted [42] and had higher levels of
ENTPD1 (CD39), a transcription factor which promotes
suppressive activity in exhausted CD8+ T cells [41].
Macrophages possessed an SPP1+ phenotype previ-
ously associated with immunosuppression [43]. In ad-
dition to immune cells, we observed that stromal cells
had the highest hypoxia response scores, suggesting
an important role of stromal cells in mediating hypoxia
effects in the microenvironment. In more hypoxic sam-
ples, fibroblasts and endothelial cells expressed genes
which could contribute to remodeling the TME (e.g.
CXCL8, IL6) and had increased numbers of stromal-
tumor interactions. Overall, our analysis paints a pic-
ture of high variance in hypoxia levels in melanomas
and a subsequent differential impact on immunosup-
pression and tumor-stromal signaling, potentially pro-
moting tumor growth and favoring an immunosuppres-
sive microenvironment.

Within our scRNA-seq data, we also identified dif-
ferential gene expression of commonly clinically tar-
geted gene products across cell types. For example,
VEGFA (VEGF; targeted by lenvatinib) was expressed
on myeloid cells and fibroblasts and to a lesser extent
on keratinocytes and tumor cells; KDR (VEGFR2; tar-
geted by bevacizumab, a VEGFR2 blocking antibody)
on endothelial cells; and EPAS1 (HIF-2α; targeted by
belzutifan, the human analog to PT2399) expressed on
endothelial cells and fibroblasts (Fig. 5). The differen-
tial expression of HIF-2α in fibroblasts in addition to en-
dothelial cells may also offer a unique and novel target.

Fibroblasts are enriched in more hypoxic melanomas
(Fig. 5i, Supplementary Fig. 8h) and can reinforce hy-
poxia in the microenvironment through collagen de-
position and increased fibrosis [59]. The HIF-2α in-
hibitor belzutifan is already approved to treat von Hippel-
Lindau (VHL) disease-associated tumors [60] and for
clear cell renal cell carcinoma (ccRCC) in combination
with a PD-1 or PD-L1 inhibitor and a vascular endothe-
lial growth factor tyrosine kinase inhibitor (VEGF-TKI)
[61]. In these tumor types, belzutifan is thought to act
on a tumor-intrinsic features, since these tumor types
are known to commonly mutate HIF-2α [62]. HIF-2α is
not commonly expressed by melanomas, but the high
expression levels seen in stroma offer a potential oppor-
tunity to normalize tumor vasculature, which is a pre-
viously proposed mechanism of anti-angiogenic thera-
pies [63]. Additionally, although HIF-2α expression has
also been preferentially shown to be expressed in reg-
ulatory T cells, as opposed to HIF-1α in CD8+ T cells
[64, 65, 66], alterations in regulatory and CD8+ T cell
phenotypes were not seen in our pre-clinical models,
suggesting that the impact of HIF-2α inhibition is more
indirect on T cell functionality. In all, our data is consis-
tent with the addition of HIF-2α inhibition acting through
an indirect, stromal-focused mechanism, thus marking
a novel approach.

Overall, our study emphasizes the utility of curating
multiple, large, high quality, clinically annotated datasets
into a larger cohort. Clinical datasets oftentimes con-
tain patients with varied treatment histories and het-
erogeneous biology, making the interpretation of these
datasets very difficult. However, given this heterogene-
ity, collecting larger cohorts with organized annotations
will be crucial to achieving the number of samples
required to derive meaningful biological insights. We
demonstrate how careful stratification by clinical and
molecular characteristics can be leveraged to derive
meaningful biological insights and lead to the rational
discovery of novel clinical targets for combination ther-
apy.
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Methods
Patient cohorts for bulk RNA-seq analysis
For the analysis, pre-treatment samples of tumors from
patients with metastatic melanoma treated with im-
mune checkpoint blockade were identified from previ-
ously published work. Samples from cohorts with fewer
than 10 samples total were not considered (e.g. Hugo
2016 [9]). The following cohorts were included in the
meta-cohort: Van Allen 2015 (n=156) [6], Weber 2016
(n=59) [21], Riaz 2017 (n=80) [22], Liu 2019 (n=169)
[18], Gide 2019 (n=74) [16], Freeman 2022 (n=59) [23],
Campbell 2023 (n=59) [19], which contains patient data
from patients described in [4], and Yang 2024 (n=37)
[24]. Clinicopathological and demographic data were
initially obtained from the published papers. Additionally,
we contacted authors of the previously published work
for additional information on prior therapies and updated
survival data (Supplementary Table 1).

Clinical exclusion criteria. Only cutaneous melanoma
was considered in our analysis. Tumor types of un-
known origin were excluded. Additionally, some sam-
ples had complex treatments given concurrently with
ICB (e.g. tyrosine kinase inhibitors) and those patients
were excluded.

Definitions of response. Response was evaluated either
by RECIST v1.1 where available, or by best overall re-
sponse (BOR). Responders (R) were categorized by
having RECIST or BOR complete or partial response
(CR, PR) or stable disease (SD) with PFS greater than
six months. Non-responders (NR) were categorized by
having RECIST or BOR progressive disease (PD) or
stable disease (SD) with PFS less than six months.
Since the interpretation is less clear, patients with mixed
response (MR) or non-evaluable response (NED) were
excluded in all analyses involving response rates. For
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the Weber 2016 cohort, samples were taken from pa-
tients who were treated sequentially with anti-PD-1 and
anti-CTLA-4; for these samples, we only considered re-
sponse to the first line of treatment as response to the
monotherapy.

Inclusion in survival analysis. Because patients in the
Weber 2016 cohort were treated sequentially with anti-
PD-1 and anti-CTLA-4, samples from the Weber 2016
cohort were excluded from all survival analysis (n=59).
Since several samples from the Freeman 2022 cohort
also had subsequent treatment, we also removed them
from the survival analysis (n=59). All samples from the
2023 Campbell (067) cohort were missing censoring
data, and thus they were also excluded from survival
analysis (n=59).

Bulk RNA-sequencing processing and analysis of
clinical cohorts
Alignment and quantification. To harmonize the data,
we obtained raw FASTQ files for all previously pub-
lished bulk RNA-sequencing samples. We evaluated
each FASTQ files’ quality through examining metrics
from FASTQC (v0.11.9). We utilized STAR (v2.7.0) [67]
to align samples to the hg19 reference genome, produc-
ing BAM files. BAM files were quantified using salmon
(v0.14.1) [68]. All alignment and quality control meth-
ods were run utilizing the Terra platform for biomedical
research.

Quality control filtering. For quality control, we evaluated
STAR alignment metrics, removing samples with fewer
than 1 million reads and/or fewer than 50% uniquely
mapped reads. Only protein coding genes expressed
in at least 5% of all samples were included. We then
regenerated a new TPM metric for each sample to nor-
malize the total transcriptome sum to 1 million. Addi-
tional outliers were identified through principal compo-
nent analysis (PCA) of the STAR metrics and gene ex-
pression pre- and post-batch correction.

Batch correction. We observed a batch effect capture
in the first principal component of the non-batch cor-
rected data that was largely explained by sequencing
modality (i.e. poly-A tail capture versus transcriptome
capture technology; Supplementary Fig. 2b-c). We uti-
lized ComBat-Seq [69], implemented in the R package
sva (v3.46.0), to correct for the batch effect by sequenc-
ing modality. We chose not to batch correct by cohort
because we reasoned that there could be relevant bio-
logical differences between cohorts, which ought to be
preserved (Supplementary Fig. 2d-e). We again regen-
erated a new TPM metric for each sample to normalize
the total transcriptome sum to 1 million.

Immune stratification and calculation of the im-
mune score. To characterize the TME, we utilized
sample-level signature scoring to categorize sam-
ples. Each sample was scored using ssGSEA for

cell type/microenvironmental signatures, defined in
Bagaev et al. 2021 [25]. We observed that several of
the signatures were highly co-correlated; hierarchical
clustering of the co-correlation matrix divided the sig-
natures into three sets: a set of 19 immune signatures,
8 stromal/granulocytic signatures, and 2 outliers related
to trafficking and proliferation (Supplementary Fig. 3a).

We calculated the immune score from the 19 immune
signatures. For each signature, we scaled and centered
such that the values were z-scored. Then, the mean
across all signatures for each sample is the immune
score, which was subsequently also z-scored.

Given high levels of correlation between immune sig-
natures, we chose to categorize samples by their over-
all level of immune signatures, as opposed to the signa-
ture scores of specific cell types. Thus, we hierarchically
clustered samples by their levels of the immune signa-
tures. Clusters were assigned based on overall expres-
sion levels of the immune signatures, with the samples
in the cluster with higher expression of immune-related
signatures defined as “immune-high” and the samples
in the cluster with lower expression of immune-related
signatures defined as “immune-low”. For each sample,
we also calculated an “immune score” which is defined
as the mean of the scaled ssGSEA scores for each of
the immune signatures.

To understand how this signature related to pre-
existing signatures which predict response to ICB, we
also calculated scores for nine previously published
immune-related signatures: (1) expanded IFNγ signa-
ture [12], (2) Hallmark IFNγ signature [26], (3) TLS
marker genes [27], (4) CIBERSORTx Tirosh immune
proportion [70], (5) CIBERSORTx LM22 absolute im-
mune score [71], (6) non-expanded IFNγ signature [12],
(7) CIBERSORTx LM22 CD8+ T cell proportion [71],
(8) CIBERSORTx Tirosh CD8+ T cell proportion [70],
(9) Cabrita TLS signature [27]. For (1), (2), (3), (6), (9),
we calculated scaled ssGSEA scores from our samples.
For (4), (5), (7), (8), we used the referenced signature
matrix and CIBERSORTx to deconvolute the cell type
proportions from the bulk RNA-seq samples.

Association between discrete clinical variables and
the immune score were calculated using Fisher’s Ex-
act Test. For biopsy site versus immune state, the
number of immune-high and immune-low tumors from
lymph node (n=34 total; 12 immune-high, 6 immune-
low, and 16 without RNA-seq), skin (n=141; 68 immune-
high, 36 immune-low, and 37 without RNA-seq), and
other biopsy sites (n=41; 12 immune-high, 9 immune-
low, and 20 without RNA-seq) were considered for
the contingency matrix. Any samples with unknown
biopsy site annotations were not included in the contin-
gency matrix. For antigen presentation mutations ver-
sus immune state, the number of immune-high and
immune-low tumors with (38 immune-high, 25 immune-
low) or without (67 immune-high, 40 immune-low) anti-
gen presentation mutations were considered for the
contingency matrix. The following genes were consid-
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ered as antigen presentation genes: RFXANK, RFXAP,
RFX, CIITA, NLRC5, B2M, HLA-C, HLA-C, HLA-A,
ICAM1, PTK2, SCIN, EFNA1, TAP1, TAP2, TAPBP,
PDIA3, CALR, CANX, HSPA5, TPP2, ERAP1, ERAP2,
PSMB10, PSMB9, PSMB8. Silent, intron, 3’UTR, and
5’UTR mutations were not considered in the count.

Multi-variable model. We constructed a multi-
variable logistic regression model to predict re-
sponse from treatment and the immune score
or the sample immune state (model formulation:
response ~ immune_score + treatment). For the
treatment variable, we used the anti-PD-1 treatment
group as the reference. To affirm that our model was
appropriate and parsimonious, we also tested models
with fewer variables (e.g. response ~ treatment,
response ~ 1) and compared the Akaike information
criteria (AIC) between the models.

Differential gene expression (DGE) analysis. DGE anal-
ysis was performed to identify genes differentially ex-
pressed between responders and non-responders for
each treatment group and immune state. For the DGE
analysis, to best capture features which are character-
istic of response or non-response to ICB treatment, we
did not include patients with response annotations of
SD. For each gene, we calculated log2 fold change of
transcripts per million (TPM) between responder sam-
ples and non-responder samples. Given that Wilcoxon
rank-sum is best at FDR control when analyzing human
population samples [72], we calculated the significance
of the difference in TPMs by Wilcoxon rank-sum, uti-
lizing functions from the tidyverse (v2.0.0) collection of
packages in R.

Pre-ranked gene set enrichment analysis. Gene signa-
tures were obtained using the msigdbr (v7.5.1) pack-
age in R, which accesses the Molecular Signatures
Database [73]. 254 gene signatures were selected for
the analysis, including: 50 signatures from the Hall-
marks database [26], 186 signatures from the Kegg
database [74], and 18 selected signatures from Im-
muneSigDB [75]. For additional analyses, we also ex-
amined 4 hypoxia-related signatures from C2: ‘BUFFA_-
HYPOXIA_METAGENE‘, ‘HARRIS_HYPOXIA‘, ‘KIM_-
HYPOXIA‘, and ‘WINTER_HYPOXIA_METAGENE‘.

To understand gene signatures enriched in respon-
ders and non-responders for each treatment group and
immune state, pre-ranked GSEA was calculated us-
ing the Lightweight Iterative Gene set Enrichment in R
(LIGER) tool (v2.0.1). Genes were ranked by the signed
-log10(p-value) estimated from the DGE analysis com-
paring responders and non-responders, where the di-
rection of the value was determined by the log2 fold
change.

For per-sample gene signature scoring, single sam-
ple GSEA (ssGSEA) signature scoring [76] was per-
formed on the TPM expression of all genes in a sample
using the GSVA package (v1.46.0).

To identify gene signatures which were differential
between immune-high and immune-low for each treat-
ment group, we calculated a “differential enrichment
score”, which was the difference between the nor-
malized enrichment score (NES) of each signature in
immune-high versus immune-low. Then, we ranked all
the gene signatures by their score from highest to low-
est.

Genomic analysis
For samples with available paired whole-exome se-
quencing, we re-analyzed samples with the Broad In-
stitute CGA pipeline, using the TERRA platform, adopt-
ing the same quality control filters used for Liu et al.
Nature Medicine 2019 [18]. We estimated tumor pu-
rity, ploidy, and individual mutations through FACETS
[77]. We calculated the number of clonal, sub-clonal,
and the number of non-synonymous mutations. Tumor
mutational burden was defined as the number of non-
synonymous mutations divided by the mean tumor tar-
get coverage.

Single cell RNA-seq dataset processing and analy-
sis of Yang et al. 2024
This section will describe the sample processing and
analysis for subset of samples from the Yang et al. 2024
dataset [24] which were utilized in this study.

Sample selection. The sample collection and process-
ing of the single cell cohort is described in Yang et
al. 2024 [24]. Initial data processing of the complete
dataset was performed using the scanpy software in
Python [78]. From the dataset, we selected a subset
of 24 pre-treatment samples from 17 patients. Within
this subset, there were 177,737 cells total. Of these,
there were 116,774 tumor cells, 43,411 immune cells,
and 17,552 stromal cells ("compartments" as shown in
Supplementary Fig. 7a). Details of their cell type identi-
fication can be found in Yang 2024. Data for all cells in
each compartment (tumor, immune, stromal) were then
re-processed using the Seurat package (v3.1.1) in R
(v4.2.1) [79]. Gene expression measurements were nor-
malized and transformed using Seurat’s SCTransform
method (version 2 [80]), utilizing the following functions
(with default parameters): ‘NormalizeData‘, ‘FindVari-
ableFeatures‘, ‘ScaleData‘, ‘SCTransform‘, ‘RunPCA‘,
‘RunUMAP‘. The PCA was performed on the variable
features. The UMAP was constructed from the first 30
principal components.

Clustering and cell type identification. For each compart-
ment, nearest neighbor identification and unsupervised
clustering were also performed using functions from
the Seurat package (default parameters): ‘FindNeigh-
bors‘ and ‘FindClusters‘. We examined resolutions 0.1
through 0.9, with a step size of 0.1. For each com-
partment, cell types were identified by (1) selecting a
clustering resolution which recapitulated known biolog-
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ical priors and (2) annotating clusters based on the ex-
pression of known markers and signature scores. Then,
clusters were merged into biologically relevant group-
ings (e.g. two cell clusters identified by unsupervised
clustering which express CD8A and CD3E labelled as
"CD8+ T cell"; referred to as "general cell type" in Sup-
plementary Fig. 7b). General cell type markers can be
found in Supplementary Fig. 7c.

For immune cell subsets, further sub-clustering was
done on the B cells, myeloid cells, and T/NK cells
to identify specific immune cell subtypes. When dif-
ferentiating between very similar immune cell subsets,
sample-level differences in phenotype oftentimes dom-
inated (e.g. FOXP3+ T regulatory cells clustering with
other T cells from the same sample rather than cluster-
ing together). To mitigate these sample-level differences
which arise when trying to distinguish between similar
cells, we integrated the cell type subset using CCA inte-
gration described in [81] and implemented in the Seurat
package, utilizing the functions: ‘SelectIntegrationFea-
tures‘ (3000 features), ‘PrepSCTIntegration‘, ‘FindInte-
grationAnchors‘ (first 15 principal components), and ‘In-
tegrateData‘ (considering 15 neighbors when weighting
anchors). Then, for each subset, we re-ran the same
workflow as described above, identifying finer immune
cell subsets (referred to as "specific cell type"). Specific
cell type markers can be found in Supplementary Fig.
7d.

For additional clarification about the exhaustion phe-
notype in the CD8+ T cell subset, CD8+ T cells were
additionally scored with signatures derived from tumor
subsets in Miller, Sen et al. 2019 [47] (Supplementary
Fig. 7e).

Per-cell signature scoring. All per-cell signature scor-
ing in the scRNA-seq analysis was done using AU-
Cell (v1.20.2) [82], a rank-based method for assigning
scores using gene signatures. A subset of the signa-
tures utilized in the bulk RNA-seq analysis were used
in the scRNA-seq signature scoring. Additionally, the
SPP1+ macrophage signature from supplementary ta-
bles in Wei et al. 2021 [43] was downloaded.

Calculation of sample-level hypoxia score. The sample-
level hypoxia score was calculated from the AUCell sig-
nature scores, utilizing the ‘HALLMARK_HYPOXIA‘ sig-
nature from MSigDB. We noted that the signature score
was significantly different between the tumor, stromal,
and immune compartments, with stromal cells express-
ing the highest levels of these signatures and immune
cells expressing the lowest. To decouple the sample-
level hypoxia score from the relative proportion of stro-
mal, tumor, and immune cells, we first normalized the
hypoxia score for every cell within each compartment,
effectively z-scoring the distribution of hypoxia scores
per cell for immune, tumor, and stromal cells sepa-
rately. For compartment-level hypoxia scores, we cal-
culated the mean hypoxia score for each compartment
and sample. For the sample-level hypoxia scores, we

calculated the mean hypoxia score using the normal-
ized hypoxia score for each sample across all cells in
that sample.

Pseudobulk analysis and modeling sample-level hypoxia.
Pseudobulk samples were creating by aggregating the
counts for each gene across all cells for each sample
and cell type using functions documented in the cus-
tom package Rsc (v0.0.900, hosted at github.com/
amyh25/Rsc). For the pseudobulk analysis, since we
wanted to enrich for higher quality cells, we only in-
cluded immune and stromal cells with greater than 1000
unique features. For tumor cells, we did not exclude
any cells, since we could not confidently exclude cells
with fewer features as simply lower quality cells due to
the complexities of identifying and analyzing tumor cells
in scRNA-seq. For the SCTransform normalized Seurat
objects, the SCT transformed counts were taken instead
of the RNA counts. These functions remove cells which
are outliers by median absolute deviation (MAD) and
consider only genes with greater than 10 total counts for
each pseudobulk, using functions from scater (v1.26.1)
and Matrix.utils (v0.9.8). DESeq2 (v1.38.3) was used to
normalize the pseudobulk.

To understand how gene expression in spe-
cific cell types related to the overall sample-level
of hypoxia, we constructed linear models to pre-
dict sample-level hypoxia from the expression
of genes for each cell type (model formulation:
hypoxia score ~ gene expression). For the gene
expression, we utilized the log-normalized counts
per million (log(CPM + 1)). To enrich for the most
relevant gene changes in each pseudobulk, we only
considered genes with log2 fold change greater than
0.1. We then used the estimated effect of the hypoxia
for downstream signature scoring, in a similar analysis
to the bulk RNA-seq (see section on pre-ranked gene
set enrichment analysis in bulk RNA-seq analysis for
details).

Receptor-ligand analysis. Receptor-ligand analysis
was performed using the algorithm and database
from CellPhoneDB [45]. Similarly to the pseu-
dobulk analysis, we only included immune and
stromal cells with greater than 1000 unique fea-
tures. Metadata and the input counts matrix (pulled
from the RNA “slot” of each Seurat object) was
merged into a table for each sample. Then, the Cell-
PhoneDB analysis was run from command line using
cellphonedb method statistical_analysis.
Downstream processing and visualization of the Cell-
PhoneDB output was done in R using functions from
the tidyverse set of packages (v2.0.0).

Additional scRNA-seq analysis of clinical datasets
Two addition scRNA-seq cohorts of metastatic
melanoma were considered for replication of the
hypoxia stratification analysis. We identified the
scRNA-seq dataset published in Jerby-Arnon et al.
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2018 [44] and the scRNA-seq dataset published in
Sade-Feldman et al. 2018 [11] as suitable datasets to
reproduce the analysis. While the sequencing modality
of these datasets (SmartSeq2) were different from the
Yang et al. 2024 scRNA-seq cohort, both datasets
contained pre-treatment samples from patients with
metastatic melanoma. Note that compared to the Yang
scRNA-seq cohort, these datasets are more limited by
the number of cells detected. In particular, this made it
infeasible to replicate the stromal cell receptor-ligand
analyses, so instead analysis was focused on the
immune compartment results. The counts matrices,
cell- and sample-level metadata of the external single
cell RNA-sequencing cohort was downloaded from the
supplementary material of both publications. From the
counts matrices, samples were processed using the
standard Seurat workflow up through dimensionality
reduction. In the Jerby-Arnon et al. 2018 dataset, we
note the following about the analysis: cell types were
not re-annotated, although they were re-labelled to
match with the cell type labels from the scRNA-seq
analysis. Only metastatic samples from the “Untreated”
treatment group were considered for the downstream
hypoxia analysis. The analysis of the effects of hypoxia
were conducted as described above also in the external
scRNA-seq cohort. In the Sade-Feldman et al. 2018
dataset, we note the following about the analysis: given
that this dataset only contained immune cells, the
hypoxia stratification was conducted with only immune
cells, and thus the results may be different from the
other two datasets. Cell types were re-annotated
post-clustering.

Expression of hypoxia-related genes from B16 tu-
mors
FPKM expression matrices from bulk RNA-sequencing
of B16 tumors was downloaded from GEO (acces-
sion number: GSE96972) [46]. In this study, B16 tumor
cells were seeded on extracellular matrix and treated
in vitro with siRNA in two types of media. Expres-
sion of hypoxia-related genes were taken from condi-
tions treated with non-targeting siRNA (siNT). The gene
encoding succinate dehydrogenase complex flavopro-
tein subunit A (Sdha) was chosen as a representative
house-keeping gene.

Expression of hypoxia-related genes from B16 TME
TPM expression matrices from scRNA-sequencing
of B16 tumors (the murine melanoma atlas) were
downloaded from https://www.ebi.ac.uk/gxa/sc/
experiments/E-EHCA-2/downloads. Cluster annota-
tions, as described in Davidson et al. 2020 [83], were
also downloaded. Only clusters which were present
in the tumor were considered; lymph node clusters
were discarded. The following clusters were merged
for clarity of visualization: conventional dendritic cells
(DCs), migratory DCs, plasmacytoid DCs were all la-
belled “DCs”; cancer-associated fibroblast clusters 1

through 3 were all labelled “fibroblasts”; gamma delta
T cells/mucosal-associated invariant T cells along with
tumor T cells were all labelled “T cells,” macrophages
and monocytes were labelled as “TAMs” for tumor-
associated macrophages and monocytes. Gene ex-
pression was then visualized as log10(TPM+1).

Visualizations
Visualizations were created with the R packages gg-
plot2 (v3.4.2), cowplot (v1.1.1), ggpmisc (v0.5.5), gg-
pubr (v0.6.0), scattermore (v1.2), ComplexHeatmap
(v2.6.2), and survminer (v0.4.9). The Adobe Illustrator
software was used to lay out the visualizations and har-
monize the visual style.

Tumor cell lines
B16-OVA expressing cell lines were generated from
B16.F10 as described previously [47]. B16.F10 and
B16-OVA cells were cultured in Dulbecco’s modified
Eagle’s medium (DMEM, Gibco) with 5% fetal bovine
serum (FBS, Gemini Bio-Products) and 1% Penicillin-
Streptomycin (Life Technologies) at 37°C with 5% CO2
and passaged 3-5 times prior to implantation. Cul-
ture media was supplemented with 2 ug/ml puromycin
for B16-OVA cells. Cell lines were tested intermittently
for mycoplasma contamination using the LookOut My-
coplasma PCR detection kit.

Mice and tumor implantation
Female 6-8 week old C57BL/6J mice (Catalog #000664)
were purchased from the Jackson Laboratory. All mice
were maintained in specific pathogen-free facilities at
Harvard Medical School under standard housing, hus-
bandry, and diet conditions according to Institutional
Animal Care and Use Committee and NIH guidelines.
All experimental procedures performed were approved
by the Institutional Animal Care and Use Committee at
Harvard Medical School.

Mice were implanted subcutaneously with 3 × 105

B16.F10 or 3 × 105 B16-OVA in the flank. Once the av-
erage tumor size across cages reached >100 mm3,
cages were normalized, and dosing schedules began.
In vivo antibodies were sourced from BioXCell. All
blocking antibodies and isotype controls were adminis-
tered via intraperitoneal (i.p.) injection in cold DPBS−/−

in 200µl volumes. 200µg anti-PD-1 (clone 29 F.1A12)
or 200µg isotype-matched control antibody (2A3, Rat
IgG2a) were administered. PT2399 (MedChem Ex-
press) was administered by oral gavage, twice daily, be-
tween days 11-25 at 30mg/kg (0.75mg) doses. To pre-
pare the dosing solution, PT2399 was dissolved in 10%
ethanol, 30% polyethylene glycol 400 (Sigma-Aldrich)
and further diluted in 0.5% (hydroxypropyl)methyl cellu-
lose (HPMC) solution (Sigma-Aldrich). The dosing so-
lution was sonicated for 20 minutes prior to adminis-
tration. Mice were monitored for tumor growth starting
on day 7 or 8 with tumor volume calculated as the vol-
ume of an ellipsoid (0.5×D ×d2) where D refers to the
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largest diameter and d refers to the smaller diameter
of the tumor. Mice were sacrificed on the days speci-
fied for tissue dissection or when they reached humane
endpoint: 2000mm3 or significant ulceration. All experi-
ments were repeated with reproducible results.

Flow cytometry
Mice were euthanized and the tumors were manually
dissected. Tumors were mechanically minced and di-
gested with type I collagenase (2mg/ml, Worthington
Chemical) for 20 minutes at 37°C. Tumor infiltrating lym-
phocytes were enriched using a 70%/40% Percoll gra-
dient with centrifugation at 2000 rpm at 400 x g for 20
minutes at 20°C without acceleration or brake.

Single cell suspensions of lymphocytes from tu-
mors were pre-treated with anti-CD16/CD32 Mouse
Fc block (BD Biosciences 553142, 1:100) following by
staining with fluorescently labelled antibodies against:
CD45.2 BUV395 (clone 104, BD 564616, 1:200), Ki-67
(clone B56, BD 561284, 1:300), CD3e BUV737 (145-
2C11, BD 612771, 1:100), CD4 BUV496 (clone GK1.5,
BD 612952, 1:100), CD8a BUV805 (clone 53-6.7, BD
612898, 1:100), Granzyme B Pacific Blue (clone GB11,
Biolegend 515407, 1:100), TIM-3 BV711 (clone RMT3-
23, Biolegend 119727, 1:200), Foxp3 FITC (clone FJK-
16s, ThermoFisher 11-5773-82, 1:200), PD-1 PE-Cy7
(clone RMP1-30, Biolegend 109110, 1:200), and CD25
PE Cy5 (clone PC61, Biolegend 102010, 1:200). In
a separate flow cytometry panel, cells were stained
with fluorescently labelled antibodies against CD45.2
BUV605 (clone 104, Biolegend 109841, 1:200), CD31
BUV563 (clone 390, BD 741262, 1:100), Vimentin Alex-
aFluor488 (clone O91D3 Biolegend 677809, 1:200),
and HIF1a (clone 241812, R&D IC1935R, 1:100). Dead
cells were excluded using Zombie NIR Fixable Viabil-
ity kit (Biolegend 423106, 1:600) or Zombie Aqua (Bi-
olegend, 423101, 1:500). Intracellular staining against
Ki-67, granzyme B, and Foxp3 was performed us-
ing the eBioscience Foxp3 transcription factor fixa-
tion/permeabilization kit per manufacturer’s instructions
(Thermo Fisher Scientific). Data were acquired on a
FACS Symphony A5 (BD Biosciences) using BD FACS-
Diva v9.0 (BD Biosciences) or the Aurora Spectral Anal-
yser (Cytek Biosciences). Analysis was performed with
FlowJo (v10.8.1, BD Biosciences). Autofluorescence
extraction was applied to experimental spectral data us-
ing unstained tissues subjected to identical process-
ing conditions. Cell counts were obtained using the
Cytek’s built-in counting software or CountBright™ Ab-
solute Counting Beads (Invitrogen) per manufacturer’s
instructions. All experiments were repeated with repro-
ducible results.

Statistical analysis
For all transcriptomic analyses, statistical analyses were
performed in R (v4.2.1 "Funny Looking Kid"). Reported
p-values represent nominal p-values unless otherwise
specified. Unless otherwise stated, we used the Mann-

Whitney U-Test for any comparison between two groups
of continuous clinical or molecular features and Fisher’s
Exact Test for the association of binary variables. All sta-
tistical tests performed were two-sided unless otherwise
stated.

For flow cytometry analyses, statistical analysis was
performed using GraphPad Prism 9 (v9.5.1). For com-
parison of means between two groups, an unpaired Stu-
dent’s t-test was utilized. Analysis for multi-group mul-
tivariate statistics comparing multiple means was per-
formed using a two-way ordinary ANOVA (95% CI), with
post-hoc analysis of Tukey’s multiple comparisons test
for comparisons of all means within the test group for
multiple-comparison correction. P values <0.05 were
considered statistically significant.
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Figure 1. Study overview, cohort selection, and clinical characteristics.
a. Diagram depicting study overview. The study has four major components: (1) aggregate bulk RNA-sequencing data from 8 cohorts for a meta-analysis, (2) identify
features of the tumor microenvironment (TME) associated with response and resistance, (3) analyze cell types associated with such features in orthogonal scRNA-
sequencing cohorts to evaluate the potential for targeting such signatures, and (4) testing in pre-clinical models.
b. Eight cohorts included in bulk transcriptomic analysis (n=694).
c. Response rates by treatment group. Only samples which passed clinical inclusion criteria with response data were included; 33 samples were missing response
annotations.
d. Progression-free survival rates stratified by treatment group. Samples which passed clinical exclusion criteria with survival data were considered. 149 samples were
missing survival data or were treated sequentially; these were excluded from the analysis. The survival rates between the four treatment groups were significantly
different (Log-rank p < 0.0001). Significance of pairwise log-rank test also shown, where ∗ ∗ ∗p < 0.001,∗ ∗ p < 0.01,∗p < 0.05.
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Figure 2. Immune stratification reveals increased response rates to combination ICB in patients with immune-high tumors.
a. Heatmap showing the scaled ssGSEA scores of 19 immune cell type signatures across all bulk RNA-seq samples. Across all samples, hierarchical clustering is
used to define two clusters: immune-high and immune-low.
b. Co-correlation matrix between the immune score and other immune infiltrate metrics showing high levels of correlation between the immune score and other metrics
(between 0.56 and 0.94). From left to right and top to bottom, the columns of the heatmap are: (1) expanded IFNγ signature [12], (*) the immune score (outlined in
red), (2) Hallmark IFNγ signature [26], (3) TLS marker genes [27], (4) CIBERSORTx Tirosh immune proportion [70], (5) CIBERSORTx LM22 absolute immune score
[71], (6) non-expanded IFNγ signature [12], (7) CIBERSORTx LM22 CD8+ T cell proportion [71], (8) CIBERSORTx Tirosh CD8+ T cell proportion [70], (9) Cabrita
TLS signature [27].
c. In samples with both whole exome sequencing and bulk RNA-seq (n=162), tumor purity (estimated by FACETS [77]) anti-correlates with the immune score
(Spearman’s ρ = −0.64,p < 0.0001).
d. The immune score by responders and non-responders in each treatment group.
e-f. Frequency of response by treatment group in (e) immune-low and (f) immune-high.
g. Odds ratio and significance by one-sided Fisher’s Exact Test for response in immune-high versus immune-low populations for each treatment group.
h. Odds ratio and significance by one-sided Fisher’s Exact Test for response in combination versus anti-PD-1 in immune-high and immune-low.
For d-f., 20 samples with RNA-seq but no response annotations are not shown. ∗ ∗ ∗p < 0.001,∗ ∗ p < 0.01,∗p < 0.05; n.s. denotes “not significant.”
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Figure 3. Hypoxia and related pathways enrich in non-responders to anti-PD-1 in immune-high tumor samples.
a. Enrichment of 254 pathways from the Hallmarks and Kegg databases, including select T cell signatures from ImmuneSigDB. Enrichment analysis was performed for
each group of immune-high or low samples for each treatment group separately. Number of significant treatment/immune conditions for which the signature is enriched
(0-7) is shown on the annotations on the right of the heatmap. Broad categories for sets of gene signatures of interest are labelled to the right of the significance
annotation; grey bars denote signatures which fall into the given categories.
b. Normalized enrichment score for response to anti-PD-1, immune-high. Hypoxia and related signatures are labelled; *: FDR< 0.05, **: FDR< 0.01.
c. ssGSEA score of hypoxia response to anti-PD-1 in immune-high and immune-low. *: p < 0.05 by Wilcoxon rank-sum.
n.s. denotes “not significant.”
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Figure 4. Single-cell RNA-seq reveals hypoxia associates with immune exclusion and immunosuppressive phenotypes.
a. UMAP showing general cell type clustering for 175,497 cells included in analysis .
b. Sample-level hypoxia stratification based on a cell-type normalized sample-level hypoxia score (Methods). Samples are designated as low or high based on tertiles.
Mean and standard deviation of normalized hypoxia score shown.
c. Pearson correlation between hypoxia score across compartments.
d. Immune frequency in each sample by hypoxia state. Significance from Wilcoxon-rank sum, ∗p < 0.05.
e. UMAP showing immune cell type clustering .
f. Heatmap showing the pre-ranked GSEA normalized enrichment score (NES) for each of 254 signatures plus 4 additional hypoxia signatures. Genes were ranked by
the estimated hypoxia score effect for each cell type as (see Methods on “modeling sample-level hypoxia”). Select gene sets of interest are labelled. Signatures and
cell types are clustered by hierarchical clustering. Cell type subsets not shown (B cells, plasma cells, pDCs, mast cells, neutrophils) did not have enough representation
across low, mid, and high hypoxia samples to include in the analysis.
g. Estimated hypoxia score effect for all genes expressed in pseudobulk CD8+ T cells with log2(fold change) greater than 0.1 between high and low hypoxia samples
(2,117 genes), as estimated by a linear model. Genes are ranked from lowest to highest based on the estimated effect of the sample-level hypoxia score. Select genes
of interest are labelled.
h. Normalized ssGSEA score of an LCMV effector versus exhausted CD8+ T cell signature in CD8+ T cell pseudobulks correlated with sample-level hypoxia score
(Pearson’s R = −0.52,p < 0.05). Note that sample 194008 (hypoxia score of 2.46), is dropped from this panel because no CD8+ T cells were identified from this
sample.
i. Same as g. for tumor-associated macrophages (TAMs, 2,107 genes).
j. Normalized ssGSEA score of the SPP1+ TAM signatures from Wei et al. 2021 [43] in TAMs correlated with sample-level hypoxia score (Pearson’s R = 0.31,p =
0.14).

A.Y. Huang et al. | Stratified analysis identifies HIF-2α as a therapeutic target for highly immune-infiltrated melanomas | 20

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 30, 2024. ; https://doi.org/10.1101/2024.10.29.620300doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.29.620300
http://creativecommons.org/licenses/by-nc/4.0/


CSF1_SIRPA
CSF1_SLC7A1
EGFR_COPA
EGFR_GRN
EGFR_MIF
HGF_CD44
NRP1_PGF
SLIT2_ROBO1

FN1_integrin
NRP1_VEGFA/B
LRP1_MDK
CCL2_NR3C1
AXL_PROS1
LAMC_integrin

fibroblast-tumor interactions in: 

THBS1_integrin
TNFRSF1A_GRN
NECTIN3_CADM1
IL6_IL6R
NOTCH3_JAG1
integrin_LICAM
TNFRSF10D_MIF
GAS6_TYRO3

more 
hypoxic

less 
hypoxic

hypoxia-
low

hypoxia-
high

hypoxia-
mid

Tumor (n=116,774)

Keratinocytes (n=5,296)

Endothelial cells (n=4,486)

Fibroblasts (n=7,770)

Myeloid (n=10,322)

T cell (n=25,017)

B cell (n=5,832)

0.0 0.1 0.2
Hallmark Hypoxia Score

***

***
***

***

FLT1_PGF
HLA-C_FAM3C
NRP1_PGF
P2RY6_COPA
integrin_FN1
integrin_L1CAM
integrin_LAMC1
NOTCH4_JAG1
DLL4_NOTCH1
JAG2_NOTCH1/2

FLT1_VEGFA/B
NRP1_VEGFA/B
KDR_VEGFA
DLL4_NOTCH2

EC-tumor interactions in:

JAG1_NOTCH2
JAG1_CD46
LGALS9_many
TNFRSF10D_MIF
APP_TNFRSF21

HBEGF_CD44

IGFBP3_TMEM219
more 

hypoxic
less 

hypoxic

hypoxia-
low

hypoxia-
high

hypoxia-
mid

HIF1A EPAS1 VEGFA FLT1 KDR

0 1 0 1 2 0 1 2 3 0 1 2 3 0 1 2
Tumor

Keratinocytes

Endothelial cells

Fibroblasts

Myeloid

T cell

B cell

Gene expression

************
***
***

*** ***
***

*

IL33
EPCAM

CXCL6
CXCL10
VCAM1

VWF
THBS1

ESM1
PDGFA

ANGPT2

MMP1
SERPINE1

−0.5

0.0

0.5

Rank

H
yp

ox
ia

 s
co

re
 e

ffe
ct

 e
st

im
at

e

Endothelial cells

n.s.
p < 0.05

CSF1
EPAS1 IL33

HIF1A
VEGFA
CXCL6

IL6
CXCL8

−0.5

0.0

0.5

1.0

RankH
yp

ox
ia

 s
co

re
 e

ffe
ct

 e
st

im
at

e

Fibroblasts

n.s.
p < 0.05

more 
hypoxic

less 
hypoxic

N
um

be
r o

f i
nt

er
ac

tio
ns R

 

=

 

0.63 ,

 

p

 

=

 

0.0017

Fibroblast-Tumor + Tumor-Fibroblast

0 1 2

0

100

200

300

Hypoxia score

R  =  0.6,  p  =  0.0019

EC-Tumor + Tumor-EC

0 1 2
0

50

100

150

200

N
um

be
r o

f i
nt

er
ac

tio
ns

Hypoxia score

0.51

0.0

0.1

0.2

low mid high
Hypoxia state

Fr
eq

ue
nc

y

Endothelial cells
0.01

0.0

0.2

0.4

0.6

0.8

low mid high
Hypoxia state

Fr
eq

ue
nc

y

Fibroblasts

more 
hypoxic

less 
hypoxic

more 
hypoxic

less 
hypoxic

more 
hypoxic

less 
hypoxic

a

g

d

b

f

i j

c

h

e

Figure 5. Effect of hypoxia on stromal cell characteristics and stromal-tumor communication.
a. AUCell Hallmark Hypoxia score for all cells in each general cell type.
b. Log-normalized expression (counts per ten thousand) of labelled gene for each cell type averaged across all cells of that type per sample.
a-b. Cell types with significantly higher scores by Wilcoxon rank-sum are shown, with each cell type compared against all others. *: p < 0.05, **: p < 0.01, ***:
p < 0.001.
c. Frequency of fibroblasts (out of all cells) in low-, mid-, and high-hypoxia samples.
d. Estimated hypoxia score effect for all genes expressed in pseudobulk of labelled cell type with log2(fold change) greater than 0.25 between high and low hypoxia
samples (8,410 genes in fibroblasts), as estimated by a linear model (see Methods for details). Genes are ranked from lowest to highest based on the estimated effect
of the sample-level hypoxia score. Select genes of interest are labelled.
e. Frequency of endothelial cells (out of all cells) in low-, mid-, and high-hypoxia samples (5,871 genes in endothelial cells with log2(fold change) greater than 0.25.
f. Like d., but with endothelial cells.
g-h. The relationship between the number of stromal-tumor interactions estimated by the CellPhoneDB statistical analysis method [45] and the sample-level hypoxia
score for fibroblasts and endothelial cells (ECs). Correlations shown are Pearson correlations.
i-j. All stromal-tumor interactions which are significant ≥ 75% of the samples (p < 0.05 in at least 6/8) in each category: low hypoxia (left, pink), mid hypoxia (middle,
white), high hypoxia (right, grey). All ≥ 75% significant interactions in multiple categories (e.g. ‘KDR_VEGFA‘ in EC-tumor interactions for both mid hypoxia and high
hypoxia) are shown in dashed overlapping regions. Interacting pairs are listed as “partnerA_partnerB”, where partnerA is expressed on stromal cells and partnerB is
expressed on tumor cells.
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Figure 6. Targeting hypoxia in combination with anti-PD-1 slows tumor growth in pre-clinical models of immune-high tumors
a. Graphic depicting experimental design of combination PT2399/anti-PD-1 treatment experiments.
b-c. Growth curves showing tumor growth in response to HIF2α inhibitor (PT2399) and anti-PD-1 blockade combination treatment for (b) B16-OVA and (c) B16.F10.
Data representative of two independent experiments (n > 5 per group).
d-i. Flow cytometry characterization of T cells isolated from B16-OVA tumors treated with isotype control, anti-PD-1, PT2399, or the combination. Data showing two
independent experiments combined (n=4-5 per group).
d. Percentage of CD8+ T cells of CD45+ cells.
e. Percentage of conventional T cells (Tcon; CD4+FOXP3-) of CD45+ cells.
f. Percentage of regulatory T cells (Tregs; CD4+FOXP3+) of CD45+ cells.
g. Percent of PD-1+ CD8+ T cells out of total CD8+ T cells.
h. Percent of TIM-3+ CD8+ T cells out of total CD8+ T cells.
i. Percent of Ki-67+ CD8+ T cells out of total CD8+ T cells.
j. Percentage of HIF-1α+ CD31+ cells out of total CD31+ cells in the tumor.
Significance levels are denoted as *p < 0.05, **p < 0.01, ***p < 0.001.
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Supplementary Figure 1. Additional clinical details about the bulk sequencing meta-cohort
a. Subset of samples with response annotations and bulk RNA-sequencing, shown in a Sankey diagram.
b. Overall survival rates stratified by treatment group. Treatment groups are significantly different (Log-rank p < 0.0001). Significance of pairwise log-rank also shown.
c. Response rates by treatment group and immune state in each cohort follows trends for the aggregated meta-cohort.
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Supplementary Figure 2. Bulk RNA-seq processing.
a. Graphic depicting bulk RNA-seq processing workflow.
b. Principal component analysis (PCA) of bulk RNA-seq samples before batch correction. Colored by sequencing modality.
c. PCA of bulk RNA-seq samples after batch correction. Colored by sequencing modality.
d. Same as b., but colored by cohort.
e. Same as c., but colored by sequencing modality.
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Supplementary Figure 3. Characteristics of cell type signatures scores and immune high versus low categories.
a. Heatmap with samples hierarchically clustered based on Euclidean distance between samples’ cell type signature scores (for all signatures from Bagaev et al. 2021
[25]). Loadings from principle component analysis for each signature are shown to the right of the heatmap. The first principle component explains 50% of the variance
between the samples.
b. Co-correlation heatmap for all signatures from Bagaev et al. 2021 [25]. Correlations between each group are Spearman’s rho ρ. For all comparisons between the
19 immune cell type signatures, the correlation is between 0.68 ± 0.11 (mean ± standard deviation).
c. Scatterplot showing no relationship between immune score and tumor mutational burden (TMB).
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Supplementary Figure 4. Hypoxia-related signatures and response to anti-PD-1 considering immune stratification
a. Difference in normalized enrichment score for response to anti-PD-1 between immune-high and immune-low for each signature (grey profile). Signatures are ordered
by difference between immune-high and immune-low. Ends of the vertical bar show the enrichment of the signature in immune-high (red) and immune-low (blue).
Specific pathways are highlighted by arrows (from left to right): hypoxia, interferon gamma response, oxidative phosphorylation.
b. Difference between ssGSEA scores of labelled gene sets in responders and non-responders, split by immune high and low, in patients treated with anti-PD-1
without prior anti-CTLA-4.
c-e. Difference between ssGSEA scores for the labelled signatures in responders and non-responders, split by immune high and low, in patients treated with anti-PD-1.
From left to right: glycolysis, epithelial mesenchymal transition (EMT), and angiogenesis.
f-h. Difference between three additional hypoxia signature ssGSEA scores (f. [30], g. [31], h. [29]) in responders and non-responders, split by immune high and low,
in patients treated with anti-PD-1 with and without prior anti-CTLA-4. Signatures were access through the MSigDB database (see Methods) [26].
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Supplementary Figure 6. Clinical features of single-cell cohort
a. Clinical features of the single-cell cohort. From the top row to the bottom row: the number of cells, age of the patient, sex of the patient, melanoma subtype (if
known), prior therapy, tissue type of biopsy, samples from the same patient, proportion of immune cells and immune state.
b-e. Clinical features (b. tissue type, c. sex, d. subtype, e. prior therapy) projected onto UMAP.
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Supplementary Figure 7. Clustering and cell identification in single cell RNA-seq cohort.
a. UMAP with compartment-level clustering annotations.
b. Diagram detailing sub-clustering workflow for single-cell RNA-seq data, pre-treatment subset.
c. Markers of general cell types shown in dot plot.
d. Markers of specific cell types shown in dot plot.
e. CD8+ T and Naive T cell clusters scoring with progenitor versus terminal CD8+ T exhaustion signature from tumor data in Miller et al. 2019 [47].
In dot plots, dot size indicates percentage expressed, color indicates mean expression.
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Supplementary Figure 8. Additional associations with hypoxia in the scRNA-seq cohort.
a-f. Proportion of total immune cells for each sample by the listed cell type, varying across hypoxia state (low, mid, high).
g-h. The relationship between the normalized ssGSEA score of the progenitor versus terminally exhausted CD8+ tumor-infiltrating lymphocyte signature (TIL) from
Miller et al. 2018 [47] in the CD8+ T cell pseudobulks and the sample-level hypoxia score.
i-j. The relationship between the normalized ssGSEA score of M1-like and M2-like gene signatures in TAM pseudobulks and the sample-level hypoxia score.
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Supplementary Figure 9. Replication of hypoxia analysis in Jerby-Arnon et al. 2018.
a. UMAP with cell type annotations of all cells from scRNA-seq published in Jerby-Arnon et al. 2018 [44].
b-d. UMAP with clinical annotations (Treatment group, lesion type) projected. Only metastases which were untreated were considered in the subsequent analysis.
e. Hallmark Hypoxia score in each general cell type compartment.
f. Sample-level hypoxia score for all “Untreated” samples.
g. Co-correlation between hypoxia score in each general compartment shows correlation between tumor and stromal compartments (Pearson’s r = 0.61).
h. Relationship between sample-level hypoxia and proportion of immune cells.
i. Expression of key hypoxia-related transcription factors (EPAS1 (HIF-2α), HIF1A) and downstream angiogenesis-mediating genes (FLT1, KDR, VEGFA) across cell
types.
j. Normalized ssGSEA score of an LCMV effector versus exhausted CD8+ T cell signature (GSE41867_DAY15_EFFECTOR_VS_DAY30_EXHAUSTED_CD8_-
TCELL_LCMV_CLONE13) in CD8+ T cell pseudobulks correlated with sample-level hypoxia score.
k-l. The relationship between the normalized ssGSEA score of the progenitor versus terminally exhausted CD8+ tumor-infiltrating lymphocyte signature (TIL) from
Miller et al. 2018 [47] in the CD8+ T cell pseudobulks and the sample-level hypoxia score.
m-o. The relationship between the normalized ssGSEA score of M1-like and M2-like gene signatures as well as the SPP1+ TAM signature from Wei et al. 2021 [43]
in TAM pseudobulks and the sample-level hypoxia score.
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Supplementary Figure 10. Replication of hypoxia analysis in Sade-Feldman et al. 2018.
a. UMAP with cell type annotations of all cells from scRNA-seq published in Sade-Feldman et al. 2018 [11].
b. Sample-level hypoxia score for all pre-treatment samples.
c. Sample-level hypoxia score in responders and non-responders for all pre-treatment samples. Treatment regimen and hypoxia state are encoded in shape and color.
d. Proportion of total immune cells for each sample by the listed cell type, varying across hypoxia state (low, mid, high).
e. Expression of key hypoxia-related transcription factors (EPAS1 (HIF-2α), HIF1A) and downstream angiogenesis-mediating genes (FLT1, KDR, VEGFA) across cell
types present in the dataset.
f. Normalized ssGSEA score of an LCMV effector versus exhausted CD8+ T cell signature (GSE41867_DAY15_EFFECTOR_VS_DAY30_EXHAUSTED_CD8_-
TCELL_LCMV_CLONE13) in CD8+ T cell pseudobulks correlated with sample-level hypoxia score.
f-h. The relationship between the normalized ssGSEA score of the progenitor versus terminally exhausted CD8+ tumor-infiltrating lymphocyte signature (TIL) from
Miller et al. 2018 [47] in the CD8+ T cell pseudobulks and the sample-level hypoxia score.
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Supplementary Figure 11. Stromal interactions in the tumor microenvironment.
a-b. The relationship between the number of stromal interactions estimated by the CellPhoneDB statistical analysis method and the sample-level hypoxia score for a.
fibroblasts and b. endothelial cells (ECs). Correlations shown are Pearson correlations.
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Supplementary Figure 12. Characterization of T cells in B16-OVA tumors from mice treated with combined PT2399/anti-PD-1 therapy.
a. Gene expression (FPKM) of hypoxia-related genes in B16 tumors. Left bar (black) represents expression in serum free media (SFM) and right bar (grey) represents
expression in tumors in tissue culture media (TCM). Data from Murgai et al. 2017 (GSE96972) [46], which describes tumor cells as seeded on extracellular matrix and
treated with siRNA. Only data from tumor cells treated with non-targeting RNA (siNT) are shown.
b. Gene expression (log10(TPM + 1)) of hypoxia-related genes for different cell types in the B16 tumor microenvironment (TME). Data from the murine melanoma
atlas as described in Davidson et al. 2020 [83].
c-g. Flow cytometry characterization of T cells isolated from B16-OVA tumors treated with isotype control, anti-PD-1, PT2399, or the combination. Data showing two
independent experiments combined (n=4-5 per group).
c. Percentage of GzmB+ T cells of CD8+ T cells.
d. Ratio CD8+ T cells to regulatory T cells in B16-OVA tumors treated with isotype control, anti-PD-1, PT2399, or the combination.
e. Percentage of PD-1+ T cells of Tregs.
f. Percentage of Ki-67+ T cells of Tregs.
g. Percentage of CD25+ T cells of Tregs.
Significance levels are denoted as *p < 0.05, **p < 0.01, ***p < 0.001.
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BUV805: CD8a

Supplementary Figure 13. T cell identification flow cytometry gating strategy.
Representative gating for CD8+ T cells, conventional T cells (Tcon; CD4+FOXP3-), and regulatory T cells (Treg; CD4+FOXP3+). All T cells are CD45+.
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Supplementary Figure 14. CD8+ cell characterization flow cytometry gating strategy.
Representative gating for CD8+ T cell functional characteristics.
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Supplementary Figure 15. Regulatory T cell (Treg; CD4+FOXP3+) cell characterization flow cytometry gating strategy.
Representative gating for regulatory T cell functional characteristics.

Supplementary Figure 16. CD31+ cell identification flow cytometry gating strategy.
Representative gating for CD45-CD31+ cells.
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Supplementary Figure 17. HIF-1α+CD31+ cell flow cytometry gating strategy.
Example gating strategy of HIF-1α+ cells from total CD31+ cells.
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