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ABSTRACT: Chagas disease is a parasitosis caused by Trypano-
soma cruzi. Cruzain, the major cysteine protease from T. cruzi, is an
excellent therapeutic target in the search for antichagasic drugs. It is
important in the role of cell invasion, replication, differentiation,
and metabolism of the parasite. In this work, we developed and
assessed multiple quantitative structure-activity relationship
(QSAR) models for a set of 61 cruzain inhibitors. These models
include two-dimensional (2D) QSAR, three-dimensional (3D)
QSAR, such as comparative molecular field analysis (CoMFA) and
comparative molecular similarity indices analysis (CoMSIA), and
Hologram QSAR (HQSAR). In total, we generated 10 major and
114 minor model variations. Molecular docking was used to
successfully align the molecules. All CoMFA and CoMSIA models, which incorporate multiple fields, demonstrated robustness in
our analysis. Steric fields exhibited satisfactory convergence in the contour maps, while the electrostatic field converged into a single
small region. The HQSAR model taking into consideration only Atoms and Connectivity, with fragment sizes ranging from two to
five atoms, was considered the best of the HQSAR variations, despite exhibiting a higher level of deviance. In total, 78 model
variations meet the minimum requirements to be considered acceptable. We found that using as few as five descriptors it is possible
to obtain robust results with 2D-QSAR. Models such as Random Forest, Tree Ensemble, Linear Regression, and HQSAR are
recommended for working with large data sets, while the 3D-QSAR models are intended to study the geometry of the ligands, to
optimize them into new and better performing antichagasics. Virtual Screening of a set of hydrazones, guided by the top-performing
models, identified promising candidates for experimental validation. Among them, dv007 and dv015 exhibited consistently high
predicted pIC50 values (7.26 and 7.24, respectively), making them compelling candidates for further drug development.

1. INTRODUCTION
Chagas disease is a parasitic disease caused by Trypanosoma
cruzi and one of the most prevalent neglected tropical diseases in
Brazil. Endemic in 21 Latin American countries, it currently
affects approximately six to seven million people worldwide,
with an annual incidence of 30,000 new cases, and results in an
average of 14,000 deaths per year and 8000 newborns infected
during pregnancy. It is estimated that around 70 million people
live in areas of exposure and are at risk of contracting the
disease.1

There are only two drugs available (benznidazole and
nifurtimox), both of which have serious adverse effects. The
low efficacy of these drugs has worsened cases of resistance,
leading to great concern and highlighting the need for the
development of new chemotherapeutic agents.2

The selection of therapeutic targets is one of the key aspects of
drug discovery in biochemical, selective, and safe processes. In
this sense, cruzain, the main cysteine protease of T. cruzi, is
essential in all evolutionary stages of the parasite, presenting
itself as an interesting target in the search for new antichagasic
agents. Another important point is that this enzyme is not found

in humans, indicating selectivity and a reduced incidence of
adverse effects.3

Several chemical classes have already been studied for their
ability to inhibit cruzain, such as vinyl sulfones, triazoles,
pyrimidines, thiosemicarbazones, chalcones, nitroalkenes, cyclic
imides, and benzimidazoles.4−9

Prior research has investigated covalent inhibitors, including
K777 (a vinyl sulfone derivative), and found that the irreversible
binding of the ligand to the enzyme contributed to its high
toxicity. Thus, most recent studies focus on the development of
reversible inhibitors.4

Drug discovery benefits from an array of computational
techniques. Molecular docking, one of those techniques, is a
well-established and widely used method for drug design. It is
capable of performing several tasks, such as molecular alignment,
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and this can be helpful to other tools, like the quantitative
structure-activity relationship (QSAR), which has been used for
decades to obtain robust statistical models that, as the name
suggests, establish the relationship between the physicochemical
properties of molecules and their biological activity to predict
the behavior of new molecules. The fundamental principle is
that the structural properties of molecules are reflected in their
biological behavior.10,11

Thus, with current computational tools, it is possible to obtain
drug candidates rationally, being faster and cheaper than
experimental trials. The objective of this work is to develop
reliable and convergent QSAR models for predicting novel
cruzain inhibitors.12

2. MATERIALS AND METHODS
2.1. Data Set. The data set of cruzain inhibitors was obtained

from articles within the literature. Compounds were chosen with
the biological activities experimentally obtained by the same
methodology to maintain uniformity through the data, later
being organized in a table, having the structural information in
simplified molecular input line entry system (SMILES) format,

with their respective IC50 (which is the concentration of the
compound that inhibits 50% of the biological activity), being
converted to the logarithmic scale (pIC50).

Three series of compounds from the same research group
(Laboratory of Molecular Modeling and Drug Design) were
selected. The first is composed of 33 molecules, mostly from
cyclic imide class;4 the second consists of 37 molecules derived
from carbamoyl imidazoles;13 and the third consists of 17
molecules derived primarily from triazine nitriles,14 totaling 87
molecules with inhibitory activity for cruzain.

The activity of the compounds was measured by fluorescence
spectroscopy under identical conditions. Of those, 61
compounds had IC50 data, which were used in the QSAR
studies (Charts 1−3).

2.2. 2D-QSAR. After building the data set composed of
cruzain inhibitors, molecular structures were converted from
SMILES into 2D using the free tool “Online SMILES
Translator” from computer-aided drug design (CADD)
(Chemical Biology Laboratory (CBL), NCI, NIH, University
of Erlangen-Nuremberg, Germany), available on https://cactus.
nci.nih.gov/translate/.15 Those molecules were submitted to the
Padel-Descriptor software, which calculated 1444 one-dimen-

Chart 1. First Set Is Composed Mostly of Cyclic Imides and Their Biological Activity (IC50)
4
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sional (1D) and 2D descriptors for each molecule in the data
set.16,17

KNIME 4.7.1 (University of Konstanz, Zurich, Switzerland)18

software was used for data organization, automatic/manual
filtering of descriptors and molecules, generating seven different
regression models, with internal validation by leave-one-out
(LOO) and preliminary data analysis. Approximately, 80% of
the data set was used as the training set (random selection, using
“1995” as seed) and 20% for the test set (external validation). Y-
scrambling was performed, with 100 variations for each model,
generating values of YS (Y-scrambling) R2 and YS Q2. The
detailed workflow and data sets can be found in the following
GitHub Repository: https://github.com/Rafael-Bello-
Goncalves/Convergent-QSAR-models-for-the-prediction-of-
cruzain-inhibitors.

We conducted a preliminary virtual screening of a set of
hydrazones to evaluate the potential of molecules that have not
yet undergone experimental validation.

2.3. Docking. Molecular docking was performed to align the
compounds in the active site of the protein. The model was
validated by redocking the cocrystallized ligand. Structures of
the compounds were converted from SMILES to 3D using the
Online SMILES Translator.15

Gaussian 09 (Gaussian, Inc., Wallingford, CT, USA)19

software was used for molecular optimization through the
Semi-Empirical theory, with the PM6 method. Once the
molecules achieved their lowest energy conformations, docking
procedures were performed with GOLD software (GOLD,

v2020 3.0, Cambridge Crystallographic Data Centre, Cam-
bridge, UK).30

Crystals of cruzain 1ME4, with a resolution of 1.2 Å, bound to
the inhibitor [1-(1-benzyl-3-hydroxy-2-oxo-propylarbamoyl)-2-
phenyl-ethyl]-carbamic acid benzyl ester (T10)20 and 3KKU,
with a resolution of 1.28 Å, linked to the inhibitor N-[2-(1H-
benzimidazole-2-yl)ethyl]-2-(2-bromophenoxy)acetamide
(B95)21 were used in studies of docking.

Both structures were prepared by removing ligands, water
molecules, and other solvents and also removing the double
conformations of amino acids. It was ensured that residue Cys25
was deprotonated, and His162 (in 3KKU) and His159 (in 1ME4)
residues were fully protonated.

The ligand was treated as flexible, that is, with freedom for all
rotatable connections, allowing a greater variety of poses and
seeking the most adequate fit in the active site, while the enzyme
was considered rigid. The active site was defined as the center of
the sulfur atom of Cys25 for both structures, with a spacing of 10
Å in the three axes (X, Y, and Z) for the grid used in the
calculations.

The ranking algorithm (score) used was ChemPLP, with
ChemScore as rescore. Early termination was not allowed;
therefore, the algorithm continues looking for better alternatives
even after reaching an acceptable result. The selected search
efficiency was 200%. Other configurations were kept at default
values. These procedures were performed ten times for each
compound, generating ten poses and choosing the best of three.

Chart 2. Second Set Is Composed Mostly of Carbamoyl Imidazoles and Their Biological Activity (IC50)
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Each compound was evaluated using the top three solutions
with the lowest RMSDs, and the alignment analysis was
performed using UCSF ChimeraX 1.3 (Resource for Bio-
computing, Visualization, and Informatics, University of
California, San Francisco, USA)22,23 software. The best
conformation among the three possible solutions for each
compound was manually selected based on the overlap with the
original crystallized ligand structure.

2.4. 3D-QSAR. The 3D-QSAR studies were performed in
SYBYL-X 2.1 (Certara Inc., Princeton, NJ, USA) and also in the
python implementation of CoMFA (Py-CoMFA) available on
the www.3d-qsar.com platform.24−26

For both, the preparation was the same: compounds already
aligned by the docking process were loaded into the training and
test sets (the same sets used in the 2D-QSAR study, so it is
possible to compare different models). The formal charges were
corrected, and experimental data were manually added to the
platforms.

2.4.1. SYBYL (CoMFA and CoMSIA). The QSAR module of
the SYBYL platform was used to select these data sets, starting
with the training set, selecting the descriptor “comparative
molecular field analysis (CoMFA)”, considering both steric and
electrostatic fields, with max/min energy cutoffs of 30 kcal/mol
for each, with a smooth transition. Atomic charges were charged
with Gasteiger, creating a model with pIC50 as the dependent
variable and PLS analysis method in automatic mode, to choose
the optimum number of principal components (up to six), and
the validation of choice was LOO. The scaling was the CoMFA
Standard. The probe atom was C.3, with a +1 charge. Thus, the
values of CoMFA, Q2

LOO, and R2 were obtained. Then, the test

set (external) was selected to perform the prediction using the
previous model, obtaining the R2 test value.

The same procedure was performed for CoMSIA, with the
only difference being the descriptor (CoMSIA instead of
CoMFA), considering the Steric, Electrostatic, Hydrophobic,
Donor, and Acceptor Fields, with an attenuation factor of 0.3.
Contour maps indicating the contributions of each field were
generated for the best models of both CoMFA and CoMSIA.
They were analyzed in SYBYL itself.

For both 3D models, we performed a y-scrambling stability
test using the manual PLS option and selecting “Scrambling
Stability Test”; as for the calculation parameters, we used the
optimal number of principal components (after the automatic
PLS results) of each model (CoMFA or CoMSIA). We
performed 10 scramblings for each binning level with the
maximum number of bins set to 10 and the minimum number of
bins set to 2. The critical point was 0.85, and the seed was 1995.
This generated 91 reports of YS R2, YSQLOO

2, and YS SDEP that
were analyzed in MS Excel.

2.4.2. Py-CoMFA. The Py-CoMFA application was used to
build the CoMFA model. Similar to SYBYL, the Probe Atom was
also C3.3, with a +1 charge. The dielectric Constant was eight,
Molecular Interaction Field set to BOTH (evaluates both Steric
and Electrostatic fields), a maximum number of principal
components of eight, grid spacing of two, grid extension of five,
max/min energy cutoffs 30 kcal/mol, minimum sigma of two,
cross-validation in LOO, using compute unified device
architecture (CUDA) to calculate the grid, and the option of
applying the model to test set molecules set to True.

Chart 3. Third Set Is ComposedMostly of TriazineNitriles Biological and Their Biological Activity (IC50); Due to Their Elevated
Potency, They Are Being Represented on the Nanomolar Scale, Instead of the Micromolar like the Previous Sets14
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Variable pretreatment optimization was used to generate
multiple models with different Charge Models, including

Gasteiger, so it is possible to compare it to the SYBYL model
and also analyze the best model generated by this platform,

Figure 1. Histogram showing the distribution among the experimental data of the data set selected for the study.

Table 1. All Models Generated with the Full Data Set Using 61 Moleculesa

model descriptors R2 R2 test
Q2

LOO s YS R2 YS Q2 YS R2 50% YS Q2 50% YS R2 99% YS Q2 99%

Random Forest a 1089 0.969 0.828 0.790 1.137 0.830 −0.179 0.831 −0.188 0.872 0.076
112 0.978 0.785 0.798 1.125 0.833 −0.153 0.832 −0.162 0.882 0.093
12 0.962 0.708 0.548 1.032 0.832 −0.160 0.829 −0.175 0.874 0.114
5 0.948 0.782 0.365 1.110 0.827 −0.209 0.828 −0.213 0.869 0.122
2 0.945 0.551 0.629 1.066 0.818 −0.250 0.820 −0.247 0.864 0.011

Tree Ensemble a 1089 0.965 0.853 0.789 1.148 0.842 −0.184 0.842 −0.195 0.881 0.143
112 0.979 0.817 0.801 1.121 0.846 −0.165 0.847 −0.166 0.879 0.152
12 0.966 0.710 0.581 1.025 0.843 −0.170 0.842 −0.184 0.884 0.080
5 0.952 0.735 0.327 1.140 0.838 −0.218 0.838 −0.220 0.880 0.115
2 0.951 0.600 0.615 1.082 0.829 −0.262 0.827 −0.270 0.873 0.056

Simple Regression a 1089 0.968 0.612 0.650 1.148 1.000 −1.167 1.000 −1.127 1.000 −0.281
112 1.000 0.690 0.764 1.221 1.000 −1.185 1.000 −1.177 1.000 −0.442
12 0.993 0.143 0.453 1.452 1.000 −1.089 1.000 −1.073 1.000 −0.216
5 0.911 0.529 0.110 1.294 1.000 −1.168 1.000 −1.104 1.000 −0.231
2 0.948 0.197 0.524 1.163 1.000 −1.015 1.000 −0.991 1.000 −0.180

Gradient-Boosted Trees a 1089 0.990 0.779 0.727 1.237 1.000 −0.517 1.000 −0.545 1.000 0.070
112 1.000 0.596 0.795 1.241 1.000 −0.504 1.000 −0.462 1.000 0.009
12 0.999 0.072 0.529 1.359 0.996 −0.467 0.999 −0.496 1.000 0.087
5 0.981 0.554 0.219 1.213 0.997 −0.597 0.999 −0.609 1.000 −0.083
2 0.948 0.447 0.584 1.138 0.990 −0.632 0.993 −0.602 0.999 −0.023

XGBoost a 1089 0.915 0.523 0.406 1.317 1.000 −2.965 1.000 −2.766 1.000 −0.916
112 0.977 0.284 0.422 1.555 0.917 −3.401 0.926 −3.201 0.981 −0.746
12 0.543 0.665 0.199 1.162 0.234 −0.458 0.226 −0.464 0.468 0.052
5 0.309 0.392 0.183 1.096 0.066 −0.124 0.051 −0.136 0.221 0.061
2 0.519 0.474 0.456 0.926 0.010 −0.049 0.003 −0.056 0.136 0.078

Linear Regression a 1089
112
12 0.542 0.647 0.175 1.165 0.253 −0.540 0.241 −0.551 0.491 0.009
5 0.309 0.394 0.172 1.096 0.099 −0.184 0.084 −0.191 0.266 0.039
2 0.727 0.726 0.680 1.201 0.043 −0.090 0.025 −0.102 0.210 0.102

Polynomial Regression a 1089
112
12 0.708 0.522 0.017 1.255 0.491 −1.6 × 1030 0.479 −7 × 1029 0.694 −1.5 × 1028

5 0.431 0.409 0.173 1.182 0.201 −1.043 0.183 −0.724 0.428 −0.069
2 0.689 0.685 0.604 1.166 0.083 −0.202 0.070 −0.174 0.271 0.072

aThe optimal number of descriptors is highlighted for each model. d = number of descriptors; R2 = noncross-validated correlation coefficient; R2
test

= external test correlation coefficient; Q2
LOO = leave-one-out cross-validation; s = standard deviation (external test set).
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which was chosen considering the best Q2
LOO from both steric

and electrostatic fields. The contour maps were generated, and
STDEV*COEFF maps were analyzed in ChimeraX for both
Steric and Electrostatic Fields since they are more useful to see

Figure 2. Best models from 2D-QSAR using the full data set (61 molecules). d = descriptors. R2 = noncross-validated correlation coefficient; R2
test =

external test correlation coefficient; Q2
LOO = leave-one-out cross-validation; s = standard deviation (external test set).
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Figure 3. Residuals of the best algorithms for QSAR 2D (full data set).
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the differences between fields and target properties. Similar to
the other models, y-scrambling was also performed, setting the
“Make Y-scrambling” as true and the interactions to 10 (the
maximum allowed in the platform).

2.4.3. HQSAR. The HQSAR models were built in SYBYL-X

2.1 using the HQSAR module and the same data set used in all

studies of this work. PLS regression was also used to generate all

Table 2. Distribution between Training and Test Sets Used in All QSAR Studies, with Their Activity in the Logarithmic Scale
(pIC50), without Systematic Outliers [56 Molecules in Total; 44 in the Training Set (78,6%) and 12 in the Test Set (21,4%)]a

Train. pIC50 Train. pIC50 Train. pIC50 Train. pIC50 test pIC50

1 5.38 17 6.00 32 5.52 48 8.70 6 5.85
2 5.64 18 5.77 33 6.28 49 7.52 8 5.66
3 4.92 19 6.24 34 5.70 51 7.22 9 4.86
4 5.60 20 6.39 35 5.21 53 7.40 13 5.68
5 6.22 22 5.60 36 6.22 54 8.40 21 6.44
7 6.22 24 6.30 37 6.15 55 7.05 23 6.30
10 4.40 26 5.55 39 5.49 57 9.00 25 5.74
11 4.78 27 5.51 40 6.12 61 7.15 38 5.32
12 4.69 28 6.22 42 5.49 43 5.21
14 4.12 29 5.74 44 6.68 50 7.52
15 4.12 30 6.92 46 8.00 52 7.30
16 4.48 31 6.18 47 8.70 56 8.00

aTrain = training molecules; test = test molecules.

Table 3. 2D-QSAR Models, without Systematic Outliersa

model descriptors R2 R2 test
Q2

LOO s YS R2 YS Q2
YS R2

50% YS Q2 50%
YS R2

99% YS Q2 99%

Random Forest b 1089 0.975 0.825 0.796 1.071 0.832 −0.196 0.831 −0.207 0.869 0.078
112 0.974 0.867 0.772 0.968 0.834 −0.166 0.834 −0.178 0.872 0.114
12 0.968 0.765 0.677 0.932 0.833 −0.172 0.833 −0.165 0.883 0.137
5 0.971 0.747 0.771 0.937 0.825 −0.224 0.823 −0.228 0.865 0.078
2 0.960 0.656 0.633 0.935 0.812 −0.282 0.810 −0.278 0.864 0.077

Tree Ensemble b 1089 0.972 0.813 0.805 1.097 0.847 −0.194 0.848 −0.203 0.879 0.093
112 0.975 0.843 0.769 1.018 0.852 −0.164 0.852 −0.176 0.886 0.077
12 0.967 0.836 0.653 0.938 0.849 −0.174 0.849 −0.171 0.886 0.117
5 0.973 0.789 0.793 0.955 0.842 −0.234 0.841 −0.252 0.882 0.090
2 0.956 0.669 0.655 0.953 0.827 −0.300 0.827 −0.295 0.872 0.045

Simple Regression b 1089 0.999 0.619 0.580 1.355 1.000 −1.139 1.000 −1.090 1.000 −0.168
112 1.000 0.748 0.624 1.354 1.000 −1.115 1.000 −1.126 1.000 −0.074
12 0.941 0.762 0.444 1.272 1.000 −1.113 1.000 −1.071 1.000 −0.384
5 1.000 0.607 0.467 1.037 1.000 −1.165 1.000 −1.169 1.000 −0.289
2 0.959 0.581 0.484 1.008 1.000 −1.066 1.000 −1.044 1.000 −0.298

Gradient-Boosted Trees b 1089 0.997 0.828 0.742 1.108 1.000 −0.546 1.000 −0.546 1.000 0.135
112 0.982 0.816 0.751 1.162 1.000 −0.525 1.000 −0.536 1.000 0.348
12 0.975 0.823 0.541 1.148 0.998 −0.516 0.999 −0.488 1.000 0.011
5 1.000 0.778 0.729 1.041 0.998 −0.588 0.999 −0.549 1.000 0.029
2 0.998 0.466 0.622 1.027 0.994 −0.685 0.996 −0.716 0.999 −0.146

XGBoost b 1089 0.982 0.707 0.552 1.421 1.000 −2.971 1.000 −2.610 1.000 −0.351
112 0.961 0.909 0.562 1.342 0.921 −3.446 0.931 −3.328 0.974 −0.502
12 0.783 0.692 0.381 0.983 0.247 −0.619 0.239 −0.543 0.498 −0.081
5 0.373 0.543 0.137 0.779 0.080 −0.131 0.074 −0.125 0.245 0.066
2 0.404 0.728 0.319 0.724 0.007 −0.054 −0.001 −0.063 0.089 0.030

Linear Regression b 1089
112
12 0.787 0.757 0.523 1.047 0.275 −0.806 0.261 −0.713 0.535 −0.057
5 0.730 0.705 0.660 1.026 0.120 −0.204 0.116 −0.200 0.318 0.025
2 0.694 0.693 0.639 1.043 0.045 −0.104 0.031 −0.112 0.185 0.075

Polynomial Regression b 1089
112
12 0.852 0.687 0.237 1.052 0.542 −2.3 × 1030 0.549 −1.3 × 1030 0.689 −5.6 × 1028

5 0.617 0.679 0.468 1.151 0.238 −1.191 0.236 −0.920 0.435 −0.242
2 0.620 0.637 0.543 1.108 0.093 −0.356 0.077 −0.237 0.265 −0.002

ad = number of descriptors; R2 = noncross-validated correlation coefficient; R2
test = external test correlation coefficient; Q2

LOO = leave-one-out
cross-validation; s = standard deviation (external test set).
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of the models, with the optimum number of components
determined by the LOO cross-validation procedure.

All of the default hologram lengths were used (53, 59, 61, 71,
83, 97, 151, 199, 257, 307, 353, and 401 bins). Our first models

Figure 4. Best models from 2D-QSAR, without systematic outliers. d = descriptors. R2 = noncross-validated correlation coefficient; R2
test = external test

correlation coefficient; Q2
LOO = leave-one-out cross-validation; s = standard deviation (external test set).
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Figure 5. Residuals of the best algorithms for QSAR 2D (without outliers).
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were built using the default four to seven atoms (4_7) count in
fragments, using information from Atoms (A), Bonds (B),
Connections (C), Hydrogen Atoms (H), Chirality (Ch), and
Donor−Acceptor (DA) in different combinations. The best
models were tested against different atom counts (2_5, 3_6,
5_8, and 6_9).

After the optimal settings were determined, a Y-scrambling
test was conducted to assess the robustness of the HQSAR
model. However, as SYBYL lacks a native option for scrambling
HQSAR sets, the test had to be performed manually. Using
KNIME, 100 random distributions of pIC50 values were
generated. The HQSAR model was then applied to each
distribution, and the resulting values (R2, Q2, and Ensemble of
each run) were compiled manually into a table for further
analysis.

3. RESULTS AND DISCUSSION
3.1. Data Set. One of the key aspects for a QSAR study to

succeed is to have reliable experimental data.27 In our study, we

are using three different data sets4,13,14 from the same research
group. All compounds had their activity measured with the same
methodology, and we chose to work with the IC50 values because
they are statistically more robust (all compounds were measured
at least in six different inhibitor concentrations, each one in
triplicate). In addition, our data set has a logarithmic range of 5
orders of magnitude of the biological activity between the
compounds (Figure 1).

3.2. 2D-QSAR. 2D-QSAR models were developed using
KNIME, and the workflow is provided as Supporting
Information, in addition to the SMILES structures.

We filtered the 1444 descriptors generated by Padel by
removing all constant values, resulting in 1089 descriptors that
were subsequently used to generate all of the 2D-QSAR models.
Next, we added a correlation filter to remove descriptors that are
highly correlated to each other, with different cutoffs, to
determine the optimal number of descriptors for each model, the
variations including 1089, 112, 12, 9, 5, and 3 descriptors. The
initial data set was divided into 48 molecules in the training set
(75.4%) and 13 molecules in the test set (24.6%), with random
distribution.

LOO was chosen as the internal validation method to
standardize this analysis across multiple platforms since other
strategies like leave-many-out cannot guarantee the homoge-
neity of the data among multiple platforms, since not all support
the use of seeds.

The best models overall are Random Forest and Tree
Ensemble using 112 descriptors (Table 1, Figures 2 and 3).
According to the literature, an acceptable QSAR model should
have at least R2 = 0.600, R2

test = 0.600, and Q2
LOO = 0.500,

although higher values are desirable. When all of these values are
met, Q2

LOO usually has the highest priority. It should be noted
that tendencies and patterns should also be avoided; therefore,
predictions should have a random distribution.28

When we performed the Y-scrambling of the models, we
found that the YS R2 was the same as or lower than the R2 of the
models (except for XGBoost), and the YS Q2 was always
significantly lower (negative) than the original models. These
results indicate that the models were not obtained by chance.

Although models such as Simple Regression and Gradient-
Boosted Trees with 112 descriptors and XGBoost with 1089
descriptors meet the requirements of acceptable models (Table
1), they display signs of overfitting, which is when a model fits
the training set very well (high value of R2, usually with a perfect
or near-perfect linear fit), but it performs poorly with unseen
data (lower values of R2

test).
One method of managing overfitting is to lower the number of

descriptors. This seems to improve the pattern of the XGBoost
model but lowers significantly either the R2

test or Q2
LOO, which

are already low enough to discard this model, as it is not robust
enough for predictions. Regarding the Simple Regression and
Gradient-Boosted Trees, however, this perfectly linear pattern
remains even when using as few as two descriptors (Supporting
information). In this way, the two most recommended models
for predictions are Random Forest and Tree Ensemble, with 112
descriptors.

Another observation is regarding the residual, which is the
difference between the external set and the predicted activity.
There is at least one molecule for each model that has a residual
above one logarithmic unit, considered an outlier. The predicted
activity values differed from the experimentally observed values

Table 4. Contributions of Each Descriptor for the Linear
Regression Model

set AATS 5p (%) AATS1i (%)

training 60 40
test 70 30

Figure 6. Alignment of all 61 inhibitors inside Cruzain (PDB: 1ME4)
by GOLD. The colors within the cruzain are representations of its
subsites. Cyan: S1 (Gln19, Gly23, Cys25, Ser64, Leu67), dark blue: S1’
(Asp158, His159, Trp177), orange: S2 (Met68, Ala133, Leu157, Gly160,
Glu205), lime: S3 (Ser61, Ser64, Gly65, Gly66, Leu67).

7,8

Table 5. Statistical Data of All of the QSAR 3D Models

model R2 R2
test Q2

LOO s PC YS R2 YS Q2 YS SDEP

Py-CoMFA a 0.975 0.794 0.747 1.023 5 0.897 0.062 1.145
Py-CoMFA b 0.996 0.786 0.810 0.987 8 0.959 −0.030 1.200
CoMFA (SYBYL) 0.939 0.728 0.680 1.004 3 0.887 0.568 0.901
CoMSIA (SYBYL) 0.961 0.833 0.799 1.065 4 0.906 0.517 0.835
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by more than one unit in the pIC50 in the regression models, that
is, they did not contribute to the interpretation of the results.

After extensive testing with different models and descriptors
(including other methodologies, like 3D-QSAR and HQSAR),
we found five molecules with a systematic outlier behavior (for
this study, we consider “systematic outliers” the molecules that
perform very poorly regardless of the methodology or the
distribution between training and test set, disrupting the
prediction robustness of the model, with no positive
contribution). As such, they were removed from further studies:
41; 45; 58; 59; and 60.

Therefore, the filtered data set (without outliers) used for all
the studies is listed in Table 2, also with the same seed for
random distribution (1995), to avoid biases.

Without systematic outliers, a significant improvement can be
observed through all models (Table 3, Figures 4 and 5).

Consistent with the previous Y-scrambling results, our
analysis revealed that the YS R2 values were equal to or lower
than those of the models using the full data set. Additionally, the
YS Q2 values were significantly lower than those of the original
models, suggesting that the models were not generated by
chance.

The models with the best overall performance were Random
Forest and Tree Ensemble, which exhibited a random
distribution, had no apparent tendencies and did not show

any residue above one logarithmic unit. It is worth noting that
while using 1089 descriptors yields a higher Q2

LOO for both,
when compared with five descriptors [Q2

LOO = 0.796 vs 0.771
for Random Forest, and Q2

LOO = 0.805 vs 0.793 for Tree
Ensemble (Figure 4)], the difference is marginal, and it is
preferred to use the minimum descriptor, as it is easier to
interpret five descriptors compared to 1089.

It should be noted that while Simple Regression with 112
descriptors and Gradient-Boosted Trees with five descriptors
(Table 3) have decent statistical results, their training set still
presents signs of overfitting (even though the R2 test has
performed well) and should be used with caution for the
prediction of new cruzain inhibitors.

The XGBoost model has an acceptable performance with a
tendency of higher deviations when the pIC50 increases and two
outliers in the test set.

Linear Regression and Polynomial Regression exhibit a wide
distribution in their training data (Figure 4), but with no
tendencies, having a random distribution. They are optimal
using two descriptors, being simple, but effective models to
predict the activity of new cruzain inhibitors.

Most of the regression models can be explained with as few as
five or two descriptors [except for Simple Regression and
XGBoost, which have a better performance with 112 descriptors
(Table 3)].

Figure 7. Comparison between CoMFA models from SYBYL and Py-CoMFA (Charge Model = gasteiger).
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To study the relationship in our data set, we opted for Linear
Regression a simpler model that successfully predicts the activity
using only two descriptors, which are AATS 5p and AATS1i.

Using the R2 value between each descriptor and the pIC50, it is
possible to obtain a linear relationship between both. Summing
up all the descriptors R2s and then taking all the fractions from
each descriptor, we can obtain the contribution percentage of
both (Table 4).

AATS 5p and AATS1i are autocorrelation descriptors. They
belong to the class of topological descriptors, also known as
molecular connectivity index, and describe the level of
correlation between two objects (in this case, molecules) in
terms of their specific structural property, or physicochemical
property.29

AATS 5p (Table 4) was more relevant in both training and
test sets and is an autocorrelation descriptor that calculates the
average Broto-Moreau autocorrelation at lag 5, which is
weighted by polarizabilities. It measures the average similarity
between each atom in the molecule and its fifth nearest
neighbor, taking into account their polarizability values. A higher
AATS 5p value suggests that the molecule has a stronger
autocorrelation pattern, which contributes to the biological
activity. The higher the polarizability and first ionization
potential, the higher the activity.29

AATS1i is an autocorrelation descriptor that calculates the
average Broto-Moreau autocorrelation at lag 1, weighted by the
first ionization potential (which is a measure of how easily an
atom in a molecule loses an electron). A higher AATS1i value
indicates that the molecule has higher activity and is more likely
to lose an electron, potentially making it more reactive.29

3.3. Docking. Molecular alignment can be a very challenging
step in 3D-QSAR studies. Fortunately, molecular docking is a
technique that offers both accuracy and speed in finding the
optimal conformations of ligands interacting with the receptor
(cruzain).

Both inhibitors cocrystallized present on the selected cruzain
structures (1ME4 and 3KKU) act noncovalently. This is
important because the compounds used in QSAR studies also
have the same mechanism of action, which is competitive.

The high resolution (1.2 Å) of the PDB 1ME4 crystal
contributes to a greater precision in the conformation in the
model used, and crystals with a resolution below 1.5 Å usually
indicate a consequence of probably more than 95% of the
observed data.9

It is important to use molecules in their minimal state of
energy since molecular docking will generate multiple poses
from this starting point. All compounds from the training and
test series were optimized in Gaussian, using semiempirical (SE)

Figure 8. Comparison between CoMFA models from SYBYL and Py-CoMFA b (Charge Model = eem2015ha).
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theory, with the PM6 method. All of the structures converged
correctly.

The best RMSD for redocking the cocrystallized ligand with
the 3KKU structure was 43.0631 and was considered too high
and therefore unsatisfactory to proceed with the alignment.

When redocking the cocrystallized ligand with the 1ME4
structure, the RMSD value was 2.4614. Considered to be
satisfactory for correctly predicting the conformation obtained
experimentally. Therefore, this methodology was used to align
the ligands (Figure 6).

The alignment (Figure 6) shows good complementarity with
the cruzain active site, and most of the residues were oriented
between the Cys25 and His159 residues, which are part of the
catalytic triad.

3.4. 3D-QSAR−CoMFA. After aligning all molecules in the
data set, it was possible to perform both CoMFA and CoMSIA
studies. This alignment is necessary because the models assume
that all molecules are superimposed. The models compare the
field of each molecule using PLS to identify and extract the
contribution of chemical features of ligands with their biological
activity.11

For the CoMFA model, two different platforms were used:
SYBYL and Py-CoMFA (from www.3d-qsar.com). The first
models shared the same parameters (with Gasteiger as the

charge calculation method, to calculate atomic partial charges
from the atomic coordinates of the molecules, denominated “a”)
to analyze whether the models would converge. Py-CoMFA also
supports newer charge models, which were also tested to find the
best model. We found that eem2015ha, a newer implementation
derived from the electronegativity equalization method charge
model to calculate atomic partial charges, denominated “b”, was
the best option when compared to Gasteiger, but it is not
available in SYBYL for a direct comparison.

Since the Py-CoMFA does not provide the contribution
percentage for steric and electrostatic fields (when considering
both at the same time, in the same model), the statistical values
from each field individually are also shown (Table 5, Figures 7
and 8) to check their robustness.

It can be observed that CoMFA from SYBYL and Py-CoMFA
from a BOTH (considering both fields at the same time) have
excellent statistical results (Figure 7), although the latter one is
more robust, with less deviance from predicted activities.
However, while the Y-scrambling results (Table 5) of all models
have lower YS R2s and YS Q2s in comparison with the original
ones, the CoMFA model generated by SYBYL did not
demonstrate a substantial decrease in YS Q2. As such, there is
a possibility of chance correlation, and caution is advised when
using it.

Figure 9.CoMFA contour maps from SYBYL, Py-CoMFA a (Gasteiger), and Py-CoMFA b (eem2015ha), highlighting steric and electrostatic effects,
as well as their contributions to the model, when available.
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One interesting finding is that using only the Steric force field
in Py-CoMFA can produce similar results compared to using
both the Steric and Electrostatic force fields. In contrast, when

using only the electric field, the statistical values are considerably
worse (Figure 7).

Although Py-CoMFA does not output individual contribu-
tions from each field, considering the BOTH model, one can
assume that the steric field contributes significantly more to the
model than the electrostatic field.

Using the newer charge model (eem2015ha), an improve-
ment can be observed while using both fields at the same time
(Figure 8). Regarding only the steric field, the results are nearly
identical to the model with Gasteiger (Figure 7), slightly
changing only one test molecule but not enough to change the
statistical results.

It can be noted that the individual electrostatic field had a
noticeable improvement (Figure 8), although the predictions
with the test set perform slightly worse (compared to the
anterior with Gasteiger, Figure 7). This also suggests that the
steric field has a greater contribution to the model than the
electric field in this case.

3.5. 3D-QSAR−CoMFA Contour Maps. One advantage of
3D-QSAR is the possibility of contour map generation. This
provides an easy way to visualize which regions from the model
are favorable or unfavorable for biological activity.

Figure 10.CoMFA contour models from Py-CoMFA b (eem2015ha) highlighting steric (above. yellow regions = disfavored | green regions = favored)
and electrostatic (below. Blue regions = positive | red regions = negative) effects in the active site of cruzain.

Figure 11. Statistical analysis of the CoMSIA model from SYBYL.
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Figure 12. CoMSIA contribution maps from SYBYL, highlighting steric, donor, electrostatic, acceptor, and hydrophobic effects as well as their
contributions to the model.
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All the models for CoMFA (Figure 9) were created
considering both steric and electric fields at the same time
because of their excellent statistical results discussed earlier. The
most active molecule (57) is projected with the contours, as well
as 14, and although being the second least active component (14
has IC50 = 75.0 μM, while 15 has IC50 = 75.5 μM), it has a more
representative molecular alignment when compared to the
majority of less active molecules, and only a marginal difference,
compared to the 15 compound.

The favorable regions for steric interactions are colored in
green, while unfavorable regions are colored in yellow (Figure
9). Positive charges which contribute to biological activity are
shown in blue, while negative charges are shown in red. SYBYL
also provides the percentage of contribution from each field that
was also taken into account.

3.5.1. Steric Field. Steric contributions from all of the models
converge with each other satisfactorily (Figure 9). It can be

noted that the most active molecule (57) is oriented mostly in
the favorable region, while the 14 molecule is oriented toward
the unfavorable zones. An interesting fact is that the Steric field,
when analyzed individually (not shown), is the same in Py-
CoMFA “a” and ”b”; however, the field changes slightly when
considering BOTH, even when maintaining the same cutoffs for
each field.

Table 6. HQSAR Results with Fragment Sizes between Four
and Seven Atoms (4_7)a

model Frag. distribution Q2
LOO R2 Ens BL PC

1 A/B 0.809 0.852 0.782 71 2
2 A/B/C 0.824 0.879 0.794 59 3
3 A/B/C/H 0.787 0.863 0.739 61 3
4 A/B/C/H/Ch 0.772 0.862 0.732 61 3
5 A/C 0.824 0.868 0.799 97 2
6 A/C/DA 0.806 0.861 0.776 401 2
7 A/C/H/Ch 0.764 0.888 0.742 353 4
8 A/C/Ch 0.825 0.883 0.802 151 3
9 A/C/Ch/DA 0.802 0.857 0.772 71 2
10 A/B/H 0.788 0.848 0.748 53 3
11 A/B/C/Ch 0.817 0.886 0.791 199 3
12 A/B/C/DA 0.823 0.926 0.774 53 5
13 A/B/H/DA 0.784 0.829 0.761 257 2
14 A/B/C/H/DA 0.765 0.910 0.736 307 4
15 A/B/H/DA 0.784 0.829 0.761 257 2
16 A/B/H/Ch/DA 0.763 0.882 0.736 257 3
17 A/B/C/H/Ch/DA 0.750 0.935 0.720 83 5

aModels n° 2,5,8 and 12 are highlighted. A = atoms, B = bonds, C =
connections, H = hydrogen atoms, Ch = chirality, DA = donor−
acceptor; Q2LOO = leave-one-out cross-validation; R2 = noncross-
validated correlation coefficient. Ens = ensemble. BL = best length.
PC = principal component.

Figure 13. Statistical analysis of the HQSAR model from SYBYL.

Table 7. HQSAR Results with Fragment Sizes Varying
between Different Combinations of Atoms (Minimum Two
Atoms and Maximum Nine Atoms)a

model 2 (A/B/C) Q2
LOO R2 Ens BL PC

2_5 0.818 0.867 0.790 353 2
3_6 0.816 0.863 0.793 401 2
4_7 0.824 0.879 0.794 59 3
5_8 0.824 0.893 0.791 97 3
6_9 0.820 0.901 0.776 97 3

model 5 (A/C) Q2
LOO R2 Ens BL PC

2_5 0.844 0.883 0.817 59 2
3_6 0.831 0.873 0.811 199 2
4_7 0.824 0.868 0.799 97 2
5_8 0.816 0.861 0.799 353 2
6_9 0.822 0.960 0.792 71 6

model 8 (A/C/Ch) Q2
LOO R2 Ens BL PC

2_5 0.846 0.884 0.818 59 2
3_6 0.826 0.873 0.811 59 3
4_7 0.825 0.883 0.802 151 3
5_8 0.822 0.865 0.792 353 2
6_9 0.810 0.848 0.786 353 2

model 12 (A/B/C/DA) Q2
LOO R2 Ens BL PC

2_5 0.813 0.887 0.788 151 3
3_6 0.815 0.859 0.778 61 2
4_7 0.823 0.926 0.774 53 5
5_8 0.798 0.916 0.767 151 4
6_9 0.809 0.923 0.760 83 4

aModel 5, with a fragment size of two to five atoms, was chosen as the
best (highlighted). A = atoms, B = bonds, C = connections, H =
hydrogen atoms, Ch = chirality, DA = donor−acceptor; Q2

LOO =
leave-one-out cross-validation; R2 = noncross-validated correlation
coefficient. Ens = ensemble. BL = best length. PC = principal
component.

Figure 14. Contribution maps for the least active molecule (14) and
the most active (57). Red represents disfavored areas, while green, the
favored areas. Atoms are labeled, except for H atoms, for better clarity.
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Even though the Steric field seems to have the biggest impact
in Py-CoMFA models, for SYBYL, the Steric contribution is
much lower, with 12.41% in total.

Observing Py-CoMFA b (both) and the 57 molecule
superimposed in the active site (Figure 10), most of the
unfavorable zone is found within the looping area inside the
cruzain, which has little interaction with the solvent, while the
favorable zone is free for more voluminous substituents to be
inserted. This may help not only with biological activity but also
with selectivity since fewer enzymes would have this free area
available.

More specifically, the bulk of the favored area can be found
between Leu67, Met68, Leu157, and Glu205, being the last tree
residues especially important, as they are part of the S2 subsite,
the most relevant subsite for the enzyme specificity. Regarding
the disfavored area, it is found mostly around the Gly23, Cys25,
Ser64, Gly65, Gly66, Ala133, Asp158, and His159 residues which
covers a great portion of S1 and S1′ subsites. It should be
mentioned that Cys25 and His159 are two residues from the
catalytic triad. Similar findings were also mentioned, in earlier
studies, with a different data set.9

3.5.2. Electrostatic Field. The electrostatic field from SYBYL
does not match Py-CoMFA (Figure 9) completely, even with
the same Charge Model (Gasteiger, in Py-CoMFA a model).
This may be explained by differences in the algorithm found in
each platform. It also may help explain why for SYBYL the
electrostatic contribution is so important when the statistical
data in Py-CoMFA suggest otherwise.

However, there are two regions where they intersect; the
negative (in red) comprehends the looping region inside the
enzyme, especially near the S1 and S1′ subsites, while the
positive (in blue) region is near the Gly66 residue of the S3
subsite.

The main differences are that for SYBYL, positive charges are
preferred closer to Cys25, and negative charges are preferred for
Leu67, Leu157, and Glu205; however, for Py-CoMFA, the opposite
is true for these residues.

3.6. 3D-QSAR−CoMSIA. At the moment of writing this
article, there is not a CoMSIA methodology available on www.
3d-qsar.com; therefore, we performed all analyses within
SYBYL. The statistical values can be found in Figure 11.

The CoMSIA model presents satisfactory statistical data
(Table 5 and Figure 11), and it is appropriate for further analysis.

3.6.1. 3D-QSAR−CoMSIA Contour Maps. Following the
same methodology from the CoMFA contour maps, we can
observe the Steric, Donor, Electrostatic, Acceptor, and Hydro-
phobic contributions (Figure 12).

Zones from the Steric field are very similar to those found
previously in CoMFA studies, although the contribution to the
model is minimal, with 1.01% in total.

Donor contributions, in contrast, are the most relevant for
CoMSIA, especially with favored interactions (36.73%, in light
blue), highlighting Gly66, which is near the nitrile from the 57
molecule, as well as the benzene ring from 14, and Gly23, near
the halogens from 57, as well as the ester portion of 14.

The electrostatic field, once again, does not match the others
found in CoMFA studies. Therefore, caution is advised when
planning new inhibitors using this type of field as a reference. It
contributes 24.34% of total relevance to the model, and although
it switches between negative and positive zones, the positive
tends to be found inside the ligands and the negative for the
areas closer to the residues in general.

Acceptor contributions are marginal (4.69% in total), favoring
the regions toward the S2 subsite, and disfavoring the regions
toward the S1 and S1′ subsites.

Hydrophobic interactions are mostly favored (26.07%, in
yellow), which is closer to Leu67 (S3 subsite, secondary amine on
14), as well as S1 and S1′ subsites.

3.7. HQSAR. The first HQSAR models were made using all
available and default hologram lengths provided by SYBYL (53-
401 bins), with fragment sizes from four to seven atoms (4_7).
Our objective was to analyze which fragment distribution was
the optimal choice considering the Q2

LOO, R2, and Ensemble
values for each variant (Table 6).

All of the models (including the least performing ones) have
excellent statistical data (Table 6). Models n° 2,5,8 and 12 were
chosen to continue the study with different fragment sizes
(Table 7).

By conducting a Y-scrambling test on the optimal model (A/
C and 2_5 fragments), the following results were obtained: YS
R2 = 0.372, YS Q2 = 0.053, and YS Ensemble = 0.034. These
values demonstrate that the model was not obtained by chance
since they differ significantly from the original results (Table 7).

Although model 8 (A/C/Ch), with a fragment size between
two and five atoms (Table 7), has a marginal improvement over
model 5 (A/C) with the same fragment size, it is preferred to use

Table 8. Best Models from This Work and the Statistical Analysis from Each One without Systematic Outliersa

model d R2 R2
test Q2

LOO s PC n° out n° out test YS R2 YS Q2

Random Forest 5 0.971 0.747 0.771 0.937 0 0 0.825 −0.224
Tree Ensemble 5 0.973 0.789 0.793 0.955 0 0 0.842 −0.234
Simple Regression 112 1.000 0.748 0.624 1.354 3 1 1.000 −1.115
Gradient-Boosted Trees 5 1.000 0.778 0.729 1.041 0 1 0.998 −0.588
XGBoost 112 0.961 0.909 0.562 1.342 2 1 0.921 −3.446
Linear Regression 2 0.694 0.693 0.639 1.043 5 1 0.045 −0.104
Polynomial Regression 2 0.620 0.637 0.543 1.108 3 4 0.093 −0.356
CoMFA (SYBYL) 0.939 0.728 0.680 1.004 3 0 1 0.887 0.568
Py-CoMFA a 0.975 0.794 0.747 1.023 5 0 1 0.897 0.062
Py-CoMFA b 0.996 0.786 0.810 0.987 8 0 1 0.959 −0.030
CoMSIA (SYBYL) 0.961 0.833 0.799 1.065 4 0 1 0.906 0.517
HQSAR (SYBYL) 0.883 0.770 0.844 1.220 2 1 3 0.372 0.053

ad = number of descriptors; R2 = noncross-validated correlation coefficient; R2
test = external test correlation coefficient; Q2

LOO = leave-one-out
cross-validation; s = standard deviation (external test set); PC = principal component; n° out = number of outliers from training set; n° out test =
number of outliers from test set. YS R2 = noncross-validated correlation coefficient of the y-scrambling. YS Q2 = leave-one-out cross-validation of
the y-scrambling.
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model 5 for HQSAR, since it requires only information about
Atoms (A) and Connections (C), with no need for Chirality
(Ch). The analysis of this model is shown in Figures 13 and 14.

The HQSAR model brings decent results (Figure 13);
however, there is also high deviance (s = 1.220) and tree outliers
in the test set.

Observing the contribution maps (Figure 14), the most
important in 57 belongs to the benzene ring, with halogens (F),
which is located between Leu67, Met68, Leu157, and Glu205

residues corroborating with the favorable zone from the steric
field found in previous studies with CoMFA and CoMSIA
contour maps (Figures 9, 10, and 12).

The nitrile from the 57 compound contributes to the
biological activity, which is in proximity with Gly66, and also
corroborates previous findings in CoMFA and CoMSIA contour
maps, fulfilling especially steric and donor favorable fields.
Interestingly, though most electrostatic fields disagree with each
other, this is the only region that has convergence from all of
them in the positive region (Figures 9, 10, 12, and 14).

Ester and carboxamide groups, as well as the isobutane, stand
out in the middle of the 14 molecule as a disfavored area, near
Gly23, Cys25, Ser64, Gly65, Asp158, and His159 residues, which once

Figure 15. Predicted pIC50 values for the Virtual Screening of hydrazones.

Figure 16. Most promising hydrazone molecules selected from the
Virtual Screening: dv007 (left) and dv015 (right).

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.3c03376
ACS Omega 2023, 8, 38961−38982

38979

https://pubs.acs.org/doi/10.1021/acsomega.3c03376?fig=fig15&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c03376?fig=fig15&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c03376?fig=fig15&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c03376?fig=fig15&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c03376?fig=fig16&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c03376?fig=fig16&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c03376?fig=fig16&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c03376?fig=fig16&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.3c03376?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


again corroborates with all the disfavored steric fields (Figures 9,
10, 12, and 14).

The carbon next to the secondary amine in the 14 compound
is not in good agreement with some of the previous contour
maps, as it is located near Gly66, in an area favored by steric
forces, as well as (in most cases) positive areas in the
electrostatic field. However, it agrees with the hydrophobic
forces for having a polar charge and is unfavorable, and with the
donor map, as by being an electron donor group, it is located in
the unfavorable area (Figures 9, 10, 12, and 14).

3.8. Comparison of All Models. Summing up all the model
variations produced in this work, there were a total of 115 model
variations. Out of those, 70 models were from 2D-QSAR (35
using the full data set, 35 without the outliers), 37 models from
HQSAR (17 varying the distribution of the fragments, 20
varying the fragment sizes), and 8 models from 3D-QSAR (7
from CoMFA (including the isolated steric and electrostatic
fields), and 1 from CoMSIA).

Out of all the 115 variations, there are 76 that match the
minimum requirements to be considered as acceptable (R2 =
0.600; R2

test = 0.600; Q2
LOO = 0.500). Of those, 33 are from 2D-

QSAR (11 in the full data set and 22 without the outliers), 37
from HQSAR, and 6 from 3D-QSAR.

The best variations from each technique are shown in Table 8,
considering the data set without systematic outliers.

All models (Table 8) met the minimum requirements to be
acceptable QSAR models, with little to no outliers (which are
considered to be residuals with a difference of one logarithmic
unit) in both training (44 molecules) and test (12 molecules)
sets. However, due to signs of overfitting, Simple Regression and
Gradient-Boosted Trees should be used with caution.

Regarding the Virtual Screening, we used a small set of
hydrazones for their similarity with our data set in our QSAR 2D
study. We leveraged the combined predictive power of our top
three 2D models: Random Forest, Tree Ensemble, and
Gradient-Boosted Trees, all utilizing 5 descriptors each, as
they were some of the best models of this work. This method
helped identify the most promising molecules for future
experimental validation.

Among the candidates (Table 9 and Figures 15 and 16),
dv007 and dv015 consistently exhibited the highest predicted
pIC50 values across our top-performing models. These
molecules, with average pIC50 scores of 7.26 and 7.24,
respectively, stand out as the most compelling candidates for
experimental validation, suggesting their potential for further
exploration in drug development.

Finally, it is essential for us to establish a correlation between
our work and other recent publications on QSAR involving
cruzain. In this context, we would like to highlight the research
conducted by Rosas-Jimenez et al.,31 where they employed
various sets of cruzain inhibitors from diverse sources, resulting
in a final data set comprising 344 compounds. They utilized the
k-nearest neighbors and random forest algorithms to create both
local and global models. The statistical parameters for the
internal and external validation of their models indicated a
significant level of predictability. Additionally, they defined the
applicability domain quantitatively using leverage and similarity
methods.

While our data set contains fewer structures compared to
theirs, leading to a smaller molecular diversity, all our
compounds originate from three series of tests conducted
under the same protocol and by the same research group. This
reinforces the method’s robustness and adherence to good

Table 9. Predicted pIC50 Values for the Virtual Screening of Hydrazones
a

mol
Random
Forest 5d

Tree
Ensemble 5d

Simple
Regression 112d

Gradient-Boosted
Trees 5d

XGBoost
112d

Linear
Regression 2d

Polynomial
Regression 2d

Average 3 best (RF, TE,
and GBT)

dv007 7.67 7.34 8.40 6.76 4.99 10.05 10.49 7.26
dv010 6.25 6.21 8.40 6.24 3.99 8.36 8.95 6.23
dv012 5.93 5.90 4.40 6.43 7.00 6.46 6.53 6.09
dv013 5.90 5.93 4.40 5.97 5.98 6.03 6.61 5.94
dv014b 6.05 6.11 4.40 6.04 6.01 6.54 7.11 6.07
dv015 7.70 7.40 4.78 6.63 4.52 9.64 10.01 7.24
fm010 6.11 6.15 4.78 6.42 5.62 6.46 6.99 6.23
fm016 6.62 6.52 6.30 6.19 5.93 7.99 8.97 6.44
fm17 6.73 6.77 4.78 6.17 6.04 8.44 9.42 6.56
fm19 6.75 6.75 5.70 6.42 7.38 8.53 10.54 6.64
lu004 6.67 6.62 4.78 6.41 6.93 8.99 11.50 6.56
nitrofural 6.35 6.30 4.78 6.32 3.84 8.52 9.31 6.32
tutty_01 5.67 5.62 5.49 5.21 8.39 5.32 5.23 5.50
tutty_02 6.07 5.91 5.64 5.61 5.29 6.04 5.87 5.87
tutty_03 5.37 5.45 5.77 5.02 6.48 4.97 4.94 5.28
tutty_04 6.61 6.51 5.70 6.23 6.23 5.69 5.82 6.45
tutty_05 6.30 6.13 6.22 5.91 5.43 6.36 6.28 6.11
tutty_06 6.21 6.13 5.74 6.31 12.80 5.14 5.16 6.22
tutty_07 5.74 5.77 8.40 5.18 7.57 5.87 5.71 5.56
tutty_08 5.40 5.47 5.77 5.19 6.88 4.82 4.85 5.35
tutty_09 6.44 6.33 8.40 6.40 9.97 6.53 6.33 6.39
tutty_010 5.46 5.52 5.77 5.15 5.70 5.10 5.04 5.38
tutty_011 5.35 5.43 5.70 4.92 6.56 5.42 5.32 5.23
tutty_012 5.43 5.51 6.28 5.13 6.99 4.68 4.81 5.36
tutty_013 5.41 5.48 5.60 4.89 6.80 4.92 4.90 5.26
ad = number of descriptors; RF = random forest; TE = tree ensemble; GBT = gradient-boosted trees.
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QSAR practices. In addition to the Random Forest, we also
incorporated various QSAR techniques, including HQSAR,
CoMFA, and CoMSIA, which exhibit great alignment among
them. As a result, we believe that our work can be considered a
robust reference for building quantitative models based on
cruzain inhibitors, complementing the aforementioned study.

4. CONCLUSIONS
A comprehensive QSAR study was carried out in this work to
create robust, predictive models for cruzain inhibitors. It is
crucial to note that our work is entirely theoretical. The
compounds used as the foundation for these models were
experimentally tested by the Laboratory of Molecular Modeling
and Drug Design, ensuring data uniformity.

The 2D-QSAR models are effective even with just two or five
descriptors, making them useful for understanding which
alterations can improve biological activity and save computa-
tional resources. Utilizing 2D-QSAR models in KNIME
provides a free, open-source platform that is accessible to
everyone for testing new ligands. The Random Forest, Tree
Ensemble, and Linear Regression models demonstrated
excellent predictive ability and high levels of precision, despite
using a relatively small number of descriptors. However, caution
may be necessary for the Gradient-Boosted Trees model due to
potential overfitting.

The HQSAR models combine 2D-QSAR speed with some
benefits of 3D-QSAR, including fragment contour maps for
better and worse contributions. However, due to its high
standard deviation (s = 1.220), it may lead to less accurate
predictions.

Our 3D-QSAR models had great statistical results, with
excellent convergence in all Steric Fields. However, the
Electrostatic Fields had conflicting results, except for the
Gly66 residue, which benefits from positive substituents.
Caution is advised when using the CoMFA model from
SYBYL due to minimal differences between y-scrambling results
and the original model. The CoMSIA model identifies hydrogen
donor substituents as the primary contributors to biological
activity at 36.73%, followed by hydrophobic substituents at
26.07%. Despite their predictive power, generating and
optimizing 3D structures and alignments require time and
optimization and should be considered when developing new
antichagasic agents.

In our preliminary virtual screening with hydrazones, based
on our top three 2D models (Random Forest, Tree Ensemble,
and Gradient-Boosted Trees, each with 5 descriptors), dv007
and dv015 emerge as promising candidates for further
investigation. However, it is essential to note that these findings
have not yet been experimentally validated.

These models should contribute to the community both as
filters for virtual screening and as a way to better understand the
aspects that help in increasing the biological activity of cruzain
inhibitors, therefore helping develop effective and selective
drugs to combat Chagas disease.
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