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Across the animal kingdom, macrophages are known for their functions in innate
immunity, but they also play key roles in development and homeostasis. Recent insights
from single cell profiling and other approaches in the invertebrate model organism
Drosophila melanogaster reveal substantial diversity among Drosophila macrophages
(plasmatocytes). Together with vertebrate studies that show genuine expression
signatures of macrophages based on their organ microenvironments, it is expected that
Drosophila macrophage functional diversity is shaped by their anatomical locations and
systemic conditions. In vivo evidence for diverse macrophage functions has already
been well established by Drosophila genetics: Drosophila macrophages play key roles
in various aspects of development and organogenesis, including embryogenesis and
development of the nervous, digestive, and reproductive systems. Macrophages further
maintain homeostasis in various organ systems and promote regeneration following
organ damage and injury. The interdependence and interplay of tissues and their local
macrophage populations in Drosophila have implications for understanding principles of
organ development and homeostasis in a wide range of species.

Keywords: Drosophila melanogaster, macrophage, plasmatocyte, hemocyte, organ microenvironment,
regeneration, development, homeostasis

INTRODUCTION

Macrophages have a wide range of functions across species. While best known for their roles
in innate immunity, macrophages also perform vital tissue-specific roles in development and
homeostasis (Gold and Brückner, 2015; Okabe and Medzhitov, 2016). At the same time,
macrophages are defined by their local microenvironments (Lavin et al., 2015). In this review, we
discuss these underappreciated dual ways that macrophages and their microenvironment shape one
another, focusing on insights from the invertebrate model organism Drosophila melanogaster.

The Drosophila blood cell system closely parallels the hematopoietic system of vertebrates both
developmentally and functionally, making it an especially apt model for studying macrophage
development, heterogeneity, and function (Hartenstein, 2006; Gold and Brückner, 2014, 2015;
Banerjee et al., 2019). Since the 1970s, the concept of the mononuclear macrophage system
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dominated the vertebrate field, proposing that hematopoietic
progenitors of the bone marrow give rise to monocytes, which
are the source of all macrophages as they enter the tissues
(van Furth et al., 1972; Dzierzak and Speck, 2008; Morrison
and Scadden, 2014). However, over the last decade or more,
this view has been dismissed in favor of a new model of two
independent lineages of macrophages (Frame et al., 2013; Lavin
et al., 2015; Ginhoux et al., 2016; Perdiguero and Geissmann,
2016). Based on modern genetic lineage tracing, an independent
lineage of blood cells gives rise to the majority of tissue-
resident macrophages in vertebrates. This independent lineage
derives from erythro-myeloid progenitors that originate in the
embryonic yolk sac and mature in the fetal liver, and subsequently
colonize organs throughout the body, giving rise to local
macrophage populations such as the microglia of the brain,
Langerhans cells of the skin, Kupffer cells of the liver, and
resident macrophages of the lung (Herbomel et al., 2001; Merad
et al., 2002; Ajami et al., 2007; Geissmann et al., 2010; Hoeffel
et al., 2012; Schulz et al., 2012; Davies et al., 2013; Hashimoto
et al., 2013; Sieweke and Allen, 2013; Gomez Perdiguero et al.,
2015). In some, but not all, organs this independent lineage
of tissue macrophages is complemented by macrophages of
the monocyte lineage (Davies et al., 2013; Frame et al., 2013;
Sieweke and Allen, 2013; Lavin et al., 2015; Ginhoux et al., 2016;
Perdiguero and Geissmann, 2016).

Interestingly, much like vertebrates, Drosophila also has two
independent lineages of blood cells, or hemocytes:

(1) The embryonic/resident lineage, which parallels the
vertebrate erythro-myeloid progenitor lineage of tissue
macrophages, is based on self-renewing differentiated
macrophages (Makhijani et al., 2011; Davies et al., 2013;
Gold and Brückner, 2014, 2015; Ratheesh et al., 2015; Banerjee
et al., 2019). Hemocytes of this lineage arise in the embryonic
head mesoderm, quickly differentiate into macrophage-like
plasmatocytes, migrate throughout the embryo in stereotyped
routes (Tepass et al., 1994; Siekhaus et al., 2010), and then
colonize organ and tissue microenvironments in the larva
where they proliferate over time (Gold and Brückner, 2014,
2015). Examples include the prominent tissue-resident clusters
of hemocytes in segmentally repeated epidermal-muscular
pockets (hematopoietic pockets), and resident hemocytes at the
proventriculus of the gastrointestinal system (Zaidman-Rémy
et al., 2012). Homing and adhesion of hemocytes to these sites
depends on active sensory neurons of the hematopoietic pockets
and their expression of the Transforming Growth Factor-β (TGF-
β) family ligand Activin-β (Actβ) and other predicted factors
(Makhijani et al., 2011, 2017). Neuron signals may also play a role
in the localization of hemocytes at the proventriculus (Cognigni
et al., 2011). In hemocytes, actin cytoskeleton regulators such as
Rho1 and Rac appear to be required for their tissue localization
and adhesion (Williams, 2006; Makhijani et al., 2011). Likewise,
Nimrod family transmembrane receptors such as Nimrod C1
(NimC1) and Eater, expressed on plasmatocytes, play roles
in adhesion (Bretscher et al., 2015; Melcarne et al., 2019), the
latter through interaction with the collagen XV/XVIII ortholog

Multiplexin in the basement membrane of tissues (Csordás
et al., 2020). Hemocyte adhesion is negatively regulated by
factors from other tissues such as NimB5, secreted from the fat
body upon nutrient starvation, driving hemocyte release into
circulation (Ramond et al., 2020b). Resident hemocytes also lose
adhesion and enter circulation upon various immune challenges,
or changes in cell signaling (Williams, 2006; Stofanko et al.,
2008; Markus et al., 2009), while wounds induce local adhesion
of circulating hemocytes (Babcock et al., 2008). However,
under unchallenged conditions, in the first and second instar
larva, the vast majority of hemocytes are resident (Makhijani
et al., 2011; Petraki et al., 2015). Starting in the late second to
early third instar, an increasing number of hemocytes enter
circulation (Markus et al., 2009; Makhijani et al., 2011; Petraki
et al., 2015), establishing a steady state exchange with various
resident locations (Welman et al., 2010; Makhijani et al., 2011;
Makhijani and Brückner, 2012).

(2) The lymph gland lineage, which is based on progenitors,
parallels the vertebrate lineage of hematopoietic stem and
progenitor cells (Jung, 2005; Krzemien et al., 2010a,b; Gold
and Brückner, 2014; Banerjee et al., 2019). Developmentally,
the lymph gland originates from the cardiogenic mesoderm of
the embryo, echoing the emergence of hematopoietic stem cells
from the endothelium of the aorta in vertebrates (Hartenstein,
2006; Gold and Brückner, 2014, 2015; Banerjee et al., 2019).
Blood progenitors of the lymph gland proliferate in the embryo
and the larval stages, and only start in the mid-second instar
to differentiate into plasmatocytes and other immune cell types
(Jung, 2005; Krzemien et al., 2010a; Gold and Brückner, 2015;
Banerjee et al., 2019). In addition, differentiated plasmatocytes
proliferate to a certain extent, in particular in third instar
larvae (Jung, 2005; Banerjee et al., 2019). Immune assaults and
environmental challenges accelerate the differentiation of lymph
gland progenitors and the release of differentiated plasmatocytes
and other immune cells into circulation (Sorrentino et al.,
2002; Crozatier et al., 2004; Márkus et al., 2005; Owusu-Ansah
and Banerjee, 2009; Shim et al., 2013; Letourneau et al., 2016;
Banerjee et al., 2019). Likewise, dysregulation of various major
signaling pathways that usually tightly control normal lymph
gland development can result in premature, or precocious,
differentiation, including signaling by Notch (N), Hedgehog
(Hh), Wingless (Wg), the Bone Morphogenetic Protein (BMP)
Decapentaplegic (Dpp), receptor tyrosine kinases such as the
PDGFR/VEGFR-related Receptor (PVR) and Fibroblast Growth
Factor Receptor (FGFR), Hippo, JAK/STAT, NFκB- related Toll
signaling and transcriptional regulators such as the zinc finger
transcription factor Zfrp8 and the GATA factor Pannier (Qiu
et al., 1998; Myrick and Dearolf, 2000; Lebestky et al., 2003;
Crozatier et al., 2004; Mandal et al., 2007; Minakhina et al., 2007,
2011; Sinenko et al., 2009; Pennetier et al., 2012; Dragojlovic-
Munther and Martinez-Agosto, 2013; Ferguson and Martinez-
Agosto, 2014; Milton et al., 2014; Destalminil-Letourneau et al.,
2021). In contrast, under unchallenged conditions, the lymph
gland disintegrates and releases all of its hemocytes at the
beginning of metamorphosis (Grigorian et al., 2011).
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The two hemocyte lineages persist into the adult animal,
with the embryonic lineage contributing the major part of
immune cells, at least under unchallenged conditions (Holz
et al., 2003; Sanchez Bosch et al., 2019). No significant new
blood cell production has been detected in the adult, even
under conditions of immune challenge (Sanchez Bosch et al.,
2019), and a decline in both hemocyte number and phagocytic
activity has been documented as adult flies age (Mackenzie et al.,
2011; Horn et al., 2014). Both hemocyte lineages give rise to
common cell types: plasmatocytes (>90% of immune cells at
most developmental stages), which are analogous to vertebrate
macrophages and function as the primary phagocytic cells in
Drosophila; crystal cells (∼5% of immune cells), which function
in clotting and wound healing through prophenoloxidase (PPO)-
mediated melanization; and lamellocytes, stress- or immune
challenge-induced cells involved in encapsulation, analogous to
granuloma formation in vertebrates (Gold and Brückner, 2014,
2015; Banerjee et al., 2019).

Across species, macrophages have many important functions
during development and homeostasis (Figure 1). Macrophages
play vital roles in phagocytosis of pathogens and apoptotic cells,
through scavenger receptors such as Croqumort (Crq), and
Nimrod-domain (NIM) containing receptors including Eater,
Nimrod C1 (NimC1), Draper (Drpr), and Six-microns-under
(Simu) (Franc, 1999; Manaka et al., 2004; Kocks et al., 2005;
MacDonald et al., 2006; Kurucz et al., 2007; Kurant et al.,
2008; Krzemien et al., 2010b; Melcarne et al., 2019; Roddie
et al., 2019). Related to this, macrophages participate in wound

healing (Stramer et al., 2005; Babcock et al., 2008; Pastor-
Pareja et al., 2008; Koh and DiPietro, 2011; Wang et al.,
2014). They play a central role in innate immunity, producing
antimicrobial and pro-inflammatory mediators (Lemaitre and
Hoffmann, 2007; Lazzaro, 2008; Buchon et al., 2014). In
addition, macrophages have homeostatic functions such as
regulation of dietary stress (Woodcock et al., 2015) and
detection and regulation of the metabolic state (Parupalli
et al., 2020). Drosophila macrophages also produce and
deposit extracellular matrix (ECM) components (Fessler and
Fessler, 1989; Wood and Jacinto, 2007) such as Collagen
IV, Laminin, Perlecan, and Peroxidasin, an ECM-associated
peroxidase, as they migrate along surfaces and reside in
specific anatomical locations (Nelson et al., 1994; Bunt et al.,
2010; Martinek et al., 2011; Van De Bor et al., 2015;
Matsubayashi et al., 2017; Sánchez-Sánchez et al., 2017).
Moreover, Drosophila macrophages regulate stem cells and
other tissue-specific cell populations, often through localized
secretion of signals such as cytokines of the Unpaired
(Upd) family, which signal through the receptor Domeless
(Dome) and the JAK/STAT pathway (Hopscotch and Stat2E
in Drosophila), promoting proliferation and differentiation of
target tissues (Chakrabarti et al., 2016; Guillou et al., 2016).
In Drosophila, at least some macrophage-like plasmatocytes
have the plasticity to give rise to crystal cells (Bretscher et al.,
2015; Leitão and Sucena, 2015; Corcoran et al., 2020) and,
upon immune challenge, lamellocytes (Markus et al., 2009;
Anderl et al., 2016).

FIGURE 1 | Roles of macrophage-like plasmatocytes in Drosophila. Plasmatocytes (red) perform a diverse array of functions during development, homeostasis,
injury, and infection. Responses include phagocytosis of pathogens and apoptotic cells; production of AMPs (antimicrobial peptides) and inflammatory mediators;
production and deposition of ECM (extracellular matrix) components such as collagen that are often part of the basement membrane; tissue repair and regeneration,
including stimulation of stem cell function; roles in metabolic homeostasis including uptake of lipids and secretion of metabolic mediators. In addition, at least some
Drosophila plasmatocytes have plasticity to transdifferentiate into other hemocyte types, specifically crystal cells and, upon immune challenge, lamellocytes.
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NEW INSIGHTS INTO MACROPHAGE
DIVERSITY

A recent body of research suggests that not all macrophages are
equal, rather they can be categorized into phenotypically and
functionally unique subpopulations. Single cell RNA sequencing
and functional studies in Drosophila identify transcriptionally
and functionally distinct clusters of plasmatocytes, which are
modulated by developmental time, lineage, injury, and infection
status (Cattenoz et al., 2020; Cho et al., 2020; Coates et al., 2020;
Ramond et al., 2020a; Tattikota et al., 2020). Vertebrate single
cell studies identify similar heterogeneity among macrophages,
modulated by developmental stage and lineage (Gordon and
Taylor, 2005; Martinez et al., 2006; Paul et al., 2015; Lin
et al., 2019; Lantz et al., 2020). Under pathologic conditions,
macrophages may take on a spectrum of activation states,
mirrored by their transcriptional profiles, dependent on disease
severity (Lin et al., 2019; Mould et al., 2019; Weinstock et al., 2019;
Lantz et al., 2020). Additionally, through analyses of enhancer
landscapes and tissue-specific single cell RNA sequencing, it
has become clear that macrophage subpopulations of organs
including the liver, spleen, lung, peritoneal cavity, colon, small
intestine, brain, and kidney, are shaped by their tissue of
residence in vertebrate models (Gosselin et al., 2014; Lavin et al.,
2014; MacParland et al., 2018; Mould et al., 2019; Van Hove
et al., 2019; Zimmerman et al., 2019). In Drosophila, it is expected
that heterogeneity of macrophages stems from the complex
interactions between these cells and their microenvironment.
A recent sequencing study identified cross-species markers
between Drosophila and vertebrate macrophages, although their
functional significance remains to be determined (Fu et al., 2020).

In addition to parallels in the local regulation of macrophages,
Drosophila and vertebrates rely on conserved systemic signaling
that regulates macrophages. Vertebrate macrophages express
colony stimulating factor 1 receptor (CSF-1R), a receptor
tyrosine kinase (RTK) of the family of Platelet-Derived Growth
Factor Receptors and Vascular Endothelial Growth Factor
Receptors (PDGFRs and VEGFRs) (Lemmon and Schlessinger,
2010). Vertebrate CSF-1R is activated by colony-stimulating
factor-1 (CSF-1) and interleukin-34 (IL-34), promoting
proliferation, differentiation, survival, chemotactic migration
and differentiation of macrophages during development,
homeostasis, and innate immunity (Stanley and Chitu, 2014).
Similarly in Drosophila, the molecularly conserved ortholog
PDGFR/VEGFR-related Receptor (PVR) is expressed in
hemocytes. PVR recognizes PDGF/VEGF related factors Pvf1,
Pvf2, and Pvf3, and is essential for trophic survival, proliferation,
plasmatocyte activation, and some aspects of chemotactic
migration (Munier et al., 2002; Brückner et al., 2004; Wood et al.,
2006; Wood and Jacinto, 2007; Kelsey et al., 2012; Parsons and
Foley, 2013; Sopko et al., 2015).

Despite the apparent necessity of macrophages in
development and homeostasis, ablation studies suggest that
hemocytes are not essential for survival in Drosophila (Braun
et al., 1998; Charroux and Royet, 2009; Defaye et al., 2009; Arefin
et al., 2015). However, plasmatocytes and PVR expression are
fundamental to embryonic development, as they promote the

essential process of central nervous system (CNS) condensation
(Zhou et al., 1995; Sears, 2003; Olofsson and Page, 2005; Defaye
et al., 2009; Evans et al., 2010). Lack of macrophages is seemingly
compatible with larval and pupal development, although it causes
a shift in immune effector pathways – specifically, induction of
the Toll pathway and repression of the Imd pathway – which
leads to a proinflammatory state and aberrant leg development,
in turn resulting in reduced likelihood of eclosion (Arefin
et al., 2015). In adult Drosophila, lack of macrophages increases
susceptibility to bacterial infection (Braun et al., 1998; Charroux
and Royet, 2009; Defaye et al., 2009; Arefin et al., 2015),
demonstrating their immune functions and role as sentinels
of infection that induce antimicrobial peptide (AMP) gene
expression in other tissues (Sanchez Bosch et al., 2019).

It is clear that plasmatocytes are a diverse population of cells
that modulate a wide variety of processes during development.
Genetic studies in Drosophila have provided broad evidence
of tissue-specific macrophage function. How do macrophages
and their microenvironment shape one another in different
organ systems? We address this question in the following
paragraphs and Figure 2.

NERVOUS SYSTEM

The Drosophila central nervous system consists of the brain and
ventral nerve cord, and the peripheral nervous system includes
sensory and motor neurons (Landgraf and Thor, 2006; Sánchez-
Soriano et al., 2007; Hartenstein et al., 2008; Singhania and
Grueber, 2014; Schirmeier et al., 2016; Doe, 2017; Li et al.,
2018; Sugie et al., 2018; Akin and Zipursky, 2020). Major roles
of macrophages in the nervous system, together with glia, are
the phagocytic removal of apoptotic cells and the production
of ECM (Zheng et al., 2017; Bittern et al., 2020; Hilu-Dadia
and Kurant, 2020). Hemocytes invade the posterior end of the
embryo during the germband extended stage and subsequently
disperse throughout the embryo by migration, also entering the
ventral nerve cord (VNC) (Tepass et al., 1994; Brückner et al.,
2004). Some aspects of this migration, in particular invasion of
the posterior end and migration along the VNC are mediated by
PVR (Brückner et al., 2004; Wood et al., 2006), although PVR
is primarily required for anti-apoptotic survival of hemocytes
(Brückner et al., 2004). In the VNC, a significant amount of
programmed cell death takes place in various cell types from
the early stages of CNS formation to the end of embryogenesis
(Abrams et al., 1993; White et al., 1994; Sonnenfeld and Jacobs,
1995; Zhou et al., 1995; Hidalgo et al., 2001; Peterson et al., 2002;
Lundell, 2003; Miguel-Aliaga, 2004; Karcavich and Doe, 2005;
Rogulja-Ortmann et al., 2007). Hemocytes phagocytose apoptotic
bodies, opening up spaces and allowing for condensation of
the nervous system (Olofsson and Page, 2005; Evans et al.,
2010). Inhibition of hemocyte development or function causes
mispositioning of glia, which, in turn, results in CNS axon
scaffold and patterning defects (Sears, 2003); this phenotype
is also observed when either PVR or Crq are RNAi silenced
in hemocytes (Sears, 2003). CNS axon scaffold malformation
forms a physical barrier to hemocyte migration along the VNC
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FIGURE 2 | Drosophila macrophages play life stage and tissue-specific roles in development, homeostasis, and infection. Major roles of plasmatocytes
(macrophages, red) during developmental stages of embryo, larva, and adult (pupal stage is omitted). Organ systems regulated by macrophages are renal tubules
(dark blue), respiratory system (light blue), nervous system (green), fat body (olive green), muscle system (pink), imaginal discs (purple), digestive system (teal),
reproductive system (orange), heart (gray). Organ shapes adapted from Hartenstein (1995).

(Evans et al., 2010). When hemocytes cannot migrate, VNC
condensation was proposed to also be disrupted due to a lack
of ECM deposition by the migrating hemocytes (Olofsson and
Page, 2005; Evans et al., 2010). Consistent with this, hemocytes
deficient in laminin B1 (LanB1) exhibit slower migration along
the ventral nerve cord (VNC) and defects in VNC condensation
(Sánchez-Sánchez et al., 2017).

As development proceeds, in the larva, and especially during
metamorphosis and in the adult, functions of hemocytes
are more predominantly adopted by glia. In particular, glia
mediate phagocytosis of dead cells and neuron fragments during
axonal and dendrite pruning, and following injury (Sonnenfeld
and Jacobs, 1995; Watts et al., 2004; Kurant, 2011; Bittern
et al., 2020; Furusawa and Emoto, 2020; Hilu-Dadia and
Kurant, 2020). Hemocytes and glia show molecular parallels
regarding their phagocytic receptors such as Simu and Drpr
(MacDonald et al., 2006; Kurant et al., 2008; Shklyar et al.,
2014; Evans et al., 2015; Weavers et al., 2016; Shlyakhover
et al., 2018; Davidson and Wood, 2020), and their mutual
dependence on the transcription factors glial cells missing
(gcm) and glial cells missing 2 (gcm2), during embryonic
development (Bernardoni et al., 1997; Alfonso and Jones, 2002;
Trébuchet et al., 2019).

Plasmatocytes also play roles in the development and
homeostasis of the peripheral nervous system (PNS). During
larval development, macrophages were proposed to function in
neuronal pruning by severing destabilized dendritic branches
and engulfing neuronal debris (Williams, 2005). More recently,
however, it has been shown that non-traditional phagocytes,
including glia and epidermal cells, play more central roles
in neuronal pruning during development (Han et al., 2014).
Macrophages may also have other roles in PNS development:
a study suggested that hemocytes may promote aspects of
glial cell biology necessary for peripheral nerve elongation
(Pandey et al., 2011).

Conversely, the peripheral nervous system (PNS) can shape its
resident macrophages and other hemocytes. Hemocytes associate
with sensory neurons of the PNS in segmentally repeated
hematopoietic pockets of the larval body wall (Makhijani et al.,
2011; Makhijani and Brückner, 2012). These sensory neurons
detect a variety of environmental and internal cues such as
mechanical inputs, chemical stimuli, temperature, and light
(Tracey et al., 2003; Hughes and Thomas, 2007; Song et al.,
2007; Xiang et al., 2010; Han et al., 2014) and serve as
a microenvironment for macrophages and other hemocytes
(Makhijani et al., 2011, 2017; Makhijani and Brückner, 2012;
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Corcoran et al., 2020). Within the microenvironments, neurons
promote macrophage survival (Makhijani et al., 2011) through
Dscam1 expression (Ouyang et al., 2020), and proliferation and
localization by the expression of Actβ (Makhijani et al., 2017).
Moreover, a specific set of caudal sensory neurons promotes
transdifferentiation of plasmatocytes into crystal cells in the
presence of oxygen, providing evidence that environmental
inputs to the sensory nervous system can impact hematopoietic
processes (Corcoran et al., 2020).

DIGESTIVE SYSTEM

The digestive system of Drosophila is maintained throughout
all developmental stages based on intestinal stem cell (ISC)
proliferation and differentiation (Murakami et al., 1999; Micchelli
and Perrimon, 2006; Ohlstein and Spradling, 2006; Lemaitre
and Miguel-Aliaga, 2013). Macrophages and other hemocytes
form aggregates in folds of the intestine: at all developmental
stages, they are enriched at the proventriculus, a structure
where the esophagus, crop, and midgut converge (Tepass et al.,
1994; Lebestky et al., 2000; Brückner et al., 2004; Charroux
and Royet, 2009; Zaidman-Rémy et al., 2012). Hemocytes
at the proventriculus are regulated by phosphoinositide 3-
kinase (PI3K): PI3K signaling decreases hemocyte adhesion at
the proventriculus, although it does not interfere with initial
recruitment (Zaidman-Rémy et al., 2012). Hemocyte localization
and responses may be further regulated by the innervation of
the proventriculus (Cognigni et al., 2011), similar to hemocyte
dependence on active sensory neurons in the hematopoietic
pockets (Makhijani et al., 2011, 2017; Gold and Brückner,
2014, 2015). Macrophages are also enriched in clusters at the
midgut, especially upon damage or infection (Ayyaz et al.,
2015), and it has been debated whether some hemocytes are
inserted in the midgut epithelium (Charroux and Royet, 2009;
Zaidman-Rémy et al., 2012).

The macrophages of the intestine play important roles in
innate immunity, maintaining homeostasis of gut microbiota
both under basal conditions and after pathogen ingestion
via the secretion of AMPs and phagocytosis (Nehme et al.,
2007; Charroux and Royet, 2009; Ayyaz et al., 2015; Bonfini
et al., 2016; Guillou et al., 2016). In addition, under conditions
of tissue damage, inflammation, and infection, local and
systemic macrophages function to promote and control
tissue regeneration of the intestine (Takeishi et al., 2013;
Ayyaz et al., 2015; Chakrabarti et al., 2016). Septic injury
triggers upregulation of Upd ligands in hemocytes (Pastor-
Pareja et al., 2008; Chakrabarti et al., 2016), inducing
systemic changes including intestinal stem cell activation
via JAK/STAT signaling (Chakrabarti et al., 2016; Guillou
et al., 2016); this mechanism plays a role in many situations
of gut regeneration and homeostasis (Jiang et al., 2009).
Upon gut damage by oxidative stress or oral infection, local
hemocytes produce the BMP Dpp, inducing proliferation of
ISCs through activation of the signal transducer dSmad2,
followed by signaling through the signal transducer Mothers
against Dpp (Mad) that restores ISC quiescence (Ayyaz
et al., 2015). This pathway also maintains normal gut

homeostasis and limits ISC proliferation (Guo et al., 2013;
Zhou et al., 2015). As the fly ages, repeated Dpp secretion
by hemocytes can lead to dysregulated dSmad2 activity,
resulting in dysplasia as ISCs over-proliferate, an intriguing
model for colon cancer (Ayyaz et al., 2015). Similarly, in
mouse models, macrophages in the colon directly promote
the proliferation of epithelial progenitors as a wound response
(Pull et al., 2005).

REPRODUCTIVE SYSTEM

The Drosophila reproductive organs, the female ovary and
the male testis, carry germline stem cells and produce the
gametes (Fuller and Spradling, 2007). In the Drosophila ovary,
the basement membrane, a specialized ECM underlying the
basal side of epithelial cells (LeBleu et al., 2007; Yurchenco,
2011), is important for the stability and function of the
gonad and the developing egg chambers (follicles) (Denef
et al., 2008; Van De Bor et al., 2015). While follicular
epithelial cells contribute to the basement membrane in the
adult ovary (Denef et al., 2008), a population of ovarian
macrophages deposits collagen IV in the larval gonad, forming
a stable basement membrane that persists from the larval to
the adult stage (Van De Bor et al., 2015). This basement
membrane regulates the stem cell niche of the gonad by
limiting diffusion of the BMP Dpp, which prevents excessive
Dpp in the ovaries from triggering over-proliferation of the
germline stem cells (Van De Bor et al., 2015). The gradient
of Dpp is also known to be limited by heparan sulfate
proteoglycans (HSPGs) (Guo et al., 2013; Zhou et al., 2015).
In the absence of hemocyte-produced collagen, larvae develop
malformed basement membranes, which, in turn, lead to
dysregulated stem cell proliferation, ultimately resulting in
decreased reproductive fitness (Wang et al., 2008; Van De Bor
et al., 2015). In the male testis, macrophages were suggested
to be required for the regeneration of germline stem cells
from dedifferentiating spermatogonial cells, a process that may
depend on JAK/STAT signaling (Varga et al., 2020). In the
mammalian ovary, macrophages play various roles, although
mechanistic parallels with Drosophila remain to be determined
(Wu et al., 2004). For example, macrophages are located along
the basement membrane and support follicular development
during the estrous cycle (Cohen et al., 1997). Their exact
role in tissue remodeling during ovulation is unclear, although
mice lacking ovarian macrophages have decreased reproductive
success (Cohen et al., 1997).

RESPIRATORY SYSTEM

The Drosophila respiratory system consists of a tubular system
of trachea that develop over the embryonic and larval stages; it is
then remodeled during metamorphosis, forming the extensive air
sacs of the head and thorax, as well as tubular tracheal structures
in the abdomen of the adult animal (Whitten, 1957; Manning
and Krasnow, 1993; Hayashi and Kondo, 2018). In the tracheal
system, hemocytes exist alongside respiratory tubes and epithelia
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to assist with development (Hartenstein et al., 1994; Baer et al.,
2010) and prevention of infection (Sanchez Bosch et al., 2019).
Specifically, during embryonic development, tracheal cells at
the base of the dorsal branch undergo apoptosis in response
to microenvironmental cues, detach from the epithelium, and
are engulfed by macrophages (Baer et al., 2010). Tracheal cells
also undergo apoptosis as part of tracheal remodeling during
metamorphosis, suggesting a possible role for phagocytosing
macrophages at this stage of development (Chen and Krasnow,
2014). Following pupariation, macrophages of the embryonic
lineage and dispersed lymph gland hemocytes (Holz et al., 2003;
Grigorian et al., 2011) associate with the respiratory epithelia (air
sacs) in the head and thorax of the adult animal, forming the
major blood cell reservoir (Sanchez Bosch et al., 2019). Here,
macrophages act as sentinels of infection, engulfing pathogens
and instructing the respiratory epithelia and neighboring cells
of the fat body via secretion of Upd3 to produce e.g., the
AMP Drosocin (Tzou et al., 2000; Sanchez Bosch et al., 2019),
which defends against bacterial infection (Lemaitre et al., 1995;
Sanchez Bosch et al., 2019).

FAT BODY

The Drosophila fat body is a site of energy storage, detoxification
and immune response that functionally parallels the vertebrate
liver (Miller et al., 2002; Dionne, 2014). It forms an extensive
tissue in the embryo and larva, and lines the majority of the
adult cuticle and epidermis (Zhang and Xi, 2015). During larval
development, macrophages contribute critically to basement
membrane formation of the fat body via the deposition of
SPARC, a glycoprotein involved in the assembly of collagen IV
(Shahab et al., 2015). Later, during metamorphosis, larval fat
body cells undergo remodeling, resulting in fat body dissociation
and apoptosis (Nelliot et al., 2006; Sanchez Bosch et al., 2019).
Macrophages associate with these decaying cells and are involved
in the phagocytosis of the cellular debris, a process that lasts well
into adulthood (Nelliot et al., 2006; Sanchez Bosch et al., 2019).

Macrophages affect many aspects of metabolic regulation,
homeostasis and immunity in the fat body (Dionne, 2014). For
example, when larvae are raised on a high fat diet, or exposed to
parasitic wasp infestation, plasmatocytes produce excess Upd3,
inducing Jak/Stat signaling in the fat body, which downregulates
insulin production, decreases larval growth, and reduces lifespan
(Woodcock et al., 2015; Shin et al., 2020). This mechanism is
mirrored in animals on a high sucrose diet (Parupalli et al., 2020).
In response to bacterial infection, hemocytes communicate to
the fat body through signals including Upd3 and the Toll ligand
Spätzle to induce AMP expression, in both the larva and adult
(Agaisse et al., 2003; Brennan et al., 2007; Charroux and Royet,
2009; Shia et al., 2009; Honti et al., 2014; Sanchez Bosch et al.,
2019). Bacterial infection also stimulates hemocytes to release
ImpL2, an insulin/IGF antagonist, which induces the release of
lipoproteins and carbohydrates from the fat body to fuel the
immune response (Gabriela et al., 2020); in turn, hemocytes
switch to aerobic glycolysis, which supports the antibacterial
defense (Krejèová et al., 2019).

Conversely, fat body cells regulate hemocyte populations
during instances of nutrient deprivation and immune challenge.
During starvation, macrophages move from the hematopoietic
pockets and other locations to infiltrate the larval fat body
(Shim et al., 2012). Specifically, the fat body releases NimB5,
which acts on hemocytes to downregulate adhesion and
proliferation (Ramond et al., 2020b). This mechanism redirects
resources to essential functions only, promoting animal survival
(Ramond et al., 2020b). Under immune challenge such as
parasitic wasp infestation, signals from the fat body promote
hemocyte responses: Toll signaling in the fat body promotes
the Toll-dependent activation of macrophages (Schmid et al.,
2014). Moreover, fat body cells upregulate expression of
Edin (elevated during infection), a secreted peptide that
promotes an increase in macrophage number and also triggers
their release from the hematopoietic pockets and other
resident locations, thereby facilitating the encapsulation response
(Vanha-aho et al., 2015).

MUSCLE SYSTEM

Drosophila has a complex muscle system at all stages of
development (Bothe and Baylies, 2016). Macrophages and
the muscular system form another axis of communication
in Drosophila. In the adult animal, under non-inflammatory
physiology, hemocytes constitutively produce Upd3, which
promotes basal JAK/STAT activity in muscle cells (Kierdorf
et al., 2020). When disrupting this signaling by loss of the
dome receptor in muscles, a systemic metabolic pathology
develops, characterized by hyperactivation of the kinase AKT,
an insulin signaling mediator, and reduced lifespan (Kierdorf
et al., 2020). While this study raises new interesting questions,
the interactions between muscle, insulin signaling, metabolism,
and growth have been an intense focus of investigation
(Demontis and Perrimon, 2009, 2010; Kwon et al., 2015).

Molecular communication in both directions, including
signaling from the muscles to macrophages, is central in
establishing immune responses (Yang et al., 2015; Yang and
Hultmark, 2017). In the Drosophila larva, muscles regulate
plasmatocytes in the immune response to parasitic wasp
infestation. This effect is initially triggered by the release of Upd2
and Upd3 from plasmatocytes during wasp infestation, activating
the JAK/STAT pathway in muscle tissue beyond basal levels (Yang
et al., 2015; Shin et al., 2020). In turn, muscle cells control the
plasmatocyte response, promoting the number of plasmatocyte-
derived lamellocytes and enhancing the encapsulation response
(Yang et al., 2015). This effect appears to depend on altered
feeding behavior and is mediated by insulin signaling via
TOR (target of rapamycin) in the muscles, which indirectly
enhances JAK/STAT signaling in hemocytes, driving lamellocyte
formation (Yang et al., 2015; Anderl et al., 2016; Yang and
Hultmark, 2017). Interestingly, larval muscles are an anatomical
part of the hematopoietic pockets where plasmatocytes reside
in clusters, suggesting that muscle cells are an active player
of this instructive microenvironment (Makhijani et al., 2011;
Makhijani and Brückner, 2012; Yang et al., 2015).
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HEART

In Drosophila and in insects in general, macrophages accumulate
in clusters at the ostia (intake valves) of the heart (Gupta, 1979),
a tubular structure running along the dorsal side of the animal
(Ocorr et al., 2007). Macrophages in these clusters monitor the
streaming hemolymph of the open circulatory system and fulfill
immune functions, phagocytosing bacteria and foreign particles
(Gupta, 1979; Elrod-Erickson et al., 2000; Dionne et al., 2003;
King and Hillyer, 2012; Cevik et al., 2019). Relatively little is
known about interactions between macrophages and heart tissue.
In Drosophila third instar larvae, hemocytes from resident sites
increasingly enter circulation and subsequently accumulate in
clusters at the ostia and pericardial nephrocytes of the larval heart
(dorsal vessel) (Frasch, 1999), forming dorsal vessel-associated
clusters (Markus et al., 2009; Makhijani et al., 2011; Petraki et al.,
2015; Cevik et al., 2019). Hemocytes accumulate in the ECM of
the dorsal vessel, which is facilitated by the heart-specific collagen
Pericardin (Cevik et al., 2019). In addition, some aspects of this
accumulation may be mechanical (Petraki et al., 2015; Cevik et al.,
2019). In adult Drosophila, hemocytes accumulate at the ostia of
the heart in a mesh of ECM that likewise contains Pericardin and
Laminin A (Ghosh et al., 2015; Sessions et al., 2017). One study
suggested that the heart serves as a ‘hematopoietic hub’ for new
hemocyte production (Ghosh et al., 2015), however, this model
was disproven based on evidence of a developmental mechanism
of macrophage accumulation at the heart, and the absence of
any significant hematopoietic activity using multiple orthogonal
approaches (Sanchez Bosch et al., 2019).

RENAL TUBULES

Drosophila Malpighian tubules (renal tubules) are excretory
organs with similarity to the vertebrate kidney; they secrete waste
and maintain ionic and osmotic homeostasis (Maddrell, 1972;
Denholm and Skaer, 2009). During the embryonic development
of the Malpighian tubules, macrophages are attracted to these
growing structures through tubule expression of PVF ligands
(Bunt et al., 2010). Macrophages, in turn, secrete components of
the basement membrane (Bunt et al., 2010). Collagen IV is part
of this, sensitizing tubule cells to the BMP ligand Dpp, which is
required to promote the outgrowth of the tubules (Bunt et al.,
2010). While it is known that Dpp is secreted locally, the source
remains unknown; however, in the gut, Dpp is sourced from
hemocytes (Guo et al., 2013; Ayyaz et al., 2015) and hemocytes
could have a similar function for the Malpighian tubules. The
process of macrophage-mediated tubule elongation is conserved
in mice where tissue-resident macrophages contribute to renal
organogenesis (Munro and Hughes, 2017).

IMAGINAL DISCS

Imaginal discs are the larval precursors to the adult fly eyes,
wings, legs, and other appendages (Worley et al., 2012). They
develop as epithelial sacs, which serve as intriguing models to

study patterning, morphogenesis, and regeneration (Hariharan
and Serras, 2017). Imaginal disc damage stimulates increase in
macrophages that adhere to the wound (Bryant and Fraser, 1988;
McClure et al., 2008; Pastor-Pareja et al., 2008; Katsuyama and
Paro, 2013). In response to UV damage to the eye imaginal disc,
macrophages actively promote tissue regeneration (Kelsey et al.,
2012). Specifically, damaged disc cells upregulate Shnurri (Shn),
a transcriptional regulator that induces Pvf1, which then signals
to disc-associated hemocytes to activate their macrophage-
like behavior (Kelsey et al., 2012). Activated hemocytes engulf
apoptotic cells in the eye disc and clear debris to limit tissue
damage (Kelsey et al., 2012). The activation of macrophages
in this model relies at least in part on the induction of
mesencephalic astrocyte-derived neurotrophic factor (MANF)
(Neves et al., 2016). MANF shifts the expression of hemocyte
markers and induces expression of the Drosophila homolog
of the mammalian M2 marker arginase1, suggesting a process
similar to the alternative activation of macrophages in vertebrates
(Neves et al., 2016). Importantly, PDGF/MANF signaling of
macrophages in response to retinal damage is conserved in
mammals (Neves et al., 2016). Hemocytes also trigger tissue
regeneration via epithelial cell proliferation in response to
reactive oxygen species (ROSs) released from damaged epithelial
disc cells (Fogarty et al., 2016). In a model of apoptosis-induced
proliferation (AiP), in which eye disc cells were induced to
die by the pro-apoptotic gene head involution defect (hid),
while apoptosis was concomitantly blocked by p35 (Ryoo et al.,
2004), activity of the caspase Dronc in epithelial disc cells
promotes activation of the NADPH oxidase Duox that generates
extracellular ROSs (Fogarty et al., 2016). ROS release activates
disc-associated macrophages and induces them to secrete the
TNF (tumor necrosis factor) family ligand Eiger, which activates
JNK signaling in disc cells leading to proliferation (Fogarty et al.,
2016). Similar mechanisms of ROS-induced JNK signaling may
apply to the regeneration of damaged wing discs, although the
role of hemocytes in this context remains to be investigated
(Santabárbara-Ruiz et al., 2015). One study reported hemocytes
to be dispensable for the regenerative growth of aseptic wounds
of wing discs or transplanted leg disc fragments under conditions
of combined ablation of hemocytes and fat body (Katsuyama
and Paro, 2013). However, these experiments were performed
in developmentally arrested larvae fed with erg21 mutant yeast
(Katsuyama and Paro, 2013) that does not provide sterols
necessary for the formation of the fly hormone ecdysone (Parkin
and Burnet, 1986). Ecdysone controls molting, but also stimulates
hemocyte phagocytic activity and mobility, and the encapsulation
response (Sorrentino et al., 2002; Regan et al., 2013; Sampson
et al., 2013), which could have affected experimental outcomes
(Katsuyama and Paro, 2013).

DISCUSSION

Drosophila and vertebrates share many parallels in their
macrophage systems, which in both cases are based on two
lineages. While the anatomical origins of tissue macrophages in
Drosophila and vertebrates differ, there are many evolutionary

Frontiers in Cell and Developmental Biology | www.frontiersin.org 8 March 2021 | Volume 9 | Article 630272

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-630272 March 7, 2021 Time: 16:50 # 9

Mase et al. Macrophage Functions in Drosophila Development and Homeostasis

parallels at the molecular, cellular, and functional level.
Considering that this lineage is the predominant source of
macrophages in Drosophila (Sanchez Bosch et al., 2019), we
propose that tissue macrophages may represent the ancient
mechanism of macrophage production and regulation, allowing
immediate adaptation to organismal and environmental
conditions. This may be particularly important in species that
heavily rely on innate immunity.

The diverse functional roles of Drosophila macrophages
predict defined subpopulations, influenced by local signals
from their tissue of residence, and possibly lineage and
other conditions. This resembles vertebrates, in which
macrophage populations have been characterized based on
their polarization, i.e., their distinct functional phenotypes,
regulated by microenvironmental and systemic stimuli (Gordon
and Taylor, 2005; Martinez, 2008; Lavin et al., 2015; Zhu
et al., 2015; Shapouri-Moghaddam et al., 2018). Vertebrate
macrophages exhibit functional plasticity to differentiate into
classically activated macrophages (M1) with roles in infection,
and alternatively activated macrophages (M2) active in tissue
repair and anti-inflammatory responses; further subdivisions are
based on their prototypical activating stimuli and functionality
(Martinez, 2008; Tarique et al., 2015; Zhu et al., 2015; Shapouri-
Moghaddam et al., 2018). Recent analyses suggest an even greater
spectrum of activation states exceeding these classifications
(Mosser and Edwards, 2008; Xue et al., 2014), and lineage also
plays a role in determining the properties and activation states
of macrophages (Gundra et al., 2014). Macrophages may adopt
potentially distinct activation states when mediating previously
unknown functions, such as the transfer of mitochondria to
and from target tissues including neurons and heart cells,
which promotes repair after tissue damage, and stimulates the
macrophage innate immune response, respectively (Jackson
et al., 2016; Brestoff et al., 2020; Nicolás-Ávila et al., 2020;
Raoof et al., 2020).

Research in Drosophila suggests that the characteristics of
macrophages are changed following priming by an immune
encounter, such as phagocytosis of apoptotic cells (Weavers
et al., 2016; Nonaka et al., 2017; Roddie et al., 2019; Chakrabarti
and Visweswariah, 2020). This interaction leads to “immune
training”, consisting of changes in intracellular signaling and
the repertoire of phagocytic receptors, which can determine
behavior in future encounters (Weavers et al., 2016; Nonaka
et al., 2017; Roddie et al., 2019; Chakrabarti and Visweswariah,
2020). Consistent with this, a study provided molecular evidence
of Drosophila macrophages taking on an alternatively activated
(M2) status in response to local cues in tissue regeneration (Neves
et al., 2016). Single cell RNA sequencing and functional studies

further support the hypothesis of distinct activation states in
Drosophila macrophages, identifying subpopulations that have
differential involvement in phagocytosis, metabolic homeostasis,
and the humoral AMP response (Cattenoz et al., 2020; Cho et al.,
2020; Coates et al., 2020; Fu et al., 2020; Ramond et al., 2020a;
Shin et al., 2020; Tattikota et al., 2020). Functional distinctions are
driven by developmental stage (Cattenoz et al., 2020; Cho et al.,
2020), injury, and immune challenge (Coates et al., 2020; Fu et al.,
2020; Ramond et al., 2020a; Tattikota et al., 2020).

Additional research will link many of the observed cellular
differences between macrophage populations with their roles in
specific organ systems, as exemplified in this review. A particular
gap in knowledge is how microenvironmental cues shape the
molecular and phenotypic status of macrophages to adapt to
their distinct tasks, and how interactions between immune cell
types and lineages may affect their response. In vertebrates,
organ microenvironments regulate tissue macrophages through
local production of CSF1, IL-34, and paracrine and autocrine
TGF-β (Lavin et al., 2015). However, findings from Drosophila
(Makhijani et al., 2011, 2017; Gold and Brückner, 2014, 2015;
Corcoran et al., 2020) suggest the existence of more elaborate
regulatory systems also in vertebrates, comprising, e.g., peripheral
innervation or cell based environmental sensors that regulate
local tissue macrophage populations through molecular signals.
Understanding cellular and molecular principles of organ-
macrophage communication in Drosophila will further broaden
our insights into vertebrate macrophage systems, and contribute
to approaches that harness the power of macrophages in
regenerative medicine and immunology.
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