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Abstract
Assessing the degree to which climate explains the spatial distributions of different  
taxonomic and functional groups is essential for anticipating the effects of climate change 
on ecosystems. Most effort so far has focused on above-ground organisms, which  
offer only a partial view on the response of biodiversity to environmental gradients. 
Here including both above- and below-ground organisms, we quantified the degree of 
topoclimatic control on the occurrence patterns of >1,500 taxa and phylotypes along a  
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1  | INTRODUC TION

Climate defines the spatial distribution of a wide range of organ-
isms, and the need to understand this relationship is particularly 
revived by the current threat of climate change on ecosystems 
(Illan, Gutierrez, & Wilson, 2010; Lenoir & Svenning, 2015; Miller 
et al., 2018; Pacifici et al., 2015; Parmesan & Yohe, 2003; Scherrer & 
Körner, 2011; Steidinger et al., 2019; Woodward & Williams, 1987). 
In addition to their recognized ecological effects, the prevalent use 
of average annual, seasonal or monthly air temperature- and pre-
cipitation-related factors in many studies is common because they 
are freely available (e.g. CHELSA; Karger et al., 2017), with existing 
robust future scenarios (IPCC, 2014). Such macroclimate data are 
often associated with topographic variables that are easily derived 
from digital elevation models (DEM; Amatulli et al., 2018) to model 
topoclimate and to describe topography-related habitat characteris-
tics concerning, for example, the distribution of energy (Wang, Qiu, 
Wang, Wang, & Liu, 2014) and water (Moeslund et al., 2013).

Topoclimatic factors, albeit not capturing microclimatic variations 
at very fine spatial resolutions (Boulangeat, Gravel, & Thuiller, 2012; 
Lembrechts, Lenoir, et al., 2019; Mod, Scherrer, Luoto, & Guisan, 2016; 
Niittynen, Heikkinen, & Luoto, 2018; Scherrer & Guisan, 2019), are 
important drivers of species distributions. Yet, how their importance 
varies among taxonomic groups is largely unknown. Most studies on 
the effects of topoclimate on the distributional patterns of organ-
isms are strongly biased towards a few taxonomic groups (Table 1; 
Kharouba, McCune, Thuiller, & Huntley, 2013). For instance, plants and 
some iconic groups of vertebrates and insects have been extensively 
studied with varying methodologies ranging from basic observational 
approaches to complex frameworks (Bateman, VanDerWal, Williams, 
& Johnson, 2012; Bradie & Leung, 2017; Illan et al., 2010; Lawrence 
et al., 2014; Miller et al., 2018; Mod & Luoto, 2016; Roberts, Nielsen, 
& Stenhouse, 2014; Seoane, Bustamante, & Diaz-Delgado, 2004; 
Staniczenko, Sivasubramaniam, Suttle, & Pearson, 2017), but com-
paratively fewer attempts have been made to assess the drivers of 

distributions of soil microorganisms (Bradie & Leung, 2017; Lenoir 
et al., 2020; Lenoir & Svenning, 2015; Pacifici et al., 2015)—likely due to  
previous methodological limitations (Riesenfeld, Schloss, & Handelsman, 
2004) and, for some groups (e.g. soil protists), to a lower sampling ef-
fort (Caron, Worden, Countway, Demir, & Heidelberg, 2008; Geisen 
et al., 2017, 2018; Seppey et al., 2020; Wilkinson, 1998). Existing 
studies have evidenced the importance of soil characteristics, such 
as pH, nutrient content and moisture availability, for explaining the 
diversity, biomass and community structure of microorganisms in 
soils (Bahram et al., 2018; Bates et al., 2013; Fierer & Jackson, 2006; 
Serna-Chavez, Fierer, & van Bodegom, 2013; Tedersoo et al., 2014). 
Furthermore, soil temperature has been shown to be decoupled from 
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c. 3,000 m elevation gradient, by fitting species distribution models. Higher model per-
formances for animals and plants than for soil microbes (fungi, bacteria and protists) 
suggest that the direct influence of topoclimate is stronger on above-ground species 
than on below-ground microorganisms. Accordingly, direct climate change effects are 
predicted to be stronger for above-ground than for below-ground taxa, whereas factors  
expressing local soil microclimate and geochemistry are likely more important to explain 
and forecast the occurrence patterns of soil microbiota. Detailed mapping and future 
scenarios of soil microclimate and microhabitats, together with comparative studies 
of interacting and ecologically dependent above- and below-ground biota, are thus 
needed to understand and realistically forecast the future distribution of ecosystems.

K E Y W O R D S

animals, climate change, ecosystems, microorganisms, niche model, plants, species 
distributions, taxonomic group

TA B L E  1   Number of results for ISI Web of Knowledge querya 
of “(climat* AND (distribution OR occurrence) AND ([Taxonomic 
group])”

Taxonomic group
Number of 
query results

plant* OR tree* OR vegetation 27,593

bird* 2,829

insect* 2,472

mammal* 2,107

lepidoptera* OR butterfl* OR moth* 1,353

reptil* OR lizard* OR turtle* OR tortoise* OR terrapin* 
OR snake* OR croco*

1,247

amphibia* OR frog* OR toad* OR salamander* OR 
newt*

1,212

fungi OR fungus 1,139

bacteria* 896

“micro*organism*” OR “micro*biota” 448

orthoptera* OR grasshopper* OR cricket* 177

bombus OR bumblebee* OR bumble*bee* 78

micro*eukaryot* OR protist* 72

aSearched on 11 July 2019. 
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air temperature (e.g. Scherrer & Körner, 2011) and to better explain 
the fine-scale distributions of plants, especially those with small and 
close-to-ground growth form (Lembrechts, Lenoir, et al., 2019). Soil 
microclimate might thus be more important than air macroclimate in 
explaining the distribution of organisms strongly associated to soil 
conditions. While a direct quantification of local soil conditions could 
allow to test their role, an indirect approach is to compare the abil-
ity of topoclimatic conditions to explain and predict the distribution 
of organisms across taxonomic groups with contrasted life histories 
(Kharouba et al., 2013).

Due to the tight direct and indirect couplings among different 
taxonomic and functional groups, such as biotic interactions and 
nutrient cycling (Seibold, Cadotte, MacIvor, Thorn, & Muller, 2018; 
Wardle et al., 2004), understanding the role of climate control on mul-
tiple groups is of crucial importance to more realistically forecast the 
future of biodiversity and entire ecosystems (Cavicchioli et al., 2019; 
Guo, Feng, et al., 2018; Hagedorn, Gavazov, & Alexander, 2019; 
Schleuning et al., 2016). In addition to the taxonomic bias, assess-
ing and comparing the role of climate and warming across groups is 
hindered by the varying sampling designs, study areas and spatial 
scales used among the existing studies (Rodríguez-Castañeda, Hof, 
Jansson, & Harding, 2012). A robust comparative quantification of 
the role of climatic control on distributions across the various above- 
and below-ground groups composing ecosystems was thus needed.

Here using comprehensive taxon occurrence data from the same 
mountainous study area in western Switzerland and a robust mod-
elling, evaluation and prediction framework, we aim to: (a) assess to 
what extent the commonly used and readily available topoclimatic 
variables explain alone the distribution patterns of six above-ground 
taxonomic groups (amphibians, reptiles, grasshoppers, butterflies, 
bumblebees, vascular plants) and three below-ground ones (soil 
fungi, bacteria and protists); and (b) make baseline predictions and 
comparisons about how those taxa may respond to climate change. 
For this, we fitted climate suitability models with the occurrences 
of each taxon and six topoclimatic variables and compared models’ 
predictive ability and the taxa's spatial predicted probability of oc-
currence (PPO) under current and future climatic conditions.

2  | MATERIAL S AND METHODS

2.1 | Study area

The study area is a priority area for transdisciplinary research 
and biodiversity conservation located in the Western Swiss Alps  
(46°10′–46°30′ N; 6°60′–7°10′ E). It covers an area of c. 700 km2 with 
elevations ranging from 370 to 3,200 m, resulting in heterogeneous 
climatic and topographic conditions. The annual mean temperature 
and precipitation sum vary from 8°C and 1,200 mm at 600 m a.s.l. to 
−5°C and 2,600 mm at 3,000 m a.s.l., respectively (Bouët, 1985). The 
distribution of energy, water and debris strongly varies with slope 
and aspect. Landcover is dominated by alpine grasslands, forests, 
glaciers and agricultural lands. More detailed descriptions of the 

study area are provided in Randin et al. (2006), Dubuis et al. (2011) 
and at www.unil.ch/centr e-montagne.

2.2 | Data

The data sets used to build the species distribution models (SDMs) and 
to project habitat suitability under current and future climatic condi-
tions consist of spatially explicit information on biota and topoclimatic 
conditions (for detailed description of the data, see Appendix S1). 
The data on biota comprise site-level presence–absence information 
about species, genera and/or orders from nine taxonomic groups: 
amphibians, reptiles, grasshoppers, butterflies, bumblebees, plants, 
fungi, bacteria and protists (Table 2; Figures S1–S10 in Appendix S1). 
Above-ground species were visually identified based on their phe-
notype. Amphibian and reptile data sets resulted from point obser-
vations, whereas sampling of plants, insects and soil (for amplicon 
sequencing of microorganisms) was targeted on non-forested sites 
selected following a random stratified sampling design considering 
elevation, slope and aspect. Occurrences of soil bacteria, fungi and 
protists were obtained by amplicon sequencing of the V5 region of 
16S, ITS1 and the V4 of the 18S, respectively, region of the ribosomal 
RNA small subunit gene. About 38,000 operational taxonomic units 
(OTUs) were taxonomically identified but as this number exceeded 
the computational power available (especially for postprocessing of 
spatial projections), we clustered them at genera and order levels.

The topoclimatic variables used were mean annual temperature, 
annual temperature range, sum of annual precipitation, topographic 
position index, slope and potential annual solar radiation (see 
Figures S11–S20 in Appendix S1). These were derived from climate 
data and DEM (Federal Office of Topography: swiss topo.ch) as spa-
tial layers at a resolution of 25 m, with climatic data based on both 
the current conditions (the most recent climate normal: 1981–2010) 
and the future scenarios (IPCC's SRES A1b and A2 for the periods 
2020–2050, 2045–2075 and 2070–2100; Zubler et al., 2014; meteo 
swiss.ch; and Figure S21 in Appendix S1). As the new Representative 
Concentration Pathways (RCPs; IPCC, 2014) are not yet available 
for the study area with the needed resolution, and as we do not 
aim to make realistic future predictions, but to test climate control 
among taxonomic groups, we consider these scenarios suitable for 
this study. For comparison between SRES and RCPs, see Rogelj, 
Meinshausen, and Knutti (2012).

2.3 | Data preparation for analyses

To test the predictive power of the topoclimatic variables, we evalu-
ated the models using a split-sampling approach (10×) assigning 80% 
of the sites to model calibration and the remaining 20% to model 
evaluation so that each site was used eight times for calibration and 
twice for evaluation. The two predicted PPO values per evaluation 
site were then averaged to make a comparison against the observed 
occurrences.

http://www.unil.ch/centre-montagne
http://swisstopo.ch
meteoswiss.ch
meteoswiss.ch
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Approximately half of the taxa with less than eight presences 
or absences within the calibration data sets and with less than one 
presence or absence within the evaluation data sets were removed 
to allow confident parameter estimation and model evaluation 
(Table 2). To test if the taxon's commonness or tolerance of varying 
environmental conditions within the study area are related to the 
magnitude and direction of predicted future changes, we computed 
prevalence (as a proportion of presence observations within sites; 
Figure S22 in Appendix S1) and niche breadth per taxon (Figure S23 
in Appendix S1). To obtain an estimate of the niche breadth, we first 
applied a principal component analysis (PCA; using dudi.pca from 
the R-package ade4) to the matrix of the six environmental variables 
over all pixels of the study area. Niche breadth was then calculated 
as the sum of the standard deviations of the scores of the first and 
second PCA axes where the taxon is present (Segurado et al., 2011).

2.4 | Modelling

To allow consideration of taxa with extreme (i.e. very low or high) preva-
lence while still being able to incorporate all six environmental variables 
without over-parametrizing the models, we used Ensemble of Small 
Models (ESM; Breiner, Guisan, Bergamini, & Nobis, 2015) with the cor-
responding functions in the R-package ecospat (Di Cola et al., 2017). 
ESM first fit ‘small’ models by forming all possible bivariate combina-
tions (i.e. two at a time) of the environmental predictors (here, 

⎛⎜⎜⎜⎝

6

2

⎞⎟⎟⎟⎠
=15). 

The bivariate models are then combined to create the final ensemble 
model. Following the recommendations of Breiner, Nobis, Bergamini, 
and Guisan (2018), we fitted the bivariate models using the Generalized 
Boosting Model (GBM), Generalized Linear Model (GLM), Artificial 

Neural Network and Classification Tree Analysis. The final ensemble for 
each taxon was built based on the converged bivariate models weighted 
based on their model performance as measured by AUC (bivariate  
models with AUC < 0.5 were discarded from the final ensemble mod-
els). The default settings of the functions were used, except that all  
observations, regardless of taxon prevalence, had the same weight.

2.5 | Evaluating the predictive power of 
topoclimatic variables across taxa

The per taxon models were evaluated with AUC (i.e. the area under 
the ROC curve), the maximum True Skills Statistic (maxTSS) and the 
maximum Cohen's KAPPA (maxKAPPA), which do not require con-
verting the predicted PPO to presence/absence predictions (Guisan, 
Thuiller, & Zimmermann, 2017), as such thresholding is shown to influ-
ence the modelling outcome (Benito, Cayuela, & Albuquerque, 2013; 
Calabrese, Certain, Kraan, & Dormann, 2014; Liu, Berry, Dawson, 
& Pearson, 2005). In addition, by using multiple metrics with 
varying prevalence dependencies (Lawson, Hodgson, Wilson, & 
Richards, 2014; Lobo, Jiménez-Valverde, & Real, 2008; Somodi, Lepesi, 
& Botta-Dukat, 2017), we avoided the prevalence of taxa affecting the 
interpretations of the role of topoclimatic variables. The predictor con-
tributions (sensu variable importance in biomod2—R-package; Thuiller, 
Georges, Engler, & Breiner, 2016) of environmental variables per taxon 
and per technique were defined as the sum of weights (based on AUC) 
of bivariate models including the variable of interest divided by the 
sum of all weights. Variable contributions in the final ensemble models 
were then further calculated as the weighted means of these contribu-
tions with weighting based on the overall AUC of the technique.

TA B L E  2   Data sets of the nine taxonomic groups available and used for modelling in the same study area in the Western Swiss Alps

Taxonomic group
n of taxa 
(total)

n of modelled 
taxa n of sites

Prevalence of  
taxa (mean ± SD)

Niche breadth of 
taxaa  (mean ± SD) Data origin

Amphibians (sp.) 14 5 133 0.40 ± 0.28 1.71 ± 0.78 Schmidt and 
Zumbach (2019)

Reptiles (sp.) 12 12 1,144 0.09 ± 0.08 1.59 ± 0.35 Pittet (2017)

Grasshoppers (sp.) 41 21 202 0.25 ± 0.19 1.98 ± 0.31 Pradervand 
et al. (2013)

Butterflies (sp.) 140 78 208 0.22 ± 0.14 2.14 ± 0.29 Pellissier et al. (2012)

Bumblebees (sp.) 29 20 202 0.25 ± 0.16 2.24 ± 0.21 Pellissier et al. (2013)

Plants (sp.) 795 296 909 0.08 ± 0.08 2.02 ± 0.32 Dubuis et al. (2011)

Plants (ge) 288 160 909 0.14 ± 0.14 2.23 ± 0.36 Dubuis et al. (2011)

Fungi (ge) 190 92 103 0.34 ± 0.17 2.98 ± 0.36 Pinto-Figueroa 
et al. (2019)

Fungi (or) 36 10 198 0.40 ± 0.28 3.03 ± 0.11 Pagni et al. (2013)

Bacteria (ge) 758 346 258 0.38 ± 0.29 2.92 ± 0.46 Yashiro et al. (2016)

Bacteria (or) 276 124 258 0.46 ± 0.29 3.04 ± 0.48 Yashiro et al. (2016)

Protists (ge) 496 285 220 0.38 ± 0.26 2.86 ± 0.43 Seppey et al. (2020)

Protists (or) 161 92 220 0.47 ± 0.31 2.91 ± 0.36 Seppey et al. (2020)

Abbreviations: ge, genera; or, orders; sp., species.
aUnitless; calculated from variation in principal components of environmental conditions occupied; see Section 2. 

dudi.pca
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2.6 | Projections under current and 
future conditions

PPO of each taxon were obtained across the entire study area (i.e. for 
all of the 25 m × 25 m pixels defined by topoclimatic data) under current 
and future environmental conditions based on a full model trained with 
all data (i.e. outside CV used for evaluation). Some areas under current 
and future scenarios are not analogous to the environmental conditions 
present at the sampled sites (Figures S1–S10, S24 and S25 in Appendix 
S1). This implied that the models needed to extrapolate predictions to 
the environmental space outside the training and evaluation condi-
tions of the model (Fitzpatrick & Hargrove, 2009). Thus, the changes 
between current and future predictions for each taxon were also quan-
tified in the subset of the study area with analogous environmental 
conditions to the sites sampled under current and all future scenarios 
(i.e. the same mask for all taxa of a group was used to exclude non-anal-
ogous areas from the current and all future projections; Figure S25 in 
Appendix S1). Furthermore, forested areas were masked from the spa-
tial projections of open-habitat insects, plants and soil microorganisms. 
The same forest mask (from Swiss Map Vector 25 BETA; swiss topo.ch) 
was used for the current and all future projections, which simulates a 
scenario where the forest cover in the study area would overall remain 
constant because the Swiss forest policy aims to prevent forest en-
croachment of pastures (following the ‘lowered agriculture production’ 
socio-economic scenario of Gago-Silva, Ray, & Lehmann, 2017). Other 
scenarios are, however, plausible too and we acknowledge that incor-
porating land use changes could affect the predictions (Guo, Lenoir, & 
Bonebrake, 2018). For example, forest expansion (following the ‘liber-
alization’ scenario of Gago-Silva et al., 2017) could further restrict the 
future distributions of grassland taxa (Tasser & Tappeiner, 2002).

The examination of predictions and the changes therein was 
based directly on the PPO values under current and future condi-
tions, thus avoiding the problematic use of binarization thresholds 
(Nenzen & Araujo, 2011). To estimate the expected magnitude of 
change for each taxon in the study area, we calculated the overlap 
of the PPO values between current and future projections. For each 
taxon, the overlap was defined based on the sum of differences be-
tween current and future PPO values across all pixels, that is, the 
Schoener's D index (here, derived using the ‘modOverlap’ function 
in the fuzzySim R-package; Barbosa, 2015):

where pX,i (resp. pY,i) denotes a taxon's PPO in pixel i proportional to 
the sum of taxon's PPOs in all pixels in time X (resp. Y; Barbosa, 2015; 
Warren, Glor, & Turelli, 2008):

where q is taxon's PPO and n is number of pixels. The index varies be-
tween 1 (i.e. identical current and future predicted distributions) and 0 

(i.e. completely non-overlapping current and future predicted distribu-
tions), and thus the lower the overlap, the higher the predicted future 
change in taxon's distribution.

The spatial variation in the magnitude of community changes 
within each taxonomic group was assessed by first calculating, for 
each 25 m × 25 m pixel of the study area, the Euclidian distance 
between the current and future PPO values of all taxa, using the 
formula for n-dimensional space:

where pi is the PPO of taxon i in the pixel based on the prediction 
under current conditions, qi is the PPO of taxon i the pixel based on 
the prediction under future conditions and n is the number of taxa in 
the respective taxonomic group. These Euclidian distances per group 
per pixel per future scenario were then divided by the highest pos-
sible distance per group (

√
n; i.e. the case where for all taxa, PPOs 

would change from 0 to 1 or from 1 to 0, with resulting distances for 
all taxa being 1). The values representing the magnitude of community 
change in each pixel then vary between 0 and 1, where a value of 0 
means that the PPO of none of the taxa of the respective taxonomic 
groups changed between current and future prediction, and a value of 
1 means that the PPO of all taxa changed from 1 to 0 or from 0 to 1.

Finally, the direction of change (i.e. estimate of gains vs. losses in 
suitable habitat) was examined for each taxon and future scenario by 
calculating the mean and median changes in PPOs across the study 
area and separately at low, mid and high elevations.

2.7 | Comparing ESMs to standard SDMs

The standard ensemble SDMs (with commonly used GBM, GLM, 
Generalized Additive Models = GAM and Random Forest = RF 
weighted by AUC within Biomod2-platform; Hao, Elith, Guillera-
Arroita, & Lahoz-Monfort, 2019; Thuiller et al., 2016; Thuiller, 
Lafourcade, Engler, & Araújo, 2009) were fitted for the subsets of 
species and taxonomic groups that included at least 50 presences 
and absences in each CV-fold of the training data and at least one 
presence and absence in each fold of the evaluation data. A selection 
of model evaluations and analyses of the predicted changes were 
performed to compare the ESMs and standard SDMs.

3  | RESULTS

Across all taxa and techniques, the mean ± standard deviation of 
the model performance is 0.747 ± 0.096 (measured by AUC; for 
maxTSS and maxKAPPA see Figure S26 in Appendix S2). The model 
performance of above-ground species (0.823 ± 0.071) is higher 
than the model performance of below-ground microorganisms 
(0.700 ± 0.079 for genera and 0.708 ± 0.086 for orders; Figure 1a; 
Figure S26 in Appendix S2). The higher model performances are 

D
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pX, pY
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statistically significant when tested with Mann–Whitney U test 
(U = 271,431, p < .001 when 432 above-ground species are com-
pared to 723 below-ground genera and U = 81,934, p < .001 when 
compared to 226 below-ground orders) and the probabilities of AUC 
were found to be higher for above-ground species than for below-
ground genus or order are 0.87 and 0.83, respectively, based on the 
common language effect size (McGraw & Wong, 1992). For all taxo-
nomic groups, the annual mean temperature is the most and solar 

radiation the least influential topoclimatic variable (Figure S27 in 
Appendix S2). The contributions of the other four predictors do not 
rank consistently among the taxonomic groups.

Changes between current and future predicted PPO increase 
linearly with the severity of the deployed climate scenarios, and 
the changes are mostly similar between the whole study area and 
the parts of the study area which exclude novel future environ-
mental conditions (i.e. non-analogous conditions; see Appendix S2). 
Forecasts show a relatively smaller overlap between the current and 
future PPO for reptiles, insects and plants, whereas higher overlap 
indicates less change especially for the soil microbial distributions 
(Figure 1b; Figure S28 in Appendix S2). The magnitude of overlap is 
positively correlated with the prevalence and niche breadth of the 
taxa (see Tables S1 and S2 and Figures S29 and S30 in Appendix S2).

The strongest predicted changes in taxonomic composition 
across the study area, as measured by the Euclidean distance in the 
ordination space of the PPO values between the current and future 
conditions, occur at the highest elevations (Figure 2). This holds for 
all taxonomic groups, except for amphibians, reptiles and bumble-
bees, for which the strongest changes are predicted at midelevations 
(Figure 2d,g,h; Figures S31–S42 in Appendix S2). The PCA, restricted 
to the non-forested areas, divides the taxonomic groups into five 
categories (Figure 2j). The future variations in reptile and amphibian 
compositions strongly differ from the variations of other groups. The 
change in composition of bumblebees is opposite to that in amphib-
ians. The predicted variation in the compositions of grasshoppers, 
butterflies, plants and fungi is similar, whereas soil bacteria and pro-
tists cluster separately.

There are slightly more taxa with increases than decreases in mean 
PPO across the study area between now and the future (Figure 3a; 
Figure S43 in Appendix S2), especially if only the area with analo-
gous environments is considered (Figure 3b; Figure S43 in Appendix 
S2). For example, under the A2 scenario for 2070–2100, 83.3% of 
reptile species and 71.7% of bacteria genera showed an increase in 
mean PPO. In contrast, amphibians, butterflies and plants show the 
lowest proportional increase in mean PPO (40.0%, 38.5% and 36.5%, 
respectively). The mean change in PPO across the study area mainly 
shows a weak and non-significant relationship to the prevalence and 
niche breadth of taxa (Tables S3 and S4 and Figures S44 and S45 in 
Appendix S2). Overall, the changes in mean PPO are stronger and 
often more positive at mid- and high-compared to low elevations 
(Figure 3c–e; Figure S46 in Appendix S2). Median changes in PPOs 
are similar to mean changes (Figures S47–S49 in Appendix S3).

For the subset of taxa modelled with both ESMs and standard 
SDMs (i.e. all variables incorporated simultaneously), the model per-
formances are highly correlated (0.964–0.983; Table S5 and Figure 
S50 in Appendix S3), but in general, ESMs perform better for most 
taxonomic groups (Table S6 in Appendix S3). The mean relative vari-
able contributions across taxa follow the same order for ESMs and 
standard SDMs (Figure S51 in Appendix S3). The mean changes in 
PPO of ESMs and standard SDMs are highly correlated, but predic-
tions of standard SDMs show a larger variation (Figures S52–S55 and 
Table S7 in Appendix S3).

F I G U R E  1   The role of topoclimate and climate change in 
defining current and future taxa distributions. (a) Performance 
as measured with AUC per taxon of the topoclimatic ensemble 
models. The model performance of above-ground species is 
significantly better than the model performance of below-ground 
microorganisms (p < .001; measured with Wilcoxon rank sum 
test). For other evaluation metrics and per technique (Generalized 
Linear Model, Generalized Boosting Model, Artificial Neural 
Network, Classification Tree Analysis), and for plant genera and soil 
microorganism orders, see Figure S26 in Appendix S2. (b) Spatial 
overlap in predicted probability of occurrence (PPO) between 
current and future (A2 2085 scenario) projections within the whole 
study area. For other scenarios, plant genera, soil microorganism 
orders and environmentally analogous areas, see Figure S28 in 
Appendix S2. Boxes in boxplots span the 25th–75th quartile, with 
median (black bar) and mean (orange point) in the middle. Whiskers 
span the lowest and highest scores, yet in maximum to 1.5*(75th–
25th quartile); outlier scores are indicated by black dots
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F I G U R E  2   Spatial variation in the 
magnitude of the predicted future 
changes in community structure. (a) 
Location of the study area in the Swiss 
Alps is marked by yellow squares. (b–i, 
k) Magnitude of predicted changes in 
community structure between current 
conditions and future scenario A2 for 
year 2085. The maximum possible 
magnitude is 1, meaning that predicted 
probability of occurrences (PPOs) of all 
taxa are predicted to change from 1 to 0 
or from 0 to 1, and the minimum possible 
magnitude is 0, meaning that PPOs of 
none of the taxa are predicted to change 
between current and future prediction. 
Grey areas mark the forest cover masked 
from the predictions of taxa, as sampling 
targeted non-forested sites. (j) Principal 
component analysis (PCA) of community 
structure changes of the nine taxonomic 
groups in the non-forested areas shows 
the (dis)similarity in spatial patterns, that 
is, groups with lines pointing in the same 
direction have similar spatial patterns in 
the magnitude of community changes 
in non-forested areas, whereas lines 
of varying directions indicate varying 
patterns. (l) Elevation of the study area. 
For maps and PCAs of other taxonomic 
ranks, scenarios and years, see Figures 
S31–S36 in Appendix S2, and for the 
relationships between the changes 
and elevation, and for comparison to 
analogous environmental space, see 
Figures S37–S42 in Appendix S2

F I G U R E  3   Proportions of taxa with 
different mean changes in predicted 
probability of occurrence (PPO; classified 
to six classes) under A2 scenario for 2085. 
(a) Across the total study area. (b) Across 
an environmentally analogous part of the 
study area. (c–e) At different elevational 
bands (low = <1,180 m a.s.l.; mid = 1,180–
1,650 m a.s.l.; high > 1,650 m a.s.l.). For 
other scenarios and taxonomic ranks, see 
Figures S43 and S46 in Appendix S2. For 
median changes, see Figures S47–S49 in 
Appendix S3
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4  | DISCUSSION

Our results show that topoclimatic variables alone better explain 
and predict the distributions of above-ground groups (especially 
reptiles, grasshoppers and butterflies) than those of below-ground 
microorganisms and that the forecasted future changes in soil micro-
organism distributions are accordingly smaller and more spatially dif-
ferent. The low model performance indicates that other factors, in 
addition to the easily obtainable topoclimatic variables, are needed 
to improve models and future predictions of soil microorganisms 
(Bahram et al., 2018; Bates et al., 2013; Fierer, Strickland, Liptzin, 
Bradford, & Cleveland, 2009; Lembrechts, Nijs, & Lenoir, 2019; Li 
et al., 2018). Importantly, Lembrechts, Lenoir, et al. (2019) showed 
that soil temperature better explains the distributions of close-to-
ground growing plants than free air climate. This suggests that soil 
microclimate, which better expresses the temperature and moisture 
conditions affecting below-ground and ground-dwelling organisms 
and which can be strongly decoupled from air temperature in space 
and time (see also Bramer et al., 2018; Graae et al., 2012; Scherrer 
& Körner, 2011; Suggitt et al., 2011), likely also better explains the 
distributions of soil microorganisms. Furthermore, other edaphic 
factors (particularly soil pH) and biotic interactions are known to 
be major drivers for the diversity and community structure of soil 
fungi and bacteria (Bahram et al., 2018; Bates et al., 2013; Fierer 
et al., 2009; Li et al., 2018; Malard, Anwar, Jacobsen, & Pearce, 2019; 
Yashiro et al., 2016), and also but to a lesser extent for the diversity 
of protists (Seppey et al., 2020). Thus, they can also be expected 
to strongly contribute to explain the distribution of individual soil 
microorganisms.

The forecasted lower magnitudes of distributional changes 
of soil microorganisms, therefore, do not necessarily imply less 
severe changes to be expected in the future, but a smaller direct 
role of macroclimatic factors. As the effects of climate change may 
also be indirect, propagated by alterations, for example, in soil and 
vegetation (Alexander, Diez, Hart, & Levine, 2016; Collins, Stajich, 
Weber, Pombubpa, & Diez, 2018; Mod & Luoto, 2016; Yashiro 
et al., 2018), future scenarios are needed for soil factors in an 
analogous way to those developed for macroclimate (IPCC, 2014; 
Lembrechts et al., 2020). Furthermore, the multicollinearity should 
be assessed between topoclimate and missing predictors (Oliver & 
Morecroft, 2014; Sears, Raskin, & Angilletta, 2011), because large 
spatial and temporal offsets have been demonstrated for example 
between air and soil temperatures (Aalto, Scherrer, Lenoir, Guisan, 
& Luoto, 2018; Lembrechts, Lenoir, et al., 2019), and thus the used 
predictors can have a strong influence on the interpretations of 
future biodiversity changes (Lenoir et al., 2013; Lenoir, Hattab, & 
Pierre, 2017; Scherrer, Schmid, & Körner, 2011). Deriving and incor-
porating all influential and change-prone environmental variables at 
ecologically relevant scales in the models and future predictions (see 
e.g. Lembrechts, Nijs, et al., 2019; Mod et al., 2016) would allow to 
assess if the here demonstrated among-group differences in magni-
tudes (Figure 1b), spatial configurations (Figure 2j) and/or directions 
(Figure 3) of future distributional changes are realistic. Incongruent 

reactivity to environmental changes between biologically depen-
dent taxa and groups (e.g. plants and bacteria; Yashiro et al., 2018) 
can lead to shuffled species interactions and disruptions in biotic 
networks (Alexander, Diez, & Levine, 2015; Araújo & Luoto, 2007; 
Walther, 2010). Furthermore, land use changes, such as expansion 
of forest cover (Gago-Silva et al., 2017), influence both directly and 
indirectly (though altering the abiotic conditions) the re-distribution 
of taxa (Guo, Lenoir, et al., 2018). Thus, in future studies, land use 
changes should be accounted for together with climate change.

While our analyses revealed important ecological differences 
in the expected climate change responses among the studied taxo-
nomic groups, three commonalities also emerged. First, among the 
six topoclimatic variables used, annual mean temperature had the 
highest average relative contribution in predicting taxa distribution 
within our study area. While our study area covers a variety of cli-
matic conditions due to the c. 3,000 m elevation range (equivalent 
to approx. >1,500 km latitudinal gradient; Montgomery, 2006), the 
generality of this, and our other findings, across ecoregions (Miller 
et al., 2018; Petitpierre et al., 2016), geographical scales (Birkhofer 
et al., 2012; Graf, Bollmann, Suter, & Bugmann, 2005) and other 
groups (e.g. below-ground macrofauna; Decaëns, 2010) remains to 
be assessed. Second, the taxa with the strongest changes in suitable 
habitat generally have lower prevalence and narrower environmen-
tal niches. However, these changes were not systematically gains or 
losses of habitat, making these rare specialists sensitive yet not nec-
essarily vulnerable to climate change (Foden et al., 2013; Moritz & 
Agudo, 2013). Third, we observed the strongest predicted changes 
in taxa distributions at mid- and high elevations. This pattern has 
been commonly observed for plants under climate change forecasts 
in mountain environments (Dirnböck, Dullinger, & Grabherr, 2003; 
Engler et al., 2011; Steinbauer et al., 2018), and here we show that 
it applies to other taxonomic groups as well. Nevertheless, this in-
terpretation must be taken with caution because boundary effects 
are expected to affect the predictions at low elevations. Boundary 
effects may arise when omitting taxa occurrences from warmer 
conditions outside the study area (i.e. resulting in erroneous pre-
dictions based on truncated response curves; Hannemann, Willis, & 
Macias-Fauria, 2016) and restricting the taxa to the ones actually 
found in the study area (i.e. omitting the taxa migrating and invading 
from lower altitudes as a result of climate tracking; Lenoir, Gégout, 
Marquet, de Ruffray, & Brisse, 2008; Menéndez, González-Megías, 
Jay-Robert, & Marquéz-Ferrando, 2014; Petitpierre et al., 2016).

Our study also demonstrated the importance of two method-
ological developments, which have so far rarely been considered in 
climate-biodiversity impact studies involving a large number of taxa. 
Notably, the ESM approach allows more taxa to be included, partic-
ularly less frequent and rare taxa, and thus allows more complete 
modelling of local communities (Breiner et al., 2015, 2018; Lomba 
et al., 2010), and tends to outperform standard SDMs even for 
more common species with large sample sizes (Breiner et al., 2015). 
Interestingly, the predicted changes in PPO were generally lower 
than those predicted by standard SDMs, a finding never reported 
before. The likely cause for this is that the bivariate models in ESMs 
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are less prone to multicollinearity that can bias the estimated effects 
of variables within standard SDMs, where all predictors are included 
simultaneously (Graham, 2003). Second, we avoided here the poten-
tial bias and loss of information resulting from the traditionally per-
formed thresholding of predictions, because we applied metrics that 
do not require binarizing probabilities into presences–absences for 
evaluating the models and assessing the future changes (Jiménez-
Valverde & Lobo, 2007; Lawson et al., 2014; Nenzen & Araujo, 2011; 
Scherrer, Mod, & Guisan, 2020; Vaughan & Ormerod, 2005).

Finally, we would like to point out four insights related to multi-
group biodiversity assessments. First, global data sets would be ideal 
to test the general effects of climate on multiple taxa and groups. 
However, existing global data sets are strongly biased in terms of 
taxonomy (Lenoir et al., 2020; Lenoir & Svenning, 2015; Troudet, 
Grandcolas, Blin, Vignes-Lebbe, & Legendre, 2017) and spatial 
coverage (Boakes et al., 2010) affecting SDMs and hindering inter- 
taxa/-group comparisons (Beck, Böller, Erhardt, & Schwanghart, 2014). 
Here we reduced considerably these potential biases by sampling 
many taxa through a similar random stratified sampling design (Hirzel 
& Guisan, 2002) in a same region, where variation in elevation across 
the study area creates wide environmental gradients. Second, we ac-
knowledge that our models used input data that were taxonomically 
attributed differently among the studied groups, as species-level in-
formation is currently not available and difficult to determine for soil 
microorganisms unlike for above-ground groups. One notable rea-
son for this is that macroorganisms can be taxonomically catalogued 
phenotypically, whereas microorganisms were determined from 
DNA sequencing data only. As a proxy for microorganisms at the 
species level, we could have used the frequently deployed OTUs, but 
their total number (>38,000) exceeded the available storage space 
and computational capacity regarding the post-processing of data 
(e.g. calculating Euclidian distances in n-dimensional space). Hence, 
soil microorganisms were aggregated to the putative level of genera. 
While this might have added noise in the data for model calibration, 
we tested this by artificially aggregating the plant species to genera 
and the microbial genera to orders. This did not systematically af-
fect model performance, and the differences in model performance 
between taxonomic resolutions (on average 0.06) remained minor 
compared to the differences in performance between above- and 
below-ground taxa (on average 0.13). Third, we focused on identi-
fiable groups to present an ecological narrative for key aspects of 
mountain ecosystems (e.g. amphibians/reptiles—predation, grass-
hoppers—herbivory, bumblebees—pollination, plants—primary pro-
duction, fungi—decomposition, bacteria/protists—nutrient cycling), 
but we acknowledge that interpretations of climate influence might 
have been different if the taxa had been organized by another group-
ing (Dormann & Woodin, 2002; Harrison et al., 2010; Peay, Kennedy, 
& Talbot, 2016; Soudzilovskaia et al., 2013). Fourth, despite using 
state-of-the-art methodologies, there might be biases in data, mod-
els and projections related to taxa detection (Benoit, Jackson, & 
Ridgway, 2018), sampling methods (e.g. point observations of am-
phibians and reptiles vs. presence–absence observations of other 
groups; Aarts, Fieberg, & Matthiopoulos, 2012; field observations 

vs. eDNA; Porter & Hajibabaei, 2018; Yoccoz, 2012; including ob-
servations also from forested sites for amphibians and reptiles while 
restricting the analyses to grasslands for other groups) and/or ampli-
fication of eDNA (Fernandes, Scherrer, & Guisan, 2019; Pinol, Mir, 
Gomez-Polo, & Agusti, 2015). However, these issues tend to affect 
all intergroup biodiversity studies and should not alter specifically 
our findings compared to all others.

The need to understand the role of climate on biodiversity is 
particularly invigorated by the current threat of climate change on 
ecosystems (IPBES, 2019), and realistic future forecasts require in-
corporating multiple taxonomic and functional groups. Our mod-
els indicate both commonalities and differences in climate control 
among the studied groups. For all taxonomic groups, mean annual 
temperature was the most important topoclimatic predictor, and 
the strongest changes were predicted for rare taxa and at high 
altitudes. However, our results clearly show that the control of 
topoclimate is stronger on the distribution of above-ground mac-
roorganisms than of below-ground microorganisms, for which soil 
microclimate likely better expresses temperature and moisture- 
related constraints. This finding warns against potential disruptions 
in biotic networks but also implies that we still need to delineate 
the most ecologically meaningful environmental variables to com-
prehensively describe the distributions of soil microbiota and how 
the latter will be affected by climate and soil changes. Due to the 
important and intricate biological relationships among the different 
taxonomic groups, realistic forecasts for all members of the ecosys-
tems will be crucial for the optimal assessment of future patterns of 
biodiversity. For this, future scenarios of other variables than mac-
roclimatic ones, such as soil microclimatic and geochemical condi-
tions, are also needed.
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