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DNA N4-methylcytosine (4mC) is an important genetic modi-
fication and plays crucial roles in differentiation between self
and non-self DNA and in controlling DNA replication, cell cy-
cle, and gene-expression levels. Accurate 4mC site identification
is fundamental to improve the understanding of 4mCbiological
functions and mechanisms. Hence, it is necessary to develop in
silico approaches for efficient and high-throughput 4mC site
identification. Although some bioinformatic tools have been
developed in this regard, their prediction accuracy and general-
izability require improvement to optimize their usability in
practical applications. For this purpose, we here proposed
Meta-4mCpred, a meta-predictor for 4mC site prediction. In
Meta-4mCpred, we employed a feature representation learning
scheme and generated 56 probabilistic features based on four
differentmachine-learning algorithms and seven feature encod-
ings covering diverse sequence information, including compo-
sitional, physicochemical, and position-specific information.
Subsequently, the probabilistic features were used as an input
to support vector machine and developed a final meta-predic-
tor. To the best of our knowledge, this is the firstmeta-predictor
for 4mC site prediction. Cross-validation results show that
Meta-4mCpred achieved an overall average accuracy of 84.2%
from six different species, which is �2%–4% higher than those
attainable using the state-of-the-art predictors. Furthermore,
Meta-4mCpred achieved an overall average accuracy of 86%
on independent datasets evaluation, which is over 4% higher
than those yielded by the state-of-the-art predictors. The user-
friendly webserver employed to implement the proposed
Meta-4mCpred is freely accessible at http://thegleelab.org/
Meta-4mCpred.
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INTRODUCTION
DNAmethylation is a key epigenetic mark regulating several develop-
mental and pathological processes.1 The most common post-replica-
tive DNA modification is cytosine methylation, which occurs in the
genomes of both prokaryotes and eukaryotes. Cytosine methylation
can be mediated enzymatically by DNA methyltransferases, resulting
in two epigenetic nucleobases, 5-methylcytosine (5mC) and N4-meth-
ylcytosine (4mC), or chemically by endogenous and environmental
alkylation agents, resulting in 3-methylcytosine.1,2 Themost well-stud-
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ied and frequently occurring cytosinemethylation, 5mCplays key roles
in normal development, genomic imprinting, preservation of chromo-
some stability, aging, suppression of repetitive element transcription
and transposition, and X chromosome inactivation.3–6 Meanwhile,
the least common methylated DNA nucleobase present in bacterial
DNA, namely, 4mC, is less studied and explored.1 Like 5mC, 4mC is
a part of restriction-modification systems that protects the host DNA
from restriction enzyme-mediated degradation. Additionally, 4mC is
involved in supplementary roles, such as correcting DNA replication
errors and controlling DNA replication and the cell cycle.7,8 However,
studies on4mCare relatively limited compared to thoseon5mC;hence,
its biological functions are yet to be elucidated.

For humans and other eukaryotes, there are major experimental ap-
proaches available for identifying epigenetic cytosine nucleobases in
DNA. However, only a few analytical approaches are available for
studies of bacterial genomes. A popular means of identifying 4mC
and N6-methyladenine from unknown DNA sequences is single-
molecule real-time sequencing (SMRT).9 Due to the limited scalabil-
ity and cost and time effectiveness of this approach, next-generation
sequencing techniques have been used. One next-generation
sequencing technique that could detect 4mC in genomic DNA is
4mC-Tet-assisted-bisulphite-sequencing.10 Recently, another group
detected 4mC selectively using engineered transcription-activator-
like effectors.1 While these experimental approaches facilitate 4mC
site detection, such techniques are too laborious and expensive to
be applied for large-scale genome scanning. Hence, it is necessary
to develop computational methods for efficient 4mC site prediction.

Recently, computational methods, in particular machine-learning
(ML) approaches have expounded efficiently for various prob-
lems,11–14 including 4mC site prediction. Initially, Chen et al.15
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Figure 1. Overall Framework of Meta-4mCpred

Overview of the proposed methodology for predicting

4mCs in multiple species, which involves the following

steps: (1) benchmark dataset construction for six different

species; (2) extraction of seven feature encodings that

characterize different aspects of DNA sequences and

generation of 14 feature descriptors; (3) generation of a

56-dimensional feature vector using a feature represen-

tation learning scheme; and (4) construction of the final

prediction model for each species that separates the input

into putative 4mCs and non-4mCs.
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developed a support vector machine (SVM)-based tool, iDNA4mC,
where nucleotide (NT) chemical properties and frequencies were
used as features to build the prediction model. The results demon-
strated that the tool predicted 4mC sites from non-4mC sites effec-
tively and showed good performance in cross-species validations.
Recently, two novel predictors, 4mCPred16 and 4mcPred-SVM,17

were developed for 4mC site identification. In 4mCPred, the posi-
tion-specific trinucleotide propensity and electron-ion interaction
potential were utilized as features and predictive models were con-
structed using the SVM method. Meanwhile in 4mcPred-SVM, four
sequence-based feature descriptors were integrated and a two-step
feature optimization protocol was utilized along with an SVM clas-
sifier to construct the prediction models. Even though the above-
mentioned approaches consistently perform well, they may fail in
terms of generalizability, thus demanding the development of a
novel predictor for effective 4mC site detection with reliable
transferability.

In this report, we propose a novel meta-predictor, Meta-4mCpred,
for accurate 4mC site identification. The overall framework of our
methodology is shown in Figure 1. First, we employed a feature rep-
resentation scheme and generated 56 probabilistic features based on
four ML algorithms (SVM, random forest [RF], gradient boosting
[GB], and extremely randomized tree [ERT] algorithms) and seven
feature encodings (k-mer composition, binary profile [BPF], dinu-
cleotide binary profile encoding [DPE], local position-specific
dinucleotide frequency [LPDF], ring-function-hydrogen-chemical
properties [RFHC], dinucleotide physicochemical properties
[DPCP], and trinucleotide physicochemical properties [TPCP]).
Second, we inputted these probabilistic features into an SVM and
developed a final prediction model. During cross-validation, Meta-
4mCpred achieved the best average accuracy of 84.2% when
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compared to the state-of-the-art predictors.
Furthermore, our method significantly outper-
formed the existing predictors on independent
datasets, with an average accuracy of 86.0%.
This characteristic represents the greatest
advantage of our approach, highlighting the su-
perior generalizability of our model. To the
best of our knowledge, this study is the first
in which a meta-based approach has been
applied for 4mC site prediction. Henceforth, we believe that our
approach will be useful and reliable for predicting 4mC sites and
could be utilized for data from other species as well.

RESULTS AND DISCUSSION
Evaluation of Various Classifiers on Feature Learning Models

In this study, we generated 14 feature descriptors using seven
different feature encodings (Table S1) that represents sequence in-
formation in different perspective. To examine each feature
descriptor contribution in classifying 4mCs from non-4mCs, we
conducted a 10-time randomized 10-fold cross-validation (CV)
test for each feature descriptor by employing six commonly used
ML algorithms or classifiers, namely, SVM, RF, ERT, GB, AdaBoost
(AB), and k-nearest neighbor (KNN) algorithms. We obtained 84
prediction models for each species using six different ML algorithms
and 14 feature descriptors. In total, 504 prediction models (84 � 6)
were obtained for multiple species, whose performances are shown
in Figure 2. Our results revealed that four feature sets (FSs), namely,
F6 (BPF), F7 (RFHC), F8 (a combination of DPE and LPDF), and
F14 (a combination of BPF and RFHC), produced significantly bet-
ter performance in each species regardless of the ML algorithm,
when compared to the remaining 10 features, indicating that NT
profiles and ring function properties appeared to be the most
powerful encodings in 4mC site prediction. However, the remaining
properties also contributed to a certain extent with slightly lower ac-
curacy (ACC), which could be still regarded as useful descriptors
because they represent complementary features from a different
perspective. Next, we examined the best performance of individual
ML classifiers, where RF, SVM, GB, and AB algorithms achieved
their highest ACC values using F6 features; however, the ERT and
KNN algorithms produced their highest ACC values using F14
in multiple species. Regarding overall performance for multiple



Figure 2. Accuracies of the Six Different ML Classifiers in Distinguishing between 4mCs and Non-4mCs with Respect to 14 Feature Descriptors

(A) C. elegans, (B) D. melanogaster, (C) A. thaliana, (D) E. coli, (E) G. subterraneus, and (F) G. pickeringii.

www.moleculartherapy.org
species, the ERT, RF, SVM, GB, AB, and KNN algorithms, respec-
tively, achieved average ACC values of 82.5%, 82.0%, 81.0%, 80.2%,
78.2%, and 78.0%, indicating that the predictive model trained with
the ERT classifier and F14 descriptor had more discriminative po-
wer in 4mC and non-4mC classification.

Instead of selecting the best model from Figure 2 for each species,
we used all of the model outputs for meta-predictor construction
and thereby considered diverse and complementary sequence infor-
mation. As we employed six different ML algorithms, it was neces-
sary to determine which algorithm-based prediction model output
was better suited in developing meta-predictor. To this end, we
examined the overall performance of each method. We found that
the overall performance topologies of the ERT, GB, RF, and SVM
algorithms were mostly similar for multiple species (Figure 2) and
were better than those of the other two methods (the KNN and
AB algorithms). Therefore, we considered the outputs of only four
ML models (the ERT, RF, GB, and SVM models) for further
analysis.

Meta-4mCpred Construction

Generally, meta-predictors take input from the outputs of different
predictors under the assumption that the combined method will pro-
vide more accurate results than a single predictor.18–21 As mentioned
above, we considered only four ML-based algorithms, whose pre-
dicted 4mC site probabilities were used as inputs for meta-predictor
construction. Specifically, we obtained 56 prediction models from
these four methods, where each method contained exactly 14 predic-
tion models. The predicted 4mC site probabilities acquired from these
56 models were given as inputs to the SVM algorithm, and a final
model was developed for each species, whose corresponding perfor-
mances are shown in Table 1. In addition to the SVM method, we
explored five other ML methods (the RF, ERT, GB, AB, and KNN
methods), whose performances are listed in Table S2. Unlike the base-
line prediction performances, the overall performances exhibited no
significant differences among the six ML algorithms; however, the
SVM algorithm was slightly superior to the other methods with an
overall average ACC �1% higher than those obtained using the RF,
ERT, GB, and AB algorithms and �2% higher than that resulting
from using the KNN method. Hence, we selected SVM-based
model for each species and named our developed meta-predictor
Meta-4mCpred.

To demonstrate the advantages of our meta-predictor, we compared
its performance with that of the best model obtained from the base-
line predictors. Figure 3 shows that the overall average ACC obtained
using Meta-4mCpred is �2%, 2.3%, 3.4%, 4%, 5.7%, and 6.2% higher
than those resulting from using the ERT, RF, SVM, GB, AB, and KNN
methods, respectively, thus highlighting the superiority of our pro-
posed method.

Feature Contribution Analysis

The improved performance of Meta-4mCpred is mainly due to
the features obtained through the feature learning scheme. To
understand this phenomenon, we computed the t-distributed sto-
chastic neighbor embedding (t-SNE) implemented in Scikit with
the default parameters (n_components = 2, perplexity = 30, and
learning rate = 1,000) for each feature encoding. Basically, we
Molecular Therapy: Nucleic Acids Vol. 16 June 2019 735

http://www.moleculartherapy.org


Table 1. Performance of Meta-4mCpred on Benchmark Dataset

Species MCC ACC Sn Sp AUC

C. elegans 0.652 0.826 0.840 0.812 0.892

D. melanogaster 0.685 0.842 0.831 0.854 0.904

A. thaliana 0.584 0.792 0.761 0.822 0.861

E. coli 0.697 0.848 0.869 0.827 0.911

G. subterruneus 0.711 0.855 0.856 0.854 0.904

G. pickeringii 0.782 0.891 0.884 0.898 0.951

MCC, Matthews correlation coefficient; ACC, accuracy; Sn, sensitivity; Sp, specificity;
AUC, area under curve.
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compared 56 probabilistic feature vector with the top five individual
feature descriptors that exhibited consistent performance in the
baseline prediction (BPF, RFHC, DPE+LPDF, DPCP, and TPCP).
Figure 4 shows the distributions of the positive and negative sam-
ples in the Geobacter pickeringii dataset in a two-dimensional space.
Figures 4A–4E depict the 4mC and non-4mC sites of five feature
descriptors, where the positive and negative samples overlap in
the feature space, indicating that the original feature is less capable
of discriminating between the positive and negative samples.
Conversely, there is a clear distinction between the positive and
negative samples for the 56-dimensional vector, although a few sam-
ples overlap (Figure 4F). This result demonstrates that 4mCs and
non-4mCs present in a 56-dimensional vector can be differentiated
more easily than when using other feature spaces, thus enhancing
the performance. Furthermore, we computed t-SNE distributions
for the other five species (Figures S1–S5) and observed trends
similar to those resulting from using the G. pickeringii dataset.
Our feature learning protocol proved effective due to the easy trans-
formation from a high-dimensional feature space into a low-dimen-
sional one, thereby expediting the prediction process and extending
its applicability to genome-wide predictions.

Comparison of Meta-4mCpred with the State-of-the-Art

Predictors

We compared the performance of Meta-4mCpred with three state-
of-the-art predictors, namely, iDNA4mC, 4mcPred-SVM, and
4mCPred, which were developed using the same benchmark datasets.
The prediction performances reported for iDNA4mC15 and
4mcPred-SVM17 were utilized as such for the comparison. Mean-
while, Wei et al.17 found that the predictions reported for 4mCPred16

might have been over-estimates; hence, they rebuilt those models and
reported the performance of 4mcPred-SVM. Therefore, we used the
same values for 4mCPred as were reported for 4mcPred-SVM for
the comparison.

Table S3 and Figure 5 show the performances of the various methods
on the benchmark datasets, where Meta-4mCpred performed better
than the existing methods both in terms of Matthews correlation
coefficient (MCC) and ACC for five out of six species (Drosophila
melanogaster, Arabidopsis thaliana, Escherichia coli, Geoalkalibacter
subterraneus, and G. pickeringii). However, in the case of Caenorhab-
736 Molecular Therapy: Nucleic Acids Vol. 16 June 2019
ditis elegans, the performance of Meta-4mCpred is identical to that of
4mCPred. The most notable improvements by Meta-4mCpred are
observable for four species in terms of both MCC and ACC. Our
method achieved ACC and MCC values respectively 3.1% and 6.1%
higher for G. pickeringii, 1.8% and 3.7% higher for G. subterraneus,
1.5% and 3.1% higher for E. coli, and 1.2% and 2.4% higher for
D. melanogaster than the second-best predictor, 4mcPred-SVM. Sur-
prisingly, all of these predictors are based on the SVM approach; how-
ever, the features used in each method are entirely different. For
instance, iDNA4mC uses RFHC;15 4mcPred-SVM uses partial infor-
mation about k-mer composition, BPF, DPE, and LPDF;17 and
4mCPred uses the position-specific trinucleotide propensity.16

Meanwhile, Meta-4mCpred uses 56 probabilistic features obtained
from a feature learning scheme based on four differentML algorithms
and various features, including most of the existing features (k-mer,
BPF, DPE, LPDF, and RFHC) and newly explored ones (DPCP and
TPCP). It is reasonable to assume that our features are more discrim-
inative than the previously used features, enabling the key character-
istics distinguishing 4mCs from non-4mCs to be captured and better
prediction to be achieved.

Performance Assessment of Various Tools Based on the

Independent Datasets

To check the prediction model’s generalization ability or robust-
ness, it is essential to evaluate these models on independent data-
sets. To make a fair comparison, we included only three methods,
including Meta-4mCpred, 4mCPred, and 4mcPred-SVM, where
each method has a separate prediction model for each species.
The reason for excluding iDNA4mC from this evaluation is
that it has only one prediction model made available in the
web server.

Table 2 shows the performances of three methods on the indepen-
dent datasets, where Meta-4mCpred performed better than the
existing methods both in terms of MCC and ACC for four out
of six species (A. thaliana, D. melanogaster, G. subterraneus, and
G. pickeringii). However, in the case of C. elegans and E. coli,
Meta-4mCpred and 4mCPred showed a similar performance. The
most notable improvements by Meta-4mCpred are observable for
three species in terms of both MCC and ACC. Our method
achieved ACC and MCC values, respectively 3.9% and 7.6% higher
for G. subterraneus, 9.2% and 18.5% higher for G. pickeringii, and
3.1% and 6.2% higher for A. thaliana, than the second-best predic-
tor, 4mcPred-SVM. Furthermore, McNemar’s chi-square test22 was
applied to find the statistical significance between Meta-4mCpred
and the existing predictors. At a p value threshold of 0.05, Meta-
4mCpred significantly outperformed other two methods in three
species (G. subterraneus, G. pickeringii, and A. thaliana) and signif-
icantly outperformed only 4mCpred in the remaining two out of
three species (C. elegans and D. melanogaster). In terms of overall
performance, existing methods, such as 4mcPred-SVM and
4mCPred, achieved a similar performance with an average accu-
racy of 81.6% and 82.1%. However, the corresponding value of
Meta-4mCpred is 86%, indicating significant improvement over



Figure 3. Performance Comparison of Meta-4mCpred and Baseline Predictors from Six Different ML Algorithms in terms of MCC, ACC, Sn, and Sp

(A) C. elegans, (B) D. melanogaster, (C) A. thaliana, (D) E. coli, (E) G. subterraneus, and (F) G. pickeringii.
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the existing methods. The significant improvement of Meta-
4mCpred is mainly due to the following characteristics: (1) our
feature learning model integrates not only NT composition and
NT position-specific information, but also physicochemical proper-
ties and ring function, which provide diverse sequence information
that can be utilized to construct effective feature representation
models, and (2) the final model uses 4mC site prediction probabil-
ities from the original feature descriptors, thereby reducing the
actual high-dimensional feature space into a low-dimensional
feature space with more discrimination between positive and nega-
tive samples.

Web Server Implementation

Generally, user-friendly web servers have been helpful for experi-
mentalists, where they can do the prediction without going
through mathematical equations, and also it represents the future
direction for developing novel and more useful predictors.23

Indeed, it has been demonstrated by a series of publications.24–27

Therefore, we established a user-friendly webserver, Meta-
4mCpred, for use by a wider research community. This web server
is freely accessible at http://thegleelab.org/Meta-4mCpred. Below,
we provide step-by-step guidelines on how to use our web server
to obtain the predicted outcomes. First, the user chooses the
desired species. Second, the user enters the query sequences into
the input box. Note that the input sequences should be in FASTA
format. Examples of FASTA-formatted sequences can be seen by
clicking on the FASTA format button located above the input
box. Finally, clicking on the “submit” button provides the pre-
dicted results as output.
Conclusions

In this study, we developed a novel meta-predictor for 4mC site pre-
diction called Meta-4mCpred. To build an efficient predictive model,
we applied a feature representation learning scheme and generated 56
probabilistic features based on four different ML algorithms and
seven feature encodings covering diverse sequence information,
including compositional, physicochemical, and NT position-specific
information. Subsequently, these features were used as SVM input
and a final meta-predictor was developed. Indeed, this is the first
meta-predictor for 4mC site prediction. Furthermore, the 56 features
obtained from the feature learning scheme are more capable of
discriminating between 4mC and non-4mC in the feature
space, thus providing significant improvement compared to several
currently available feature descriptors.

We further compared the performance of the proposed predictor
with those of three state-of-the art predictors (iDNA4mC,
4mcPred-SVM, and 4mCPred) both on a benchmark and indepen-
dent datasets. The results show that the overall performance of
Meta-4mCpred was better than those of the other methods on the
benchmark datasets and significantly better in independent evalua-
tion, indicating that the proposed method is more effective and
promising for 4mC site identification. As an application of this
work, we made our web server publicly available for the wider com-
munity to use. We expect that Meta-4mCpred will be a useful
and reliable computational tool for predicting 4mC sites and facili-
tating DNA methylation analysis. The scheme employed in our
current method is a general one that can be employed to address
various sequence-based prediction problems, including enhancer
Molecular Therapy: Nucleic Acids Vol. 16 June 2019 737
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Figure 4. t-SNE Visualization of the G. pickeringii Dataset in a Two-Dimensional Feature Space

The orange circles and sky-blue diamonds represent 4mCs and non-4mCs, respectively. (A) BPF, (B) RFHC, (C) DPE+LPDF, (D) DPCP, (E) TPCP, and (F) the 56-dimensional

feature obtained by feature learning (FL)
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prediction,28 recombination hotspot prediction,29 transcriptional
terminator prediction,30 and protein function prediction.31,32

Furthermore, our method could be integrated with genomic features
extracted from RNA-sequencing (RNA-seq)33 and chromatin
immunoprecipitation (ChIP)-seq,34 and exploring other powerful
ML algorithms35 will greatly improve the 4mC predictions.

MATERIALS AND METHODS
A flowchart of the Meta-4mCpred methodology is shown in Figure 1
and consists of four major steps: (1) benchmark dataset construction;
(2) extraction of features that represent the different aspects of the
sequence information; (3) feature representation learning; and (4)
construction of themeta-predictor for each species. These major steps
are described individually in the following sections.

Dataset Construction

We utilized the datasets constructed by Chen et al.,15 which were spe-
cifically used to classify 4mCs and non-4mCs. The reasons for consid-
ering these datasets are as follows: (1) the authors constructed reliable
datasets based on the MethSMRT database;36 (2) the datasets are
nonredundant and none of the sequences share more than 80% of
their pairwise sequence identities with other sequences, thereby
avoiding overestimation in the computational model; and (3) these
datasets enabled fair comparison between the proposed method
and the existing method, which was developed using the same data-
sets. These datasets contain 14,328 sequences derived from six
different species. Of those, C. elegans, D. melanogaster, A. thaliana,
738 Molecular Therapy: Nucleic Acids Vol. 16 June 2019
E. coli, G. subterraneus, and G. pickeringii contain equal numbers of
positive (4mC 1554, 1769, 1978, 388, 906, and 569, respectively)
and negative (non-4mC) samples. All of the positive and negative
samples are 41 bp long with cytosine located at the central position.
It should be noted that we excluded one positive sample from
G. subterraneus because it had a non-standard bp and considered
the remaining 14,327 sequences.

To evaluate our prediction models along with the existing methods,
we constructed the independent datasets for six different species us-
ing the same protocol as mentioned in previous study.15 The positive
samples for six species obtained from MethSMRT, where each
positive sample containing modification QV score greater than 30,
indicating a position as modified. Finally, we obtained 750,
1,000, 1,250, 134, 350, and 200 4mCs, respectively, from C. elegans,
D. melanogaster, A. thaliana, E. coli, G. subterraneus, and
G. pickeringii genomes. Furthermore, the positive samples were sup-
plemented with equal numbers of negative samples for each species
using the same procedure as mentioned in a previous study.15

Notably, none of these positive and negative samples from each spe-
cies share a sequence identity of greater than 70% within each species
of independent dataset and also benchmark dataset.

DNA Feature Representation

An NT sequence is represented as

D= b1; b2; b3;.bL; (Equation 1)



Figure 5. Performance Comparison of Meta-4mCpred and Three State-of-the-Art Predictors on Six Benchmark Datasets from Multiple Species

(A) C. elegans, (B) D. melanogaster, (C) A. thaliana, (D) E. coli, (E) G. subterraneus, and (F) G. pickeringii.
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where b1, b2, and b3, respectively, denote the first, second, and third
base pairs in the DNA sequence, and so forth, and L denotes the
NT sequence length. Note that base pair bi is an element of the stan-
dard NTs (adenine [A], thymine [T], guanine [G], and cytosine [C]).
In this study, we explored various features, including k-mer compo-
sition, BPF, DPE, LPDF, RFHC, DPCP, and TPCP, which cover
various aspects of the sequence information and can be described
as follows.

k-mer NT Composition

Generally, the frequency of a k-tuple of NTs is one way of represent-
ing DNA sequences that has been widely used as an input feature in
various prediction problems.37–39 In this study, we considered mono-
(MNC), di- (DNC), tri- (TNC), tetra- (TeNC), and penta-nucleotide
compositions (PNC), respectively encoded as vectors containing 4,
16, 64, 256, and 1,024 elements.
BPF

As mentioned above, there are four different NTs in the
standard DNA alphabet. Each NT type is encoded with a feature
vector (FV) composed of 0 and 1. Specifically, A is encoded
as P(A) = (1, 0, 0, 0), T is encoded as P(T) = (0, 1, 0, 0), G is encoded
as P(G) = (0, 0, 1, 0), and C is encoded as P(C) = (0, 0, 0, 1). Subse-
quently, for a given DNA sequence D with a length of k (k = 41),17,40

the base pairs can be encoded using the following FV:

BPFðkÞ= ½Pðb1Þ; Pðb2Þ; Pðb3Þ;.PðbLÞ�: (Equation 2)

Thus, the dimension of BFP(k) is 4 � 41 = 164 features.
DPE

In DPE,17,40 each dinucleotide type is encoded as a four-dimensional
vector containing 0 and 1. For instance, AA is encoded as (0, 0, 0, 0),
AC is encoded as (0, 0, 1, 0), AT is encoded as (0, 0, 0, 1), and so on.
Therefore, the dimension of DPE for a given DNA sequence is a 160
(4 � 40)-dimensional vector.

LPDF

The LPDF can be calculated as follows:

f =
1

jNi j CðXi�1XiÞ; 2%i%L; (Equation 3)

where jNij is the length of the ith prefix string {X1X2X3.Xi} in the
given sequence and C(Xi-1Xi) is the occurrence number of dinucleo-
tide Xi-1Xi in position i of the i

th prefix string. The LPDF is encoded as
40-dimensional vector for a given DNA sequence.17,40
RFHC

DNA consists of four NTs (A, T, G, and C) that have different chem-
ical properties based on their rings, functional groups, and hydrogen
bonds.15,21,41–43 In terms of ring structure, the purines (A and G) and
pyrimidines (C and G), respectively, contain two rings and one ring.
In terms of secondary structures, A and T form weak hydrogen bonds
and are allotted to one group, whereas C and G form strong hydrogen
bonds and are allotted to another group. Regarding chemical func-
tionality, A and C can be assigned to the amino group, while G and
T can be assigned to the keto group. To convert these properties
into FVs, three coordinates (x, y, z) were used to represent the
Molecular Therapy: Nucleic Acids Vol. 16 June 2019 739
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Table 2. Performances of the Proposed Meta-4mCpred and Two State-of-Art Predictors, 4mCPred and 4mcPred-SVM, on Six Independent Datasets from

Different Species

Species Predictors MCC ACC Sn Sp TP FN FP TN p Value

C. elegans

4mCPred 0.731 0.865 0.883 0.849 666 84 118 632 0.670

4mcPred-SVM 0.684 0.842 0.828 0.856 621 129 108 642 0.001*

Meta-4mCpred 0.741 0.870 0.843 0.897 632 118 77 673 –

D. melanogaster

4mCPred 0.803 0.900 0.933 0.868 933 67 132 868 0.465

4mcPred-SVM 0.771 0.886 0.886 0.885 886 114 115 885 0.030*

Meta-4mCpred 0.812 0.906 0.913 0.899 913 87 101 899 –

A. thaliana

4mCPred 0.632 0.816 0.842 0.789 1,053 197 264 986 <0.00001*

4mcPred-SVM 0.649 0.824 0.842 0.806 1,053 197 242 1,008 <0.00001*

Meta-4mCpred 0.711 0.855 0.876 0.834 1,095 155 207 1,043 –

E. coli

4mCPred 0.634 0.817 0.851 0.784 114 20 29 105 0.887

4mcPred-SVM 0.569 0.784 0.746 0.821 100 34 24 110 0.132

Meta-4mCpred 0.650 0.825 0.806 0.843 108 26 21 113 –

G. subterruneus

4mCPred 0.578 0.789 0.757 0.820 265 85 63 287 <0.00001*

4mcPred-SVM 0.624 0.811 0.783 0.840 274 76 56 294 <0.00001*

Meta-4mCpred 0.701 0.850 0.817 0.883 286 64 41 309 –

G. pickeringii

4mCPred 0.503 0.742 0.610 0.875 122 78 25 175 <0.00001*

4mcPred-SVM 0.515 0.758 0.750 0.765 150 50 47 153 <0.00001*

Meta-4mCpred 0.700 0.850 0.835 0.865 167 33 27 173 –

MCC, Matthews correlation coefficient; ACC, accuracy; Sn, sensitivity; Sp, specificity; TP, true positive; FN, false negative; FP, false positive; TN, true negative. The last column
represents McNemar’s Chi-squared test, which was used to evaluate the performance between Meta-4mCpred and other methods. *A p value < 0.05 was considered to indicate a
statistically significant difference between Meta-4mCpred and the selected method.
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chemical properties of the four NTs and values of 0 and 1 were as-
signed to the coordinates. The three coordinates respectively describe
the ring structure, hydrogen bond, and chemical functionality, where
each NT can be encoded as follows:

xi =

�
1; if Si ˛ fA;Gg
0; if Si ˛ fT;Cg ; yi =

�
1; if Si ˛ fA;Tg
0; if Si ˛ fC;Gg ;

zi =

�
1; if Si ˛ fA;Cg
0; if Si ˛ fT;Gg ; :

(Equation 4)

Therefore, A, C, G, and T can be represented by the coordinates
(1, 1, 1), (0, 0, 1), (1, 0, 0), and (0, 1, 0), respectively.

To include the NT compositions surrounding 4mC or non-4mC sites,
the density method was employed to measure the importance be-
tween frequency and position, using the following definition:

di =
1

jNi j
XL

j= 1

f
�
nj
�
; f
�
nj
�
=

�
1; if nj = q
0; otherwise

; (Equation 5)

where di is the density of NT i, jNij is the length from the current NT
position to the first NT, and q is any one of the four standard NTs. By
integrating the NT chemical properties and NT composition
(combining Equations 4 and 5), a 41-NT sequence will be encoded
as a 164 (4 � 41)-dimensional vector.
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DPCP

In this study, we used 15 physicochemical properties: PC1, F-roll;
PC2, F-tilt; PC3, F-twist; PC4, F-slide; PC5, F-shift; PC6, F-rise;
PC7, roll; PC8, tilt; PC9, twist; PC10, slide; PC11, shift; PC12, rise;
PC13, energy; PC14, enthalpy; and PC15, entropy. Table S4 summa-
rizes the values of these 15 physicochemical properties for each dinu-
cleotide, which were normalized to the range of [0, 1] according to the
formula described in Manavalan et al. 44 prior to the following calcu-
lation. The DPCP can be formulated as follows:

DPCPðiÞ = normalized frequency of dinucleotideðiÞ � PCðXiÞ;
(Equation 6)

where X is one of the 15 physicochemical properties, and i is one of
the 16 dinucleotides. The DPCP are encoded as a 240 (16 � 15)-
dimensional vector.
TPCP

We used the following 11 physicochemical properties: PC1, bendabil-
ity (DNase); PC2, bendability (consensus); PC3, trinucleotide GC
content; PC4, nucleosome positioning; PC5, consensus (roll); PC6,
consensus (rigid); PC7, DNase I (rigid); PC8, molecular weight
(daltons); PC9, nucleosome (rigid); PC10, nucleosome; and PC11,
DNase I. Table S5 shows the values of these 11 physicochemical prop-
erties for each trinucleotide, which were normalized as described
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above prior to the following calculation. The TPCP can be formulated
as follows:

TPCPðiÞ = normalized frequency of trinucleotideðiÞ � PCðXiÞ;
(Equation 7)

where X is one of 11 physicochemical properties, and i is one of the
trinucleotides. The TPCP are encoded as a 704 (64� 11)-dimensional
vector.

ML Algorithms Implemented in Meta-4mCpred

Meta-4mCpred utilizes four different ML algorithms, namely, the
SVM, RF, ERT, and GB algorithms, which were implemented using
the Scikit-Learn package (v0.18).45 Brief descriptions of these
methods and how they were used in this study are provided in the
following sections.

SVM

The SVM algorithm is one of the most widely used ML algorithms in
computational biology.20,39,42,43,46–51 It finds the optimal hyperplane
with the largest margin that minimizes the misclassification rate.52

Basically, the given input features are mapped into a high-dimen-
sional space using kernel functions, and a hyperplane is found that
maximizes the distance between the hyperplane and two classes.
We experimented with different kernel functions, including linear
functions, polynomial functions, and Gaussian radial basis functions
(RBFs) and found that the RBF kernel was appropriate for this prob-
lem. Two critical parameters, C (controls the trade-off between the
training error and margin) and g (controls how peaked Gaussians
are centered on the support vectors), require optimization in the
RBF-SVM algorithm. Therefore, we optimized these parameters us-
ing the following ranges:�
2�5 %C% 215 with step DC = 2
2�15 %g% 2�5 with step Dg = 2�1 (Equation 8)

RF

The RF algorithm53 is one of the most popular ML algorithms
and has been widely applied in computational biology and bioinfor-
matics.44,49,54–57 It utilizes an ensemble of decision trees to perform
both classification and regression. In the RF algorithm, three key pa-
rameters are the number of trees (ntree), the number of randomly
selected features (mtry), and the minimum number of samples
required to split an internal node (nsplit). A grid search was em-
ployed to fine-tune these parameters with the following search
space:8<
:

50% ntree% 2000 with step Dntree = 25
1%mtry% 15 with step Dmtry = 1
1% nsplit% 12 with step Dnsplit = 1

: (Equation 9)

ERT

The ERT algorithm is a commonly used ML algorithm and utilizes an
ensemble of decision trees to solve classification and regression
problems.58 It has been applied to solve numerous biological
problems.49,55,59,60 The objective of the ERT algorithm is to decrease
the prediction model variance further by considering randomization
techniques. Although the working principle of the ERT algorithm is
similar to that of the RF algorithm, it has the following differences:
(1) the ERT algorithm utilizes all of the input data to construct a
tree instead of the bagging procedure applied in the RF algorithm
and (2) unlike in the RF algorithm, the node selection for splitting
is fully random in the ERT algorithm. Grid searches were performed
by evaluating various combinations of three regularization parame-
ters, namely, ntree, mtry, and nsplit, using the benchmark dataset
and 10-fold CV. The search space for ntree, mtry, and nsplit is as
follows:

8<
:

40% ntree% 1000 with step Dntree = 20
1%mtry% 15 with step Dmtry = 1
1% nsplit% 10 with step Dnsplit = 1

: (Equation 10)

GB

GB61 is a forward learning ensemble approach, which is suitable for
both classification and regression problems. The final strong predic-
tion models given by GB based on ensembles of weak models
(decision trees) have been widely used in bioinformatics.55,62 GB
consecutively fits new models to provide more accurate response
variable estimates than other ensemble methods, such as the RF
and ERT algorithms. In GB, the three most influential parameters
are ntree, mtry, and nsplit, which were optimized using the following
search space:

8<
:

50% ntree% 1000 with step Dntree = 25
1%mtry% 10 with step Dmtry = 1
1% nsplit% 6 with step Dnsplit = 1

: (Equation 11)

CV

In general, three CV methods are often used to evaluate the antici-
pated success rate of a predictor: independent dataset, sub-sampling
(or k-fold CV), and jackknife tests. Among these, the jackknife test
is recognized as the least arbitrary and most objective one, as demon-
strated by Equations 28–32 in Chou63, and hence has been widely
recognized and increasingly adopted by investigators to examine
the quality of various predictors.15,46,64–74 In the jackknife test, each
sequence in the training dataset is singled out as an independent
test sample in turn and all of the rule parameters are calculated,
excluding the one being identified. To reduce the computational
time, we adopted 10-fold CV, as employed in previous
studies.17,55,75,76 In 10-fold CV, a dataset is first randomly partitioned
into 10 subsets of equal size. Of these, nine subsets are chosen as
training data to train a predictive model, while the remaining subset
is retained as validation data to test the model. This process is
repeated 10 times, with each of the 10 subsets used exactly once as
the validation data. Finally, the 10 results are averaged to obtain a final
prediction.
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Feature Representation Learning Scheme

Feature learning scheme has been successfully implemented in
various sequence-based prediction problems, including anticancer
peptide,20 cell-penetrating peptide,19 quorum-sensing peptide,77

and antihypertensive peptide18 predictions. The same protocol was
employed in this study, representing its first application to DNA se-
quences, as described in the following sections.

Initial Feature Pool Generation

As mentioned above, we extracted seven feature encoding schemes
based on the composition, physicochemical properties, and profiles,
including k-mer composition, BPF, DPE, LPDF, RFHC, DPCP, and
TPCP. For k-mer composition, there were five different FSs; MNC,
DNC, TNC, TeNC, and PNC). Most of these features were used as
such, and a set of hybrid features was generated based on different
combination of the above feature encodings. Finally, we generated
14 FSs, which are listed in Table S1. For clarity, the jth FS is repre-
sented as FSj (j = 1, 2, 3, ., 14).

Feature Learning Models

For each FSj (j = 1, 2, 3, ., 14), the following four ERT-, RF-,
SVM-, and GB-based prediction models were developed, repre-
sented as ML(FSj), using the benchmark dataset and 10-fold CV.
Generally, one application of 10-fold CV could produce biased
ML parameters. Therefore, we applied 10-fold CV three more
times by random partitioning and considered the median values
as the optimal ML parameters. Finally, we obtained 56 prediction
models (14 � 4 ML algorithms) and considered them as the base-
line models.

Learning a New FV for Meta-Predictor Construction

For a given DNA sequenceD, we used each baseline modelML(FSj) to
predict the probability of 4mCs, whose value was between 0 and 1.
The probability predicted using each model was subsequently em-
ployed as a feature. In our experiment, predicted probabilities R

0.5 were designated as 4mCs, and the others were non-4mCs. Finally,
D was encoded with a new FV by concatenating all of the features
generated by the 56 models, which can be represented as

FVðDÞ=YðP;MLðFS1ÞÞ;YðP;MLðFS2ÞÞ;.YðP;MLðFSS6ÞÞ :
(Equation 12)

Here, FV(D) is the FV for a given D, and Y(P, ML(FSj)) is the pre-
diction probability of each model for D. Finally, FV contains 56
probabilistic features, which was subsequently used as input to the
SVM and developed the final meta predictor separately for each
species.

Performance Evaluation

We used four different measures that are commonly used in
binary classification tasks to evaluate the performances of the
models:46,65,78–80 sensitivity, Sn; specificity, Sp; accuracy, ACC; and
the Matthews correlation coefficient, MCC. These measures can be
calculated as follows:
742 Molecular Therapy: Nucleic Acids Vol. 16 June 2019
8>>>>>>>>>>>><
>>>>>>>>>>>>:

Sn =
TP

TP+ FN

Sp =
TN

TN+ FP

ACC =
TP+TN

TP+TN+ FN+ FP

MCC =
TP� TN� FP� FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTP+ FNÞðTP+ FPÞðTN+ FPÞðTN+ FNÞp

;

(Equation 13)

where TP is the number of true positives, i.e., 4mCs classified
correctly as 4mCs; TN is the number of true negatives, i.e., non-
4mCs classified correctly as non-4mCs; FP is the number of false
positives, i.e., 4mCs classified incorrectly as non-4mCs; and FN is
the number of false negatives, i.e., non-4mCs classified incorrectly
as 4mCs.
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