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Abstract

Virtually all DNA viruses including hepatitis B viruses (HBV) replicate their genome inside the nucleus. In non-dividing cells, the
genome has to pass through the nuclear pore complexes (NPCs) by the aid of nuclear transport receptors as e.g. importin b
(karyopherin). Most viruses release their genome in the cytoplasm or at the cytosolic face of the NPC, as the diameter of their
capsids exceeds the size of the NPC. The DNA genome of HBV is derived from reverse transcription of an RNA pregenome.
Genome maturation occurs in cytosolic capsids and progeny capsids can deliver the genome into the nucleus causing nuclear
genome amplification. The karyophilic capsids are small enough to pass the NPC, but nuclear entry of capsids with an
immature genome is halted in the nuclear basket on the nuclear side of the NPC, and the genome remains encapsidated. In
contrast, capsids with a mature genome enter the basket and consequently liberate the genome. Investigating the difference
between immature and mature capsids, we found that mature capsids had to disintegrate in order to leave the nuclear basket.
The arrest of a karyophilic cargo at the nuclear pore is a rare phenomenon, which has been described for only very few cellular
proteins participating in nuclear entry. We analyzed the interactions causing HBV capsid retention. By pull-down assays and
partial siRNA depletion, we showed that HBV capsids directly interact with nucleoporin 153 (Nup153), an essential protein of
the nuclear basket which participates in nuclear transport via importin b. The binding sites of importin b and capsids were
shown to overlap but capsid binding was 150-fold stronger. In cellulo experiments using digitonin-permeabilized cells
confirmed the interference between capsid binding and nuclear import by importin b. Collectively, our findings describe a
unique nuclear import strategy not only for viruses but for all karyophilic cargos.
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Introduction

Most DNA viruses depend on nuclear host factors for their

replication. Viruses infecting non-dividing cells have to pass the

nuclear envelope through the nuclear pore complexes (NPCs). The

NPC is large proteinaceous structure of ,30 different proteins called

nucleoporins (Nups). Due to the eight fold rotational symmetry of the

NPC each Nup is present in 8–48 copies, forming a complex of

,125 MDa. On the cytoplasmic face of the NPC eight fibers

extrude from a central ring-like framework, which is embedded in

the nuclear envelope. This ring forms openings in the nuclear

envelope allowing translocation of cargos with a diameter up to

39 nm [1]. On the karyoplasmic face of the NPC 8 fibers form the

cage-like structure of the nuclear basket (reviewed by [2]).

NPCs regulate the traffic of proteins and nucleic acids into and

out of the nucleus (reviewed by [3]). While small molecules may

diffuse between cytoplasm and nucleus karyophilic macromole-

cules are transported in a complex with soluble nuclear import

receptors. It is estimated that ,1000 transport complexes pass

each NPC per second [4].

The best characterized transport receptors belong to the

importin (karyopherin) b superfamily, comprising importin b,

transportin 1, 2, transportin SR and exportins. Nuclear import is

initiated by binding of the receptors to a signal on the surface of

the karyophilic cargo. There is a variety of signals as e.g. M9

domains, interacting with transportins, importin b binding

domains and ‘‘classical’’ nuclear localization signals (NLS), which

bind to importin b via the adapter molecule importin a.

The driving force of nuclear import and export is a gradient of

the small GTPase Ran in its GTP-bound form across the nuclear

envelope. RanGTP is enriched in the karyoplasm, where it

interacts with the transport receptors of the import complex,

PLoS Pathogens | www.plospathogens.org 1 January 2010 | Volume 6 | Issue 1 | e1000741



leading to its dissociation. While the cargo diffuses deeper into the

karyoplasm, the RanGTP-receptor complex is exported into the

cytoplasm where it dissociates.

A key component of nuclear import is Nup153 to which the

import complex of cargo and importin(s) binds and subsequently

dissociates. Nup153 is a 1445 amino acid (aa) protein of the

nuclear basket [5], which comprises three domains (reviewed by

[6]). The N terminus (aa 1–670) at the nuclear ring of the NPC

contains an NPC targeting domain and an RNA binding domain.

The N terminus interacts with other proteins of the NPC as

Nup107 and Tpr and is required for proper NPC architecture

[5,7,8]. The zinc finger region (aa 650–880) at the distal ring of the

NPC facilitates interactions with Ran. The ,30 FXFG repeat-

containing C terminus is part of the hydrophobic meshwork that

forms the ‘‘sieve’’ through which karyophilic cargos have to pass

[9]. The participation of Nup153 in vital cellular processes makes

it difficult to analyze its functions without interfering with cell

viability [10].

Viruses with a nuclear phase in their life cycle make use of this

import machinery. Best characterized are adeno-, herpes,

influenza and the human immune deficiency virus. The latter

two viruses disassemble in the cytoplasm and release the genome

in complex with karyophilic viral proteins. These complexes fall

below the limit of the NPC diameter and pass the pore like cellular

macromolecules (reviewed by [11]) or by transiently interacting

with Nups [12] In contrast the genomes of adenoviruses and

herpes viruses remain encapsidated within their capsids. Their

diameters of 90 and 120 nm exceed the diameter of the nuclear

pore. Adenoviruses bind to the cytoplasmic face of the NPC where

they disassemble. Genome translocation through the pore

involving viral and cellular karyophilic proteins is not well

understood [13,14,15,16]. Herpes virus capsids also bind to the

exterior of the NPC using importin b [17] but they open at the

penton facing the NPC and inject the DNA through the pore. For

both viruses the trigger of genome release is unknown.

Similar investigations have been performed in digitonin-

permeabilized cells on capsids of the medically important hepatitis

B virus (HBV) [18,19]. Hepatitis B is endemic in large parts of the

world. Approximately 350 million people are chronically infected,

accounting for 1 million deaths per year. HBV is an enveloped

virus comprising an icosaedral capsid, which contains the partially

double stranded DNA genome (relaxed circular, rcDNA). The

capsid exists in T = 4 (major form) and T = 3 symmetry [20],

composed of 240 or 180 copies of the core protein, respectively.

The two forms differ in diameter (36 and 32 nm) but functional

differences are not known. Entry of the virus into the hepatocyte is

not well understood due to low efficiency of the available cell

culture systems for HBV infection [21]. Circumstantial evidence

however suggests that the capsid enters the cytosol after fusion of

the viral envelope with a cellular membrane [22]. In fact

lipofection of capsids, which by-passes the rate-limiting natural

entry causes productive HBV ‘‘infection’’ of hepatoma cells with in

vivo-like efficiency [23]. Like other DNA viruses (with the

exception of baculoviruses [24]) HBV capsids are transported

towards the NPCs using the microtubule transport system [23].

HBV is a pararetrovirus replicating via an RNA pregenome

that is transcribed from the nuclear covalently-closed circular form

of the viral genome. Consequently the viral rcDNA has to enter

the nucleoplasm upon infection where the rcDNA is converted to

the covalently-closed circular form. To allow access of the

unknown cellular DNA repair factors the viral genome has to be

liberated from the capsid either prior to, during or after transport

through the NPC. Transport and genome release are obviously

highly efficient and well-coordinated, since ,80% of virions are

infection-competent in vivo [25].

After export to the cytoplasm, the RNA pregenome is translated

to core protein and the viral polymerase which binds in situ to an

encapsidation signal on the pregenome. This complex is

specifically encapsidated within the assembling core protein

(reviewed by [26]), which forms an immature capsid (Immat-C).

The polymerase converts the RNA into rcDNA, which is found

in mature capsids (Mat-C). It is worth noting that genome

maturation occurs exclusively inside the capsid and is a

prerequisite for envelopment of the capsids by the surface proteins

for virion formation [27].

Core proteins assemble spontaneously to HBV capsids, e. g.

upon expression in E. coli. The first 140 aa of the core protein are

essential for assembly and exhibit an ordered structure. Within a

resolution limit of 16 Å E. coli-expressed capsids show the same

morphology as virion-derived capsids or capsids from infected cells

[28]. The arginine-rich C-terminus (aa 141–185) is flexible [29]

and exhibits phosphorylation sites for a cellular protein kinase,

which has not yet been unequivocally identified. In E. coli-

expressed capsids, which contain unspecific E. coli RNA and which

are not phosphorylated, the C terminus is localized within the

lumen of the capsid [30].

Some steps of genome maturation depend upon core protein

phosphorylation, notably pregenome encapsidation and plus

strand DNA synthesis [31,32]. Both phosphorylation and genome

maturation lead to translocation of the core protein C termini,

harboring a NLS, to the exterior of the capsids [19]. Consequently,

all HBV capsids that have undergone some degree of genome

maturation or phosphorylation bind to importin a/b [18] and can

be found in the nuclear basket [1,19]. Early in infection when

sufficient amounts of surface proteins have not yet been synthesized,

nuclear entry of progeny genomes increases the number of nuclear

HBV DNA copies [33], which is generally low but can reach

numbers of up to 491 per cell in HBV infected patient [34].

Using Digitonin-permeabilized cells – a frequently used system

for analysis of nuclear import [35] – it was however shown that

Immat-C and in vitro phosphorylated capsids synthesized in E. coli

(P-rC) failed to exit the nuclear basket and thus do not diffuse

deeper into the karyoplasm. In contrast, adding Mat-C to the cells

led to the presence of intranuclear capsids and genome release

[18,19].

Author Summary

Viral capsids facilitate protection of the enclosed viral
genome and participate in the intracellular transport of the
genome. At the site of replication capsids have to release
the genome. The particular factors triggering genome
liberation are not well understood. Like other karyophilic
cargos, hepatitis B virus (HBV) capsids are transported
through the nuclear pore using nuclear transport receptors
of the importin ß superfamily. Unlike physiological cargos,
HBV capsids become arrested within the nuclear basket,
which is a filamentous structure on the nuclear side of the
nuclear pore. Asking which interaction causes this unique
strategy, we found that the capsids bind to a protein of the
basket periphery, nucleoporin 153 (Nup153). The findings
were confirmed in situ using digitonin-permeabilized cells
that support physiological genome delivery into the
nucleus. We observed that HBV capsids bound to
Nup153 irrespective of the maturation of the encapsidated
genome. But while capsids with an immature genome
remained in arrested state, capsids with a mature genome
disassembled and released their DNA.

HBV Capsid Arrest in the NPC
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The import strategy of HBV capsids seems thus to follow an

entirely different strategy than has been shown for other viruses. In

particular the arrest of Immat-C in the basket is unique. To date

the only examples for cargos with an aborted nuclear import

reaction are some Nups that become incorporated into the NPC

after cell division and the protein Ubc9, which partly associates

with Nup358 on the cytosolic fibers of the NPC.

Evidently, the viral capsids have to interact with the NPCs upon

initial infection but during establishment of the infection as well, at

which time the nuclear viral DNA becomes amplified. Due to the

incomplete understanding of HBV transport and disassembly, the

unique strategy and the medical importance of HBV, we evaluated

the molecular background of the capsid arrest in the NPC basket.

Using in vitro and in cellulo approaches we identified the cellular

interaction partner and identified the underlying mechanism

responsible for the selective release of mature viral genomes.

Collectively, these findings lead to a model of a multi-step,

maturation-regulated nuclear entry of the HBV genome.

Results

Co-immune precipitation of nuclear proteins
Abortion of a nuclear import reaction within the nuclear pore

must be based on a direct or indirect interaction with proteins of

the NPC. The recently observed arrest of Immat-C and P-rC in

the nuclear basket thus most likely involves an association with a

Nup on the karyoplasmic face of the NPC. According to the

current view on the architecture of the NPC candidates would

include Nup50, 54, 58, 62, 93, 96, 98, 107, 133, 153, 160, Rae1,

Seh1, Sec13 PBC68, and Tpr (summarized by [36]).

First, we wanted to identify the NPC proteins that are co-

precipitated by Immat-C using a nuclear extract of rat liver nuclei.

The NPC is composed of tightly interacting mostly hydrophobic

proteins requiring denaturating conditions or harsh detergents for

separation. As this treatment unfolds proteins we first tested

whether refolding restored biological functions. For this purpose,

we investigated the importin b binding ability since it is one of the

essential functions of Nup153. Affinity of Nup153 to importin b
was shown to be stronger than to other nucleoporins (Nup62,

Nup214, Nup358 [37]).

To test our experimental system, pull-down was performed by

incubating recombinant functional importin b with the extract

followed by binding of the nucleoporins to solid-phase bound

antibody mAb414. This antibody binds preferentially to the

FXFG-repeat containing nucleoporins of vertebrates as e.g.

Nup62, Nup153, Nup214 and Nup358 [38,39] with different

efficiency.

Figure 1A depicts that importin b became co-precipitated (lane

1). As the nuclear extract did not contain detectable amounts of

importin b (not shown) this result implies that the importin b
binding activity of the nucleoporin(s) was maintained or restored

during extraction and renaturation. Binding was specific as

antibody-coated beads without the extracted proteins and

uncoated beads failed to interact with importin b. Binding

occurred in the absence of an importin b-bound cargo. This

finding is in accordance with the observation that importin b after

its dissociation from the cargo does not diffuse deeper into the

karyoplasm but remains bound to the NPC before being exported

into the cytoplasm [40].

The nuclear extract was then subjected to co-immune

precipitations using Immat-C which are arrested within the

nuclear basket. These capsids contain DNA replication interme-

diates of the viral genome; they interact with the NPCs [19] and

can thus be responsible for nuclear genome amplification. For

Figure 1. Co-immune precipitation of Nup153 from rat nuclear
extracts with Immat-C. A. Importin b binding of Nups after
renaturation. Nuclear extract was incubated with importin b and FXFG
repeat-containing Nups were precipitated using mAb414-coated bio-
magnetic beads. Panel A depicts an immune blot using an anti-importin
b antibody showing that importin b was co-precipitated by the
nucleoporins. 1: mAB414-coated beads + nuclear extract+importin b. 2:
mAB414-coated beads without nuclear extract + importin b. 3: Uncoated
beads+nuclear extract + importin b. The 54 kDa band present in all lanes
represents the heavy chain of the antibodies. The bands at 66 and 47 kDa
in lane 1 are most likely degradation products of Imp b. B. Protein co-
precipitation by capsids from nuclear extract. Sypro Red stain after SDS
PAGE. m: marker. The MW is listed on the left. 1: nuclear extract without
precipitation. The migration of different nucleoporins is indicated on the
right. 2: Co-immune precipitation of nuclear extract with Immat-C bound
to anti capsid antibody-coated biomagnetic beads. 3: Negative control
without nuclear extract. 4: Beads only. 5: Co-immune precipitation of
nuclear extract without Immat-C by anti capsid antibody-coated
biomagnetic beads. The stain shows a precipitation of a protein with
an apparent MW of ,180 kDa. C. Immune blot of the nuclear protein(s),
which were co-precipitated by Immat-C. Immune detection was
performed using mAb414. 1–5 as in Figure 1B. The blot shows that the
co-precipitated protein is mAb414-reactive. D. Phosphoimager scan of
32P-labeled Immat-C (lane 2) and marker (lane 1) showing that a single
protein was labeled. E. Phosphoimager scan of precipitations in which
32P-labelled Immat-C was incubated with nuclear extracts followed by
precipitation of nucleoporins, which were bound to mAb414-coated
biomagnetic beads. Capsid-co-precipitation is indicated by the radioac-
tive core proteins on an SDS PAGE. 1: mAb414-coated beads without
nuclear extract + capsids 2: Anti capsid coated beads + nuclear extract +
capsids, 3: Anti capsid coated beads + nuclear extract without capsids, 4:
Uncoated beads + nuclear extract + capsids. The figure shows that
Immat-C precipitates Nup153 from the nuclear extract of rat liver.
doi:10.1371/journal.ppat.1000741.g001

HBV Capsid Arrest in the NPC
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visualization of co-precipitated proteins we used Sypro Red,

staining all proteins after SDS PAGE. As depicted in Figure 1B no

co-precipitation could be observed in the absence of nuclear

extract. Faint bands were observed in the absence of capsids. This

indicates some unspecific binding of nuclear proteins to the carrier

beads, probably due to nonspecific hydrophobic interactions.

Immat-C-driven pull-down however showed the precipitation of

one dominant protein, strongly enriched in comparison to the

control extract and the precipitation controls. This protein showed

an apparent molecular weight of a ,180 kDa typical for Nup153

[41,42]. To confirm the identity of co-precipitated Nup153 we

used the antibody mAb414 in Western blot. Figure 1C confirms

the Nup153 co-precipitation by Immat-C and provides evidence

that neither Nup214 nor Nup358 were co-precipitated.

To further confirm specific Nup153 capsid-interaction we

preincubated the nuclear extract with Immat-C prior to

precipitation via mAb414 and detection of co-precipitated

Immat-C. Since antibodies against denaturated core proteins

require very large amounts of protein to provide adequate signals

we labeled Immat-C by 32P using the protein kinase activity inside

the capsids. Phosphoimaging showed that a single protein was

labeled having the molecular weight of the core protein of

21.5 kDa (Fig. 1D). As depicted in Figure 1E Immat-C could be

precipitated by mAb414-bound Nup. No signal was obtained in

the absence of nuclear extract or in the absence of mAb414.

Interaction between different capsid species and Nup153
domains

To determine whether the Nup153 binding was selective for

Immat-C we included different capsid species in co-immune

precipitations. We used Mat-C, which enter the nucleus and

comprise an rcDNA genome; P-rC, which contain E. coli-RNA

and which is arrested in the basket like Immat-C, and capsids that

were formed by C-terminally truncated core proteins (DC-rC).

DC-rC do not contain RNA, cannot be phosphorylated, and

cannot enter the basket as these capsids do not contain the NLS.

All capsids reacted equally well with the anti-capsid antibody used

to precipitate them after preincubation with nuclear extract (not

shown). Unexpectedly, all capsids were able to precipitate Nup153

as depicted by immune blot using mAb414 (Fig. 2A).

The Sypro Red stain of co-precipitated proteins was restricted

for the molecular weight of the interaction partners. Proteins

smaller ,75 kDa could not be detected as this part of the SDS

PAGE was heavily overloaded with high amounts of bead-bound

antibodies and BSA used for saturation of unspecific binding sites.

We could have thus missed smaller adapter proteins connecting

the capsids with Nup153.

To obtain evidence of direct interaction we replaced the nuclear

extract by E. coli-expressed Nup153 that was purified under native

conditions. The fusion protein was previously shown to be

functional on nuclear import and export after integration into

the NPCs of reconstituted Xenopus laevis oocyte nuclei [43].

Figure 2B showed that all capsids precipitated GST-Nup153. As

GST does not bind to the capsids (not shown) we conclude that

Nup153 interacts directly with the surface of the capsid. The signal

was not derived from the capsid preparation since no signal was

observed in the absence of GST-Nup153. Furthermore, GST-

Nup153 precipitation was not observed in the absence of the

capsids implying that GST-Nup153 did not bind directly to the

antibody coated-bead (Fig. 2C).

We next set out to determine to which Nup153 domain the

capsids bind. We expressed large parts of Nup153 in three

fragments (N: aa 53–272; Z: aa 272–543; C1: aa 618–999) as GST

fusion proteins. The Nup153 fragments were incubated with the

Figure 2. Co-immune precipitations of human Nup153 and
Nup153 fragments with different capsids. A–D. Capsids were
incubated with nuclear extract, GST-Nup153 or Nup153 fragments and
precipitated with anti-capsid antibody-coated biomagnetic beads. The
panels show immune blots after SDS PAGE. A–C: Detection by mAb414.
A. 1 Immat-C, 2 Mat-C, 3 P-rC, 4 DC-rC. Co-precipitations of Nup153 from
nuclear extracts showed that capsids precipitate Nup153 irrespective to
the nucleic acid inside the capsid or the presence of the C terminus of the
core protein. B. Co-precipitations of bacterially expressed GST-Nup153
showed that all capsid species directly interact with Nup153. 1 Immat-C, 2
Mat-C, 3 P-rC, 4 DC-rC. C. Specificity controls of GST-Nup153 co-
precipitation exemplified by P-rC. 1. Positive control. P-rC + GST-Nup153
+ anti capsid antibody-coated beads. 2. Without capsids + GST-Nup153 +
anti capsid antibody-coated beads. 3. P-rC + without GST-Nup153 + anti
capsid antibody-coated beads. D. Co-precipitation of GST-Nup153
fragments by P-rC. Immune detection of the Nup153 fragments by
anti-GST antibodies bound to anti mouse coated biomagnetic beads. The
GST-Nup153 fragment is given on the left of the panels, the capsid type
at the top. p: GST-Nup153 fragment without precipitation (positive
control). 1: P-rC + Nup153 fragment + anti capsid antibody-coated beads.
2: No capsids + Nup153 fragment + anti capsid antibody-coated beads. 3.
P-rC + Nup153 fragment + uncoated beads. The figure shows that only
the C1 fragment, which comprises aa 618–999 of Nup153, is precipitated
by the capsids. E. Gel retardation of P-rC by GST-Nup153 N and C1
fragment on native agarose gels. The migration of GST-Nup153 N and C1
fragments without capsids is shown by anti-GST antibodies (right panel).
The migration of the capsid without GST-Nup fragments is shown on the
left panel using anti-capsid antibodies. The middle panel shows the
capsid migration in the presence of GST-Nup153 N (left lane) and C1
(right lane). F. Gel retardation of P-rC by GST-Nup153 C2 fragment. Left:
anti-capsid blot, right: anti-His blot. Left lanes: P-rC without Nup153
fragment, right lanes: P-rC with Nup153 fragment.
doi:10.1371/journal.ppat.1000741.g002

HBV Capsid Arrest in the NPC

PLoS Pathogens | www.plospathogens.org 4 January 2010 | Volume 6 | Issue 1 | e1000741



different capsids and co-precipitated by biomagnetic bead-bound

anti-capsid antibodies. Co-precipitation of the Nup153 fragments

was demonstrated by Western blot using anti-GST antibodies.

Figure 2D shows that Mat-C, Immat-C and P-rC failed to

precipitate the 50 kDa N terminal part of Nup153. A strong band

at 54 kDa was visible in all samples to which the biomagnetic

beads were added. This band was most likely the product of an

unspecific binding of the secondary blot antibody to the heavy

chain of the antibodies used in precipitation. Using the zinc finger

domain Z (56 kDa) no precipitation could be observed (Fig. 2D).

However all three capsid species co-precipitated the 68 kDa C1

fragment. Binding was specific as no precipitates could be

observed in control reactions without capsids or with capsids but

without anti-capsid antibodies on the beads. This Nup153

fragment comprises an importin b-binding domain [44,45] thus

implying that importin b and capsids compete for Nup153

binding.

A fourth His-tagged fragment (C2: aa 992–1219) containing

most of the ,30 FXFG repeats [46] was analyzed by co-

precipitation but we observed an unspecific binding to the beads.

To circumvent this technical problem we performed retardation

gels. We incubated P-rC with His-Nup153 C2 and separated the

complex by native agarose gel electrophoresis. The Nup fragment

was visualized by anti-His antibodies, the capsid by anti-capsid

antibodies. Control experiments were performed using the N and

the C1 fragment. Migration of the fragments was determined by

anti-GST antibodies.

Figure 2E confirmed that the N fragment did not interact with

the P-rC as no shift of capsid migration could be observed upon

the presence of this Nup153 domain. Nup153 C1 caused a

retarded migration of the majority of capsids (Fig. 2F) and

fragment C2 retarded the migration of all P-rC (Fig. 2F). Although

fragment C2 is largely hydrophobic we assume that the capsid

binding is not unspecific as the capsids are negatively charged

and migrate on native agarose gels as ,3000 bp linear double

stranded DNA fragments.

As both fragments C1 and C2 barely overlap we conclude that

there is more than one interaction site on Nup153.

Competition of P-rC, Nup153 and importin b
In vivo, numerous proteins and nuclear factors pass the NPC

simultaneously requiring interaction with Nup153. As Immat-C

and P-rC are arrested in vivo, one should expect that the affinity of

the physiological transport complexes to Nup153 is weaker than

that of the capsids. We incubated capsids (P-rC) immobilized on

biomagnetic beads with Nup153 and importin b in different ratios.

Figure 3A, lane 1, shows that no GST-Nup153 bound to the beads

in the absence of capsids thus demonstrating the specificity of

Nup153 binding. When incubating Nup153 in parallel to different

amounts of importin b with the capsids only molar importin b
excesses of more than 150-fold with regard to Nup153 prevented

Nup153 binding to the capsids. This result thus confirm that

capsid and importin b binding sites on Nup153 overlap and show

further that the capsid binding was much stronger than the

importin b interaction.

We next asked whether bound capsids can be displaced from

Nup153 by importin b. We preincubated biomagnetic bead-

bound P-rC with Nup153 and added importin b after removal of

unbound Nup153. Figure 3B shows that even 6700-fold molar

excesses of importin b did not remove Nup153 from the capsid.

Silencing of Nup153 expression by siRNA
In order to determine whether the capsid arrest in the basket is

mediated by Nup153 we suppressed Nup153 expression in HeLa

cells by siRNA. We controlled Nup153 expression in parallel to

the expression of Fibrillarin, which is a component of a nucleolar

small nuclear ribonucleoprotein (SnRNP) involved in ‘house keeping’

for nucleolar integrity [47]. Figure 4A shows that Fibrillarin

expression was in fact unaltered but Nup153 reduced by 80%.

Suppression was limited because Nup153 is essential for cell

viability.

After permeabilization of these cells by digitonin a nuclear

import assay using P-rC was performed. We visualized Nup153

and capsids using indirect immune fluorescence. Nup153 staining

was weaker in 80–90% of the siRNA-treated cells than in non-

silenced cells (Fig. 4B, lower panel). The nuclei of these cells were

larger than in mock-transfected cells most probably due to the role

of Nup153 in mitotic progression [48]. The nucleoporin Nup153

plays separate roles in both early mitotic progression and the

resolution of mitosis.

In the nuclei of the control cells, P-rC accumulated at the

nuclear envelope and did not enter the karyoplasm as demon-

strated previously [18]. In contrast, a proportion of capsids were

found in the karyoplasm of Nup153 siRNA-transfected cells, (still

image: Fig. 4B upper panel; for videos see Videos S1, S2, S3 and

S4). Quantification on 20 cells revealed that 18–19% of capsids

entered the nucleus while ca. 80% were still arrested at the NE.

Effect of cross-linking on nuclear import of Mat-C
We next asked how Mat-C proteins could enter the nucleus

despite the strong binding to Nup153. We followed the hypothesis

that capsids should remain intact while genome maturation

continues but should liberate the genome from the basket once

rcDNA is formed. To test this hypothesis we cross-linked the Mat-

C subunits, which were 32P-labelled by UV irradiation (Mat-C

UV) and analyzed their integrity. Figure 5A shows that the cross-

linking caused a strong reduced migration of the core protein

subunits in SDS PAGE. Most of the protein was retained at the

entry site of the SDS PAGE; only traces resulted in a smear

.45 kDa. To test whether cross-linking occurred between capsids,

which would have caused unsuitable particle aggregates we

separated Mat-C UV on native agarose gel and detected them

Figure 3. Competition of P-rC, Imp b and Nup153 interactions.
A. Nup153 was preincubated with importin b and P-rC. The complex
was precipitated by anti capsid antibody-coated beads and Nup153 was
detected by Immune blot using mAb414. 2 negative control without P-
rC, +: positive control in the absence of Imp b. 1–5. Different ratios of
capsid-importin b. 1: 1:33, 2: 1:50, 3: 1:100, 4: 1:150, 5: 1:300. B. Anti
capsid antibody-coated beads were preloaded with P-rC. P-rC was then
saturated with Nup153 followed by addition of different excesses of
Imp b.2: and +: as in A. Molar ratio capsid-Imp b 1: 1:2600, 2: 1:4000, 3:
1:5400, 4: 1:6700. The figure shows that even an excess of Imp b cannot
displace Nup153-bound capsids. After Nup153 attachment to the
capsid even excessive amounts of Imp b cannot replace Nup153.
doi:10.1371/journal.ppat.1000741.g003
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by anti-capsid antibody used before. We observed no difference in

migration compared to the P-rC standard (Fig. 5B), demonstrating

that UV irradiation only induced bonds between subunits of

individual capsids. The result further shows that the UV treatment

had not changed the surface charge.

We next investigated the transport competence of Mat-C UV in

comparison to untreated Mat-C. We injected 16107 capsids into

the cytosolic periphery of 6 Xenopus laevis oocytes and followed the

fate of the capsids by electron microscopy. We used Xenopus laevis

oocytes sine more NPCs can be analyzed by EM in this system

than by using permeabilized cell lines thus giving more reliable

results. Combining these two systems and comparing the results is

however justified since, as far as is known, nuclear import is

identical in both systems [49,50].

As control, six Xenopus laevis oocytes were injected with Mat-C.

We restricted the incubation time after injection to 1 h, the earliest

time point at which significant numbers of capsids arrive at the

nuclear pore (not shown). Such a short time was chosen in order to

detect possible differences in nuclear entry of the capsids. As

shown in Figure 6A both types of capsids entered the nuclear

basket as intact particles. We determined the number of capsids

that arrived at 68 NPCs (Mat-C) and 74 NPCs (Mat-C UV), and

determined their location at the NPCs. Figure 6B showed that a

similar number of capsids arrived at the nuclear pore indicating

that the cross-link neither affected the intracytoplasmic transport

capacity nor the interaction with the NPCs. We next analyzed the

distribution of the capsids, showing that both capsid species

exhibited the same distribution at the NPCs with a majority on the

cytoplasmic face. To our experience this dominantly cytoplasmic

localization is related to the short incubation time. However, the

same proportion of Mat-C and Mat-C UV entered the pore and

were found in the nuclear basket, implying that their transport

competence was the same.

We next analyzed whether Mat-C UV diffuses deeper into the

nucleus like untreated Mat-C or remained arrested at the nuclear

envelope like Immat-C and P-rC. These assays were performed

with digitonin-permeabilized cells since the relatively low amounts

of capsids would have been undetectable in Xenopus laevis oocytes.

Capsids were detected by indirect immune fluorescence using the

same anti-capsid antibody that showed an unchanged reactivity

after cross link. Figure 6C shows that Mat-C entered the nucleus as

it was previously reported for different permeabilized cells and in

living cells [19,23]. In contrast Mat-C UV failed to enter the

Figure 4. Nuclear import of P-rC in nuclei of partially Nup153-
silenced cells. A. Immune blot of Nup153 in Nup153-silenced cells.
Upper panel Nup153, lower panel: the house keeping gene Fibrillarin.
The blot shows a significantly reduced Nup153 expression B. Nuclear
import in digitonin-permeabilized cells. Left: control mock-transfected
cells. Right: Nup153-silenced cells. Capsids and Nup153 are visualized
by indirect immune fluorescence (see as well video in Supporting
information). Consistent with the incomplete Nup153 knock down some
P-rC entered the nucleus exclusively in Nup153 siRNA-treated cells.
doi:10.1371/journal.ppat.1000741.g004

Figure 5. Analysis of cross-linked core particles. A. Lane 1: 32P-
labelled Mat-C-UV and (lane 2) 32P-labelled Mat-C were separated on a
4–12% SDS-PAGE. Phosphoimaging showed that the core proteins of
Mat-C-UV did not enter the separating gel indicating successful cross-
linking. In contrast the core proteins of Mat-C migrated as a 21.5 kDa
band. m: 14C-labelled molecular weight marker. B. Immune blot of Mat-
C-UV and non cross-linked P-rC after native agarose gel electrophoresis.
Mat-C-UV migrated as the P-rC standard indicating that the core
proteins were linked within the individual capsids and that the capsids
were not linked to each other. The identical migration indicates that UV
irradiation has not changed the surface charge. The numbers on top of
the standard dilution series give the amount of the P-rC in pg.
doi:10.1371/journal.ppat.1000741.g005
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karyoplasm and remained associated at the NPCs and some

cytosolic structure. We assume that the cytosolic binding sites are

collapsed microtubules as such binding was demonstrated before

for digitonin-permeabilized cells [23].

Effect of Nup153 – capsid interaction on nuclear import
of other cargos

Figures 2 and 3 showed that the capsids bound to a Nup153

domain that participates in importin b binding and that the

interaction competes with importin b in vitro. To obtain in situ

evidence on Nup153 that is integrated into the NPCs we analyzed

whether binding of capsids to Nup153 interfere with the importin

b-dependent nuclear import pathway. These experiments were

performed with P-rC because the large numbers of capsids

required for Nup153 saturation on the permeabilized cells were

only available for this type of capsid. We used the human

hepatoma cell line HuH-7 cells which is able to synthesize hepatitis

B virions after transfection with HBV DNA.

We incubated digitonin-permeabilized cells with different

amounts of P-rC. Nuclear import into the basket was facilitated

by means of the nuclear transport receptors in rabbit reticulocyte

lysate. After incubation cells were washed. In the last washing

buffer no P-rC was detectable.

First we quantified the amount of NPCs and the number of

bound capsids. NPC number was calculated from the Nup153

signal obtained by Western blot, which was compared to a dilution

series of E. coli-expressed Nup153 (not shown). We determined

,6000 NPCs per HuH-7 nucleus, which is higher than the ,2770

NPCs found in HeLa cells [9]. It is however known that the NPC

number varies strongly between different cell types (18,451+/

22,336 (Purkinje cells) to 402+/267 (oligodendrocytes) [51].

We used P-rC preloaded digitonin-permeabilized cells after

washing and added new cytosol together with two fluorescent

cargos – Alexa594 NLS-BSA and Alexa647 M9-BSA. NLS-BSA is

imported by importin b while M9-BSA uses transportin for

nuclear entry. Both cargos comprise the same number of nuclear

localization signals, as determined previously [18]. After import

reaction, capsids and NPCs were stained by indirect immune

fluorescence, and nuclear cargo concentrations were determined

semi-quantitatively using confocal laser scan microscopy. Quan-

tification was performed in the equatorial region of the nuclei. A

positive control was performed on cells that were preincubated in

the absence of capsids but to which the cargos were added in a

second step and incubated at 37uC. In the negative control no P-

rC was added during the first incubation but the following import

reaction with the fluorescent cargos was performed on ice, thus

inhibiting active nuclear transport [52].

Figure 7 shows no intranuclear fluorescence in the negative

control (Fig. 7A) but strong signals for both cargos in the positive

control (Fig. 7B). With increasing preload of the nuclei by capsids

the import of both cargos became reduced (Fig. 7C–H). At the

highest capsid concentration no intranuclear fluorescence could be

observed (Fig. 7H). In this sample the average nuclear diameter

increased from 200 mm2 in the negative control to 240 mm2. This

observation is in accordance with a ‘‘plugging’’ of the NPCs by the

capsids, which does not allow exchange of smaller molecules

needed for equilibration of the osmotic pressure between nucleus

and reaction mixture.

Figures 7B to G show further that the reduction of nuclear

import appeared for NLS-BSA at lower preloaded numbers of

capsids than for M9-BSA. As no unbound P-rC was present after

washing, we can exclude competition between capsid NLS and

NLS-BSA for the transport receptors importin a and b.

Figure 6. Nuclear transport of Mat-C and Mat-C-UV. A. Electron
microscopy of the capsids at the NPCs after microinjection into the
cytoplasm of Xenopus laevis oocytes. The white arrows indicate capsids.
Black scale bar: 100 nm. B. Frequency of NPC-attached capsids and the
capsid distribution at the NPCs. Both capsid species showed a similar
frequency at the NPCs and similar importation into the nuclear basket.
C. In vitro transport assays of the capsids in digitonin-permeabilized
HuH-7 cells. NPCs (red) and capsids (green) are visualized by indirect
immune stain. The merges are depicted on the right panels. The panels
show overviews and strongly magnified images. While Mat-C (upper
two panels) caused intranuclear fluorescence cross-linked capsids
(lower two panels) failed to enter the karyoplasm.
doi:10.1371/journal.ppat.1000741.g006
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Figure 7. In vitro transport assays of NLS- and M9-linked fluorescent BSA conjugates after preload of the NPCs by P-rC. NPCs (yellow)
were visualized by indirect immune fluorescence using mAb414. P-rC (cyan): Indirect capsid immune fluorescence using anti capsid antibodies. The
panel show increasing signal strength related to the amounts of capsids subjected to the cells. NLS (red): fluorescence of Alexa594 NLS-BSA. M9
(blue): Fluorescence of Alexa647 M9-BSA. While the NLS-import rapidly decreased with increasing preload of the NPCs with P-rC, the M9-import was
less affected. A. Negative control at 4uC without capsid preload. B. Positive control at 37uC without capsid preload. C. Preload of the nuclei with
25 ng P-rC, D. 100 ng P-rC, E. 400 ng P-rC, F. 1600 ng P-rC, G. 6400 ng P-rC, H. 12800 ng P-rC. All pictures were taken at the same magnification.
Space bar: 20 mm.
doi:10.1371/journal.ppat.1000741.g007
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We next quantified the import in 570 nuclei. The mean

intranuclear fluorescence in the positive control was taken as

100%. Figure 8 shows scatter plots obtained for each capsid

preload. We observed a significant variation between the nuclei in

one sample, for instance between 80% and 120% in the positive

control. This can be explained by variable nuclear permeability

throughout the cell cycle [53]. Moreover, this observation

confirms that the nuclei remained intact during the transport

reaction as a disruption would have resulted in equal concentra-

tions. The import via transportin and via importin b was

correlated in all cells and followed a Gaussian normal distribution.

As indicated by the slopes of the regression lines no significant

changes were observed at preloads from 0 to 0.2 capsids per NPC

(Fig. 8B–D). With larger numbers of capsids, the importin-

mediated import became greatly reduced (Fig. 8E; 0.7 P-rC/NPC)

or undetectable (Fig. 8F; 3.3 P-rC/NPC), while the transportin-

mediated pathway remained significantly more active (p#1029).

Concentrations $3.3 capsids/NPC blocked both the NLS-and

M9-mediated import, most likely the result of steric hindrance by

capsids that got stuck in the channels of the NPCs. Collectively the

data however indicate that blocking the capsid binding sites on

Nup153 interferes with the importin b-mediated nuclear entry but

not with the transportin pathway.

Discussion

Karyophilic cargos interact transiently with components of the

NPC via transport receptors before they are released to the

karyoplasm. HBV capsids are an exception as they remain

arrested in the nuclear basket. We showed that HBV capsids

bound solubilized and renatured rat Nup153 from a nuclear

extract with importin binding activity. This is consistent with the

high degree of conservation of Nups among different species and

the conserved mechanisms of nuclear translocation [54]. It

confirms further the observation that Immat-C is arrested at the

NPCs of different cell lines [19].

Neither co-purification of Nup98 or Nup160, which connect

Nup153 with the central frame work of the NPC [55] nor of Tpr

(268 kDa), which is attached to the NPC via Nup153 [7], was

observed. This finding indicates that the NPC components

became disassembled during purification and did not reassemble

upon renaturation. This interpretation is in accordance with

previous findings that NPC reconstitution depends on the presence

of RanGTP [56]. RanGTP has a low molecular weight of 25 kDa

and is removed from the nuclei prior to disintegration of the

NPCs. The absence of a 97 kDa band in the co-precipitation

further confirms that the binding was not mediated by importin b,

which is in accordance with the direct binding observed in co-

precipitation of natively purified GST-Nup153. The latter finding

provides further evidence that the binding did not require a

protein linker, which may have been below the 75 kDa limit of the

Sypro Red stained gel.

HBV capsids undergo complex modifications upon genome

maturation which are not well understood. Their changes comprise

not only the reverse transcription of the encapsidated RNA to

rcDNA but also protein phosphorylation [31,32] and eventually

dephosphorylation. We found that Nup153 was precipitated by

Immat-C, containing replication intermediates and possibly empty

capsids, and by Mat-C containing rcDNA. This observation

suggests that the type of nucleic acid within the capsid has no

impact on Nup153 interaction. The observation that E. coli-

expressed RNA containing capsids that were phosphorylated in vitro

by protein kinase C and empty E. coli-expressed capsids that lacked

the RNA-binding and phosphorylated C-terminal domain inter-

acted equally with Nup153 shows that the binding is mediated by

the N-terminal assembly domain. It further confirms that importin

b, which interacts via importin a with the NLS on the C-terminal

domain [18] do not interfer with capsid binding to Nup153.

Searching for the domain on Nup153, which interacts with the

capsids we observed that aa 53–543 of Nup153 did not show any

interaction. This part of Nup153 comprises a transportin binding

site (aa 247–290 [57]). In contrast aa 618–999 and 992–1219 –

both comprising FxFG repeats - interacted with the capsids. As

other FxFG repeat comprising Nups were not co-precipitated we

conclude that the binding is specific for Nup153 and not based on

hydrophobic interactions.

Figure 8. Scatter plots of the relative intranuclear concentra-
tions of M9- and NLS-BSA in individual cells preloaded with P-
rC. Each point represents one cell. X-axis: Intranuclear concentration of
the M9-BSA. Y-axis: Intranuclear concentration of NLS-BSA. Both axes
give the relative intranuclear cargo concentration in %. The dotted lines
show the regression lines. The corresponding slope is given in each
panel. The average number of capsids per NPC is given on top of each
panel. A. Negative control at 4uC. B. Positive control without capsid
preload. C.–H. Increasing amounts of P-rC as in Figure 8. 100%: mean
value of the positive import reaction. Only those cells were analyzed in
which the section was within the equatorial region (570 cells total).
doi:10.1371/journal.ppat.1000741.g008
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To obtain evidence of overlap between importin b and capsid

binding sites we performed competition experiments in the

presence of excesses of importin b. The strong binding with

regard to importin b is consistent with an attachment of the

capsids to the FXFG repeats as these sites interact with this import

receptor. This strong affinity could explain the mechanism by

which the capsids can remain arrested on Nup153 within the cells

despite of the 1000 exchange reactions that pass each nuclear pore

per second [4].

Partial silencing Nup153 showed that a significant proportion of

P-rC entered the nucleus. The incomplete entry is consistent with

the high affinity of the capsids to Nup153, assuming that less than

8 copies of Nup153 are sufficient for capsid arrest. Considering

that Nup153-linked Tpr was not precipitated the result thus

confirms that no other nucleoporin has a significant effect on the

abortion of the capsid entry into the nucleus.

Our results showed additionally that the structural part of the

capsid caused the interaction, which has a well ordered structure.

Within 16 Å resolution no differences could be found between E.

coli-expressed capsids, Mat-C and Immat-C [28] although one

group reported a hydrophobic pocket on the capsid surface that

exists on Mat-C only [58]. We considered structural causes to be

an unlikely explanation for the different entry behavior and

followed the hypothesis that Immat-C is more stable than Mat-C.

Consequently, we assumed that maturation-dependent disintegra-

tion of Mat-C leads to capsid subunits which may diffuse from the

NPC to the karyoplasm. It was recently shown that capsids may

disintegrate to core protein dimers [59]. Irrespective of the T = 3

or T = 4 symmetry of the capsids, the core protein dimers would

exceed the number of Nup153 molecules per NPC by a factor of

.10. Supernumerous subunits could diffuse into the karyoplasm

where they reassemble [59]. Our nuclear import assays with cross

linked capsids confirmed this hypothesis showing that disassembly

is a prerequisite for intranuclear capsid formation. These data are

also consistent with recent observations that nuclear entry of

capsid and genome is independent upon RanGTP [19], as a

dissociation of the import receptors is not required.

In order to analyze the functional effects of capsid binding to

Nup153 in situ we measured nuclear import via the importin b
pathway. Our observation that the NLS-BSA import was impaired

to a much greater degree than M9-BSA translocation provides

evidence for the concept that transport inhibition was specific by

blocking importin b binding sites and was not the result of steric

interference. The strong inhibition of the importin b pathway is in

accordance with observations of Walther et al. [43] who reported

that Nup153 is essential for nuclear entry via importin b but not

via transportin. In fact our approach of inhibiting Nup153

function with capsids allows for the first time the confirmation of

these data without interfering with the NPC architecture, i.e.

Nup50 translocation or Tpr depletion [5,7].

Based on our observations we propose a model of nuclear entry

for the HBV genome, which strikingly differs from that for any

other virus. According to previous data we postulate that the viral

genome is transported within the capsid via microtubules to the

nuclear periphery [23]. This assumption does not exclude that the

capsids undergo a limited disintegration and re-association of some

capsid subunits. Such capsid ‘‘breathing’’ is in accordance with in

vitro findings [60,61] and can explain the observation of

polymerase-free hepadnaviral DNA genomes [62], which are

nonetheless precipitable by anti capsid antibodies [63]. After

binding to importin a/b the capsids are transported into the

nuclear basket (Fig. 9). This transport requires the DNA minus

strand synthesis which is linked to NLS exposure by some core

subunits [19]. The import complex binds to Nup153 via importin

Figure 9. Schematic model of intranuclear basket events leading to genome release from the hepatitis B virus capsid. A. Capsids in
complex with the nuclear transport receptors Import a and b attach to the nuclear pore. B. The complex passes the nuclear pore and becomes
arrested by interaction between importin b and Nup153. C. RanGTP dissociates the nuclear transport receptors from the capsid and recycles them
into the cytoplasm. D. After removal of the nuclear transport receptors Nup153 interact directly with the capsid. Immature Capsids remain in the
arrested statebut eventually undergo further maturation. E. Mature capsids disintegrate. F. Capsid subunits, which are supernumerous to the Nup153
copies, diffuse into the nucleus. The polymerase-viral DNA complex leaves the basket. The central framework of the NPC is shown as black spheres,
Nup153 as red boxes, Import a and b complex as green ellipse. The capsids are depicted as hexagons, containing the rcDNA genome (black circles)
and the polymerase (grey sphere).
doi:10.1371/journal.ppat.1000741.g009
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b, followed by importin a and importin b dissociation, which is

mediated by RanGTP. Due to their affinity to Nup153 capsids

interact directly with Nup153. While Mat-C disintegrates, Immat-

C remain in the arrested state. In vivo these arrested capsids should

not interfere with the viability of the hepatocytes [64] as thousands

of capsids would be necessary to significantly block the nuclear

pores. In fact, only high level expression of capsids in cell lines

causes toxic effects [65]. It is plausible to assume that genome

maturation can proceed in Immat-C but experimental evidence is

difficult to obtain as genome maturation is slow. At the beginning

of infection, when significant amounts of surface proteins have not

yet been synthesized, ongoing genome maturation after arrest

prevents premature release of the genome into the nucleus. Due to

the dependence of the second strand DNA synthesis on the

environment within the capsids [66], premature release of minus

strand DNA would lead to a loss of viable virus. Thus, the

maturation dependent arrest of HBV capsids is probably an

essential step in the life cycle of the virus.

Materials and Methods

Preparation of nuclear proteins
Nuclear proteins were prepared from rat liver nuclei using urea

[67] followed by protein refolding during dialysis. Eight gram of

rat liver were minced in 16 ml of ice-cold 250 mM sucrose in

TKM buffer (50 mM Tris-HCl, pH 7.5, 25 mM KCl, 5 mM

MgCl2, protease inhibitor mix (complete) (Roche)). All subsequent

preparations were performed on ice. The tissue was homogenized

using a motor-driven Teflon pestle with 10 strokes at 1700 rpm.

The homogenate was filtered through two layers of a filter (59 mm

mesh). Three ml of homogenate were mixed with 6 ml 2.3 M

sucrose/TKM buffer and loaded on a 1 ml cushion of 2.3 M

sucrose/TKM buffer. After centrifugation for 30 minutes at

124,0006g at 4uC, the pellet was resuspended in 200 ml TKM

buffer. The resuspended nuclei were treated with 4 ml 8 M urea

for 1 h at 65uC and subjected to dialysis at 4uC against 1.5 l

16PBS/2 mM DTT) for 48 h. During the dialysis the buffer was

changed four times. The protein concentration was determined by

bicinchonic acid (BCA) assay. The nuclear proteins were frozen in

liquid nitrogen and stored in aliquots at 280uC. This lysate did

not contain detectable amounts of importin b, presumably

excluding interference of importin b with capsid binding (not

shown).

Expression and purification of GST-Nup153 and Nup153
fragments

GST-Nup153 was expressed using the vector pGEX 2T-

hNup153, which encodes for human wt Nup153 [43]. Expression

was performed in E. coli BL21 CodonPlus RIPL (STRATA-

GENE). Bacteria were grown at 37uC in 26YT-medium/100 mg/

ml ampicillin/30 mg/ml chloramphenicol/ 0.2% glucose to an

OD600 of 1.0 and cooled to 18uC prior to induction of the

expression by 1 mM IPTG and incubation for 16 h at 18uC.

PMSF was added to 2 mM and the bacteria were chilled for

15 min at 4uC followed by sedimentation at 4000 g for 15 min at

4uC. The pellet was resuspended in PBS/1 mM DTT/16EDTA-

free complete protease inhibitors (Roche Applied science). Bacteria

were lysed by sonification on ice. The lysate was cleared 30 min

150006g at 4uC. One milliliter equilibrated GST-Sepharose High

Performance (GE-Healthcare) was added to the supernatant and

incubated for 1 h at RT followed by o.n. incubation at 4uC. The

solution was transferred to a polypropylene column (BIO-RAD).

The matrix containing the GST-Nup153 was washed with 30 ml

binding-/washing buffer. GST-Nup153 was eluted using 5 ml

20 mM Glutathione/200 mM NaCl/50 mM Tris (pH 7.5)/

1 mM DTT/16EDTA-free complete protease inhibitors. The

eluate was dialyzed against 200 mM NaCl/50 mM Tris-HCl

pH 7.5/50% Glycerol/250 mM Sucrose/1 mM DTT for 24 h at

4uC. The buffer was changed three times. GST-Nup153 was

stored in aliquots at 280uC.

The N terminal human Nup153 fragment was expressed using

the vector pGEX-153N (53–272), the zinc finger domain using the

vector pGEX-153Z (272–543) and the N terminal half of the C

terminus using the vector pGEX-153C1 (618–999). Expression

was performed using E. coli BL21 (DE3)Lys using the protocol of

[68] Bacteria were grown in NZy (rich) medium and expression

was performed for 3 h at 37uC. The sedimented bacteria were

lysed as described above. Purification was performed as described

above.

The C terminal half of the C terminus (aa 992–1219) was

expressed as a His-tagged protein using the vector pET28-153C2

[68]. The His-tagged fragment was expressed by using E. coli BL21

(DE3)Lys in LB/Kanamycin medium. Bacteria were lysed as

described above. The precleared lysate was purified by Ni++

agarose (Quiagen) using the protocol of the vendor. After elusion,

the His-tagged Nup fragment was renatured by dialysis (1 h

against 1 M urea, 0.2 M NaCl, 0.1 M NaH2PO4 pH 7.6, 0.5 mM

PMSF, 1 h dialysis against 0.2 M urea, 0.2 M NaCl, 0.1 M

NaH2PO4 pH 7.6, 0.5 mM PMSF, 1 h dialysis against 0.2 M

NaCl, 0.1 M NaH2PO4 pH 7.6, 0.5 mM PMSF and 1 h against

0.2 M NaCl, 0.1 M NaH2PO4 pH 7.6).

Preparation of capsids
P-rC was generated by in vitro phosphorylation of E. coli-derived

capsids using protein kinase C and [c32P] ATP to determine the

success of the reaction [69]. E. coli-derived capsids were expressed

and prepared as described previously [20]. Quantification of

capsids was done by immune blotting of the capsids after native

agarose gel electrophoresis [18]. Preparation of Mat-C from

virions from the permanently virion-expressing hepatoma cell line

HepG2.2.15 [70] was done according to Rabe et al. [19]. This cell

line expresses infectious HBV [70]. Immat-C was purified from

the same cell line using the following protocol. Ten 16 cm dishes

of HepG2.2.15 cells were grown in DMEM medium, containing

10% FCS until 80% confluence. The medium was replaced by

DMEM/1% FCS and cells were grown for an additional 4 days.

Cells were washed twice in PBS, harvested by a rubber policeman

and sedimented for 5 min at 2006g and 4uC. Cells were

resuspended in 0.1% Nonidet P-40/PBS and sonified on ice.

Cellular nucleic acids were digested by addition of 20 U/ml

DNase I/20 mg/ml RNase A in 15 mM MgCl2 for 15 min at

37uC. This short incubation was chosen as capsid instability may

allow entry of nucleases upon longer incubation periods [60,61].

The lysate was centrifuged for 20 min at 10,0006g. The

supernatant was adjusted to 0.75% Nonidet P-40/5 mM CaCl2/

20 U/ml S7-Nuklease and incubated for further 15 min at 37uC
before EDTA was added to 15 mM. The lysate was centrifuged

for 10 min at 4uC and 18,000 g. The capsids in the supernatant

were loaded on a 1 ml 25% (w/v) sucrose cushion and sedimented

for 2 h at 10uC and 50,000 rpm in an SW60 rotor (Beckman). The

sediment was resuspended in 500 ml PBS, centrifuged 5 min at

4uC and 12,5006g. The capsid-containing supernatant was

adjusted to 2 mM DTT in order to prevent disulfide bond

formation and stored in aliquots at 280uC.

UV-cross linking of mature HBV capsids (Mat-C UV)
Mat-C were labeled by [c32P] ATP as described elsewhere [69].

Labeled capsids were exposed 668 min to 254 nm UV light on ice
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(Stratagene UV Stratalinker; 1 cm distance to the UV source,

,4000 mW/cm2). Samples withdrawn before and after cross-

linking were analyzed by SDS-PAGE with a subsequent exposure

to a phosphoimaging screen. Evaluation of a possible inter-capsid

cross-link was done by native agarose gel electrophoresis and

subsequent immune detection [18].

Immune precipitation and detection of co-precipitated
proteins

For immune precipitation 1.26107 anti-rabbit antibody-coated

biomagnetic beads (Invitrogen) were added to 185 mg anti-HBV

capsid antibody (DAKO). The volume was adjusted to 1000 ml by

addition of 0.1% BSA/PBS and incubated overnight at 4uC on a

rotating wheel. Unbound antibodies were removed by washing

the beads three times in 0.1% BSA/PBS. For inverse immune

precipitation, 12.5 mg mouse monoclonal antibody 414 (mAb414,

HISS) were bound to 1.26107 anti-mouse antibody-coated bio-

magnetic beads as described for the anti-capsid antibody.

For co-immune precipitations of the nucleoporins 100 ng of

HBV capsids were preincubated with 75 mg nuclear proteins for

2 h at 37uC in transport buffer (20 mM Hepes, pH 7.3, 2 mM

MgAc, 110 mM KAc, 5 mM NaAc, 1 mM EGTA, 2 mM DTT,

protease inhibitor mix (complete) (Roche)) in a final volume of

250 ml. The precipitation mixture was incubated with constant

shaking at 37uC overnight. Afterwards the beads were washed

three times in 500 ml 0.1% BSA/PBS, 16500 ml 0.1% Nonidet P-

40/PBS, and transferred into a new cup. After three additional

washing steps with 500 ml PBS, the pellet was resuspended in 20 ml

16 loading buffer (Anamed), denatured for 10 min according to

the vendor and loaded on the SDS gels. (Invitrogen and Anamed).

For detection of total proteins that were co-precipitated Sypro Red

staining was performed according the manufacturer.

For immune detection the proteins on the gel were transferred

to a PVDF membrane (VWR International) by electroblotting.

The membrane was blocked for 1 h at RT in 5% fat-free milk

powder in PBS. For detection of co-precipitated nucleoporins the

first antibody (mAb414, HISS) was added at a dilution of 1:3000 in

5% fat-free milk/PBS for 3 h at RT. After washing three times in

0.1% Tween-20/0.5% milk/PBS the membrane was incubated

for 1 h with a horse radish peroxidase anti-mouse antibody

(0.16 mg/ml; Dianova). Detection was performed by ECL

(PerkinElmer).

Co-immune precipitations of Nup153 fragments and gel
retardation assay

5 ng P-rC and 75 mg Nup153 fragments were incubated in

transport buffer (20 mM HEPES pH 7.3/2 mM Mg acetate/

5 mM Na acetate/110 mM K acetate/1 mM EGTA/2 mM

DTT/ protease inhibitor [complete, Roche]) for 2 h at 37uC.

1.26107 anti-GST antibody (MoBiTec)-coated biomagnetic beads

(Dynal) were added and incubated over night at 4uC.

The beads were washed 36with transport buffer including one

change of the cups. The beads were incubated for 1 min in PBS/

0.1% NP-40, sedimented and washed 46 with PBS. The

precipitated proteins were then separated on SDS PAGE and

blotted to a PVDF membrane, which was saturated using 5%

(w/v) milk powder/16PBS prior to the addition of the first

antibody (anti-GST antibodies, 1:500, 2 h, RT). The membrane

was washed 3610 min in 16PBS/0.1% Tween 20/0.5% milk

powder and incubated with a peroxidase-labeled anti-rabbit

antibody (1:5000, 1 h, RT). The membrane was washed as

described above, followed by an additional 15 min incubation in

16PBS at RT prior to the visualization by film using ECL.

In gel retardation assays the incubation mixture of capsids and

Nup153 fragments were separated on 0.7% agarose/TAE gels and

blotted onto PVDF membranes by capillary blotting [71]. Nup-

fragments were detected by anti-GST antibodies or and anti-His

antibodies (dilution 1:3000) as described above, HBV capsids were

detected by anti-capsid antibodies (DAKO, 1:10,000).

Competition assays
Two hundred ng P-rC were incubated with 200 ng of GST-

Nup153 and different concentrations of importin b for 2 h at 37uC
in transport buffer. At the lowest concentration of importin b the

ratio was 1 capsid : 28 GST-Nup153 : 33 importin b molecules.

The capsids were precipitated by the addition of 1.26107 anti

capsid antibody-saturated biomagnetic beads o.n. at 37uC. The

beads were washed 36with 0.1% BSA/PBS and once with 0.1%

Nonidet P-40/PBS. The beads were transferred to a new cup and

washed again 36with PBS before the proteins were separated on

a 3–8% SDS PAGE (Tris acetate gel). Co-precipitated GST-

Nup153 was detected by Western blot using mAb414 as described

above.

Alternatively 200 ng of capsids were bound to 1.26107 anti

capsid antibody-saturated biomagnetic beads o.n. at 37uC
followed by an incubation with 200 ng GST-Nup153 in transport

buffer for 2 h at 37uC. After washing, varying amounts of importin

b were added for 2 h at 37uC. The beads were then washed as

described above and subjected to SDS PAGE and immune blot

using mAb414.

Microinjection into Xenopus laevis oocytes and electron
microscopy

The cytosolic microinjection, preparation of the nuclei and

electron microscopy are described elsewhere [72]. Six Xenopus laevis

oocytes were used per sample. Per oocyte 16107 Mat-C or Mat-C

UV were microinjected. P-rC, available in much higher

concentrations than Mat-C, was microinjected in 26108 particles

per oocyte. For quantification the number of NPC with and

without capsids as well as their location at the pore were recorded

in 50 nm sections.

Nup153 silencing
HeLa cells were transfected with small interfering RNA (siRNA)

(Dharmacon) against Nup153 at a final concentration of 10 nM

using lipofectamine RNAiMAX (Invitrogen) according to the

manufacture’s instructions. The sequence used corresponded to

nucleotide 2593–2615 of human Nup153 (AAGGCAGACU-

CUACCAAAUGUTT), which has been previously shown to

accomplish efficient knock down of Nup153 in HeLa cells [10].

Expression of Nup153 was assessed by labeling Nup153 with a

monoclonal antibody, SA1 [73]. Cells were analyzed by Western

blot and used to assay nuclear import of P-rC two days post

transfection. For control, mock transfection of cells without siRNA

was performed. Visualization was performed using enhanced

chemoluminescence and autoradiography films at different

exposure times. The siRNA transfected cells were then used for

transport assays after digitonin-permeabilization.

In vitro transport and binding assays
To determine the nuclear import capacity, 25 ng of Mat-C or

Mat-C UV were subjected to digitonin-permeabilized HuH-7 cells

that were grown on 12 mm collagen-coated cover slips. Growth,

permeabilization of the cells and indirect immune stain was

described previously [19]. To allow comparison of the results the

antibodies were the same as those used for the co-immune
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precipitations (anti-capsid [DAKO], mAb414). As secondary

antibodies an Alexa488-labelled goat-anti-rabbit antibody (Invi-

trogen) and a Texas Red-labeled goat-anti-mouse antibody were

added (Dianova). Microscopy was performed on a Leica DM

IRBE confocal laser scan microscope using the filter settings for

FITC, TRITC and Cy5 at a pinhole size of 1.

To study the effect of Nup153 capsid-interaction on the nuclear

import of other substrates an in vitro transport assay was performed

using a modified protocol of Kann et al. [18] In a first step after

permeabilization and washing the NPCs were loaded with a

geometrical dilution of P-rC (0, 25–12800 ng per 12 mm cover

slip) for 30 min at 37uC in the presence of RRL, ATP and an

ATP-generating system. Afterwards the cover slips were washed 3

times with 500 ml transport buffer/16EDTA-free complete

protease inhibitors/2 mM DTT to remove unbound capsids. In

the last wash less than 3 pg of unbound P-rC were present

(,300 pg per 0.5 ml washing solution of the last washing step,

,5 ml remaining fluid estimated).

The conjugates (50 mg/ml) to be analyzed were added in a

second transport reaction with new RRL, ATP and an ATP-

generating system for 15 min at 37uC. For analysis of importin-

mediated transport we used Alexa594-labelled BSA (Invitrogen)

linked to the peptide PKKKRKVED that represents the NLS of

the SV40T-Ag [74]. The import by transportin was analyzed

using Alexa647-labelled BSA conjugated to the M9-domain of

hnRNP A1 protein (YNNQSSNFGPMK) [75]. Both peptides

were linked via a CGGG spacer to the BSA. Analysis of the

conjugates by MALDI-TOF MS revealed a comparable conjuga-

tion of an average of 19 peptides per BSA molecule. Non-imported

conjugates were removed by 3 washes in 500 ml transport buffer.

Fixation, blocking reaction and immune stains of NPCs and

capsids were done as described previously [18] using the mAB414

antibody or the anti-capsid antibody respectively. As second

antibodies we used Alexa532-anti-rabbit and Alexa568-anti-mouse

antibodies. Confocal laser scan microscopy was done using the

TCS SP5 microscope (Leica) equipped with a HCX PLAPO 636/

1.4-0,6 Oil objective (Leica). Images were taken at a zoom of 2

with a size depicting ,70 mm pinhole size.

Quantification of nuclear import
The intranuclear area, flanked by the rim-like stain of the NPCs

or P-rC stain was selected and the fluorescence signals of the

imported cargos were determined (software LAS AF version 2.1.0).

Calculations were done using Microsoft Excel. Although showing

a large linear range absolute fluorophore numbers can be hardly

obtained by fluorescence microscopy as the signal depends upon

e.g. recording efficiency, filter setting, lens and amplification of the

individual dye. To normalize the signals mean values of the

positive import reactions were set as 100%. The mean values of

nuclei recorded in the negative control at 4uC were set as 0%

being only marginally above the background outside the

permeabilized cells. Since the evaluated parameters (total nuclear

import, concentration and cell size) showed a Gaussian normal

distribution within each sample a comparison of the signals was

done by Students’ T-test.

Quantification of nuclear binding of P-rC
HuH-7 cells (,16106 cells) from confluent grown 10 cm dish

were treated with trypsin, removed by pipetting in 15 ml D-MEM

and sedimented at 4uC for 10 min at 2006g. The cells were

resuspended in D-MEM and sedimented as described above. This

step was repeated before the cells were resuspended in 5.5 ml D-

MEM/40 mg/ml digitonin. After 5 min at 37uC permeabilization

was controlled by microscopy of an aliquot. Cells were sedimented

in aliquots that reflect the number of cells per cover slip in

transport assays and resuspended in 0.5 ml transport buffer/

2 mM DTT/PI. This sedimentation and resuspension was

repeated twice. The permeabilized cells were resuspended in the

transport mixture identical to that in the transport assays using

cover slips containing different amounts of P-rC and incubated for

30 min at 37uC. After three washing steps by sedimentation and

resuspension in transport buffer/2 mM DTT/16EDTA-free

complete protease inhibitors as above the permeabilized cells in

an aliquot were counted. The amount of P-rC was determined as

described above by native agarose gel electrophoresis and immune

blotting.

Quantification of NPCs
NPCs were quantified by comparing the amount of cellular

Nup153 from digitonin-permeabilized cells with a standard

dilution series of E. coli-expressed Nup153. Cells were grown

and harvested and permeabilized as described for ‘‘Quantification

of nuclear binding of P-rC’’. Aliquots containing the same number

of cells were denaturated and loaded on an 8% Tris-Glycin SDS

PAGE (Anamed). Proteins were transferred onto a PVDF

membrane and Nup153 was detected by mAb414 as described

above.

Supporting Information

Video S1 Capsid stain in HeLa cells transfected with mock-

RNAi. Scan through the nuclei. The transfected cells were

permeabilized using digitonin and incubated with P-rC in the

presence of cytosolic proteins. The capsids were visualized by

indirect immune fluorescence (green). The figure video demon-

strates that all capsids remained bound to the nuclear envelope

and did not enter the nucleus.

Found at: doi:10.1371/journal.ppat.1000741.s001 (7.96 MB AVI)

Video S2 Nup153 stain in same HeLa cells depicted in Video

S1. Scan through the nuclei. The transfected cells were

permeabilized using digitonin and incubated with P-rC in the

presence of cytosolic proteins. Nup153 was visualized by indirect

immune fluorescence (red).

Found at: doi:10.1371/journal.ppat.1000741.s002 (7.96 MB AVI)

Video S3 Capsid stain in HeLa cells transfected with Nup153-

RNAi. Scan through the nuclei. The transfected cells were

permeabilized using digitonin and incubated with P-rC in the

presence of cytosolic proteins. The capsids were visualized by

indirect immune fluorescence (green). The video shows that a

significant proportion of capsids (green) entered the nucleoplasm

but that the majority of capsids were retained at the nuclear

envelope.

Found at: doi:10.1371/journal.ppat.1000741.s003 (8.12 MB AVI)

Video S4 Nup153 stain in same HeLa cells depicted in Video

S3. Scan through the nuclei. The transfected cells were

permeabilized using digitonin and incubated with P-rC in the

presence of cytosolic proteins. Nup153 was visualized by indirect

immune fluorescence (red). The video shows that the nuclei

showed a significantly weaker Nup153 signal than the mock-RNAi

transfected nuclei.

Found at: doi:10.1371/journal.ppat.1000741.s004 (8.12 MB AVI)
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