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This paper describes amethod based on an automatic segmentation process to coregister carpal bones of the same patient imaged at
different time points. A rigid registration was chosen to avoid artificial bone deformations and to allow finding eventual differences
in the bone shape due to erosion, disease regression, or other eventual pathological signs. The actual registration step is performed
on the basis of principal inertial axes of each carpal bone volume, as estimated from the inertia matrix. In contrast to already
published approaches, the proposed method suggests splitting the 3D rotation into successive rotations about one axis at a time
(the so-called basic or elemental rotations). In such a way, singularity and ambiguity drawbacks affecting other classical methods,
for instance, the Euler angles method, are addressed.The proposedmethod was quantitatively evaluated using a set of real magnetic
resonance imaging (MRI) sequences acquired at two different times from healthy wrists and by choosing a direct volumetric
comparison as a cost function. Both the segmentation and registration steps are not based on a priori models, and they are therefore
able to obtain good results even in pathological cases, as proven by the visual evaluation of actual pathological cases.

1. Introduction

Diseases related to the wrist, such as rheumatoid arthritis
(RA), have a major negative impact on quality of life because
they are the most common causes of severe long-term pain
and physical disability [1]. An early diagnosis of the pathology
in such cases provides the patient with targeted care, a high
probability of improvement, and a reduction in social costs
[2]. The focus of this work was the erosive arthritis of wrist
bones, which is the most disabling rheumatic disease [3].

Even though conventional radiography is considered the
traditional gold standard for evaluating bone erosions, poor
performances (i.e., overall sensitivity, specificity, and accu-
racy of 25.5%, 98.3%, and 70.1%, resp.) have been reported for
detectingwrist erosions [4]. As clearly stated in [5], computed
tomography (CT) has been shown to be more sensitive than
radiography but, limited by the radiation dose, it is rarely used
in clinical practice. Indeed, MRI allows the simultaneous
assessment of synovial membranes, articular fluid, cartilage,
bones, ligaments, tendons, and tendon sheaths [6]. MRI can
detect erosive RA changes such as bone and cartilage damage

with greater sensitivity than conventional radiography [7].
An interesting and clear overview of the clinical problem is
given in [5] along with indications for the quantification of
RA features fromMRI.

For the diagnosis and monitoring of disease progression,
a longitudinal study is necessary where the physician con-
ducts several observations of the same subject over a period of
time. A major objective is then the definition of a simple but
effective procedure for volume registration while preserving
the original intensity values. To this end, a simplified method
is here proposed whose main objective is the achievement
of a limited effect of interpolation-related blurring. The
registration result allows the detection of changes in the
morphological bone shape, the localization of changes with
respect to the bone volume and surface, and the direct grey-
level comparison after registration.

Repeatability of the wrist tomographic examination is
affected by difficulties in perfectly reproducing the location
and orientation of the anatomical district. Even if translation
or angular rotation differences are expected to be relatively
small, changes more strongly affect the coronal plane than
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the sagittal and axial planes. With the aim of a direct shape
comparison, a 3D registration is then required to align two
volumes acquired at different times so that they overlap and
a quantitative analysis of changes becomes possible.

In this context, this work proposes a segmentation-
based registration method allowing the overlapping of two
MRI tomographic spatial sequences so that the shape of
a bone at two different instant times can be compared.
Such a unimodal 3D-3D multitemporal registration makes
it possible to monitor disease progression in the rheumatic
wrist. A rigid registration was chosen to avoid artificial bone
deformations and to allow finding eventual differences in
the bone shape due to erosion, disease regression, or other
eventual pathological signs.

The automatic segmentation of the bone of interest from
both acquired volumes is the starting point for a good
estimate of the location and orientation parameters, which
is here performed through the computation of the inertia
matrix. The subsequent steps of registration are performed
on the basis of principal inertial axes of each volume.

In contrast to more classical approaches, the proposed
method suggests splitting the 3D rotation into successive
basic rotations about one axis at a time (also termed elemental
rotations). In such a way, only a single plane is affected at
one time (i.e., coronal, sagittal, and axial plane), starting
from the most important one, as indicated by the major
principal inertia axis. In addition, singularity and ambiguity
drawbacks affecting other classical methods (e.g., the Euler
angles method) are addressed.

Depending on the carpal bones, stopping at one basic
rotation is sometimes better than performing two rotations
or the full 3D transform. In fact, the errors introduced by the
interpolation process can be bound to one plane at a time and
can be avoided in those planes where the error is larger than
the expected registration benefit.

Such a result has been achieved by applying and quan-
titatively evaluating the proposed method to a set of real
tomographic sequences from healthy subjects and by choos-
ing as a cost function a direct volumetric comparison of a
wrist bone acquired at two different times. Starting from
such empirical results, the suggestion for the best rotation
steps for each bone is derived and can be applied also in
the pathological situation.The method can also be applied to
pathological bones because the segmentation process is based
on the tomographic acquisition grey-level values and does
notmake any use of atlas or anatomicalmodels. Furthermore,
bone morphological changes do not affect the registration
procedure. The direct application of the method to such
pathological cases has been compared with the classical Euler
method, showing that singularity and ambiguity drawbacks
do not affect the proposed solution.

Due to the good registration result, 3D visualization of the
registered bone surfaces could be displayed to assess eventual
morphological changes related to pathology evolution, or
multiplanar reformatted slice cuts of the two registered
volumes could be displayed, along with the original grey
levels, to visually compare corresponding slices of a given
bone.

Some aspects led to better results for a few bones when
applying only one elemental rotation instead of all three (or
even the classical rotation matrix):

(i) Because the first rotation refers to the eigenvector
associated with the largest eigenvalue, its effect is
the most relevant, it is associated with the most
informative content, and it aligns the two bones along
their first principal axis.

(ii) The second and the third rotations refer to the second
and the third principal axes, which are more critical
and might be affected by a larger estimation error.

(iii) Even though repeatability cannot be assured in two
different tomographic acquisitions, the flat shape of
the hand and wrist assures that differences in the
position and orientation likely affect the coronal
sections more than the axial or sagittal ones.

(iv) The rotation angle might be so small that the errors
introduced by the transformation and interpolation
steps are larger than the benefit of the rotation itself.

The paper is structured in the following way. In Section 2, the
work is placed in the context of the state-of-the-art methods.
In Section 3, the various registration steps and the metrics
used for a quantitative evaluation are presented, pointing
out that the method is automatic, unsupervised, and not
based on models or a priori knowledge, yet it adapts to the
image content. In Section 4, the results obtained from the
application of the method to MRI volumes of carpal bones
are shown, and these findings are discussed in Section 5.

2. Previous Works: Image and
Volume Registration

The two major registration strategies can be classified into
intensity-based and feature-based methods. An intensity-
based approach compares pixel/voxel intensity by means of
correlation metrics. Feature-based methods find correspon-
dence between significant features such as points, lines, and
surfaces, and a geometrical transformation is then deter-
mined to map the two volumes [8].

Longitudinal volumetric image analysis is an important
topic, especially investigated for brain structure studies. The
review paper by Mills and Tamnes [9] gives a comprehensive
overview on longitudinal structural imaging for brain devel-
opment in children and adolescents.

Indeed, from the imaging point of view, brain morphol-
ogy is very complex and registration turns to be a very crucial
task where intensity-based procedures are mainly required.
As an example, the research carried out in [10] addresses the
analysis of brain atrophy or, more in general, changes in brain
size and shape. It is based on an automated linear registration
tool, FLIRT (FMRIB’s Linear Image Registration Tool) [11],
which makes use of the correlation ratio cost function and of
a multiscale optimization strategy.

In [12], the quantification of pointwise changes in surface
morphology of the bones of the human wrist is addressed
based on CT imaging. The proposed method, referred to
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as Registration-based Bone Morphometry (RBM), consists
of two steps: an atlas selection step and an atlas warping
step. Statistical group analysis is reported to demonstrate
the application of RBM for the comparison of representative
carpal bones based on sex and for the comparison of carpal
bones of the left and right wrists for individuals. The utility
of RBM is also demonstrated in the context of tracking bone
erosion status in RA.

The notable brain size and the structured grey-level
content assure a reliable statistical information basis for such
intensity-based approaches. In contrast, given their unique
shape, hand bones are better suited for applications of feature-
and geometrical-basedmethods. In addition, their small size,
the MRI low field, and the low spatial resolution make it
harder to use intensity-based algorithms which cannot be
based on enough statistically significant data.

As previously reported [13], 2D and 3D feature-based
image registration approaches can be grouped according to
the four basic steps of the registration procedure: feature
detection, feature matching, mapping function design, and
image transformation and resampling, which will be recalled
in the next paragraphs.

2.1. Feature-Based Registration Methods. According to previ-
ous reports [13], the use of feature-based methods is recom-
mended if the images contain enough distinctive and easily
detectable objects. In medical applications, such a problem is
usually faced by interactive selectionsmade by an expert or by
introducing extrinsic features, rigidly positioned with respect
to the patient (skin markers, screw markers, dental adapters,
etc.). Recently, the availability of reliable segmentation results
has enabled improvement of such a process: the obtained
closed-boundary regions can be used to derive surface or
volumetric features, such as in [14], where the cervical spine
is segmented and then a 3D articulated registration is applied.
In [15], a registration of functional data was performed after
the segmentation of the left ventricle.

After the identification of the significant features, their
correspondence can be estimated using their descriptors,
preferably invariant to the expected image deformation.
A group of methods devoted to register satellite images
uses moment-based invariants [16] for a description of
the segmented regions features. Flusser and Suk used the
affine transform invariants [17, 18]; Holm [19] extracted
closed-boundary regions and proposed to represent them
by perimeter, area, compactness, moments, and moment
invariants; and Brivio et al. [20] modeled shadows in
mountain images by means of their inertia ellipses. For the
stereo-correspondence problem, Bhattacharya and Sinha [21]
suggested the application of complex moments.

The mapping function design step, subsequent to the
feature correspondence step, is devoted to designing a trans-
form algorithm so that the corresponding features of the two
volumeswould be as close as possible. At this level, the type of
mapping function is chosen, and its parameters are estimated.

Volume registration might be a global or a local process.
In the present application, we were interested in coreg-
istration of single bones to monitor the eventual disease

evolution. To this end, even though the spatial configuration
of the various bones strongly depends on the position of
the anatomical part, this problem is solved by using a local
registration, where the attention is focused on single bones
(volumes of interest) separately. Because each bone is a rigid
body, affine transformation is sufficient to achieve a good
result and allows for a final morphological comparison.

Finally, the mapping functions constructed at the previ-
ous step are applied during the transform step so that the
volumes are actually registered.

In the next paragraph, a short overview of themost widely
used methods is reported, referring to mapping function
design and parametric transformationmodels addressing the
rigid registration. They focus on extraction and correspon-
dence analysis of location and orientation descriptors of the
objects of interest and propose a few analytical formulations
for the registration solution.

2.2. Mapping Functions and Parametric Transformation Mod-
els. In space science, the “attitude” of a flying object refers
to its orientation with respect to a fixed inertial frame. In
robotics, the estimation of orientation and location param-
eters is a key aspect of rigid-body kinematics. The problem
addressed in the present paper has some similarities with
these concepts, as the same bone is acquired in a different
position and orientation by means of two (nonregistered)
tomographic acquisitions performed at some time distance,
so that the imaged bone volumes have a different orientation
in 3D space.

A very detailed and mathematically sound review of
related concepts is given in [22], which was used as a basis
for the following considerations.

Let T denote an inertial fixed frame whose coordinates
are (𝑥, 𝑦, 𝑧), and let B denote the body-attached frame that is
free to rotate. Frame B is determined by its orthogonal tern(𝛽1,𝛽2,𝛽3)𝑇.

As defined in [22], the orientation of a rigid body is
defined as the orientation of frame B with respect to frame
T. The attitude of a rigid body can be expressed by a
variety of mathematical parameterizations, which can be
either constrainedwith redundant elements or unconstrained
with minimal elements. The rotation matrix and the unit
quaternion are examples of constrained parameterizations.
Euler angles, the Rodrigues parameters, and the modified
Rodrigues parameters (MRPs) are examples of minimal
parameterizations [22].

In practice, the most common orientation represen-
tations are the rotation matrix, Euler angles, and unit
quaternion. These constitute the basis of most attitude and
orientation estimation techniques, and their properties and
group structures are of great importance [22].

The Euler angle parameterization is not global, and
angles are not well-defined for 𝜃 = ±𝜋/2. This singularity
problem is not unique for the Euler angle parameterization
but affects all other 3D parameterizations. Unit quaternion is
a 4D parameterization, which allows such singularities to be
avoided [22].
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Both Euler angles and unit quaternions are proven to
have a corresponding rotationmatrix. Using Euler’s theorem,
which implies that anybody orientation can be specified
in terms of a rotation by some angle about an arbitrary
axis, unit quaternions can assume a formulation that gives
the corresponding rotation matrix through the Rodrigues
formula.

The rotation matrix is a global and unique representation
of orientation. By using this matrix, corresponding voxels
in coordinates of inertial (T) and body (B) frames can be
mapped to each other as the result of rotations applied to the
3D Euclidean space.

Similar to Euler angles, the rotation matrix can be
obtained as a product of three different rotation matrices,
each corresponding to an elemental rotation about one of
the axes of the fixed coordinate system or about the rotating
coordinate system. However, as it was experienced in the
present work, for the given application, it is sometimes better
to avoid one or even two rotations.

2.3.Medical Applications ofMoment-Based RegistrationMeth-
ods. In medical applications, registration methods based
on principal axes have been applied in different cases of
study such as in [23, 24] for MR and positron emission
tomography (PET) brain images and in [25] for computed
tomography (CT) and PET images. In [26], this method
is used for the registration of CT and transmission single-
photon emission computed tomography (SPECT) thorax
images and for myocardial SPECT stress and rest scans.

Referring to the present application, several papers exist
in the literature about the registration of the whole wrist.
Most of these studies correlate the registration with the
wrist kinematic [27–29], and they consider both the possible
rotations of thewholewrist and themovement limits between
the singular bones. When focalizing on the wrist bones, such
as in [30], amatching between the object of study and amodel
previously created under different viewing angles is proposed.

In [31], the movements of the wrist are studied, through
the registration of the scaphoid bone. In particular, 10
wrist scans are performed from one subject in 10 different
positions, and the orientation of the scaphoid, through
the determination of the principal axes, is evaluated. The
comparison between the different scaphoid bone positions
is carried out by registering the volumes with Euler’s angles
method.

Unlike in [31], ourmethod is not based on the Euler angles
and a single rotation matrix, but it performs successive basic
rotations to achieve a better registration, as will be demon-
strated by our experiments. The relationship between the
rotation matrix and the three elemental (i.e., basic) rotation
matrices is given in Subsection 1.1 in SupplementaryMaterial
available online at https://doi.org/10.1155/2017/7232751.

3. The Proposed Approach

The proposed method is not intended to register the whole
wrist where kinematic studies are required, and neither
does it address the matching with some idealized model

or atlas. On the contrary, the purpose of our work is the
registration of individual bones, acquired at different times, to
detect eventual changes and support the presence of eventual
erosion and evolution of the rheumatic disease in general.

The method is supported by a robust, automatic, and
reliable segmentation [32, 33] to apply a local registration
only to the bone of interest. The volumetric region referring
to the bone of interest is extracted independently from the
first and second MRI acquisitions.

Based on absolute and central moments of the obtained
3D bone volumes, the proposed method takes the principal
axes as feature descriptors and computes them starting from
the inertial matrix. The transformation model approach
proposes to align both bone volumes to the inertial frame
to give them the same location and orientation in 3D
space and to allow the subsequent shape comparison. To
this purpose, instead of the direct application of one roto-
translation matrix, the procedure proposes successive rota-
tions on each 2D plane (along with appropriate translations).
The optimization problem is then related to the possible
registration parameter configurations, which describe the
execution order of the 2D rotation axis (in the maximum
of three rotations), the number of such rotations, and the
direction of each rotation. Such geometrical considerations,
described at Section 3.3, assure that coherent rotations are
applied to the two corresponding bone volumes to have
them aligned in orientation and in direction as well, without
ambiguity.

As a feature-based approach, the estimate of the trans-
formation parameters and the possible configurations are
computed in a deterministic way. The cost function adopted
is the volumetric comparison between the two aligned bone
volumes, as computed by the confusionmatrix, which will be
described later. Such quantitative metrics have been applied
to the available database of real non-pathological cases to
drive the selection of the best parameter configuration for
each wrist bone type, as explained in the following section.

The fixed inertial frame T with digital coordinates
(𝑥, 𝑦, 𝑧) is given. Let us start from twoMRI spatial sequences,
acquired in the coronal plane from the same individual at
two instant times 𝑡I and 𝑡II. From the tomographic sequences,
two digital volumes,𝑉I(𝑥, 𝑦, 𝑧) and𝑉II(𝑥, 𝑦, 𝑧), are generated.
Typically, the first (initial) acquisition and the second (follow-
up) acquisition are separated by at least a fewmonths in time.
These two volumes constitute a mapping whose domains are
the voxels coordinate (𝑥, 𝑦, 𝑧) and codomain is a grey-level
value ranging from 0 to 255. For the specific tomograph
we used (ESAOTE Artoscan 0.2 Tesla), the image size in
the coronal section (represented by [𝑥, 𝑦] coordinates) is
256 × 256 pixels. In the case of anisotropic resolution, an
interpolation between coronal slices is performed. The 𝑧
coordinate refers to the normal to the coronal plane and
ranges from0 to𝑁−1, where𝑁 is the number of coronal slices
in the tomographic volume, after the eventual interpolation
step. As an example, a coronal slice of a wrist is shown in
Figure 1(a), together with an axial and a sagittal section in
Figures 1(b) and 1(c), respectively.

https://doi.org/10.1155/2017/7232751
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Figure 1: The carpal bones in different visualizations: (a) a coronal section from the original spatial sequence, (b) an axial, and (c) a sagittal
section from multiplanar reformatting.
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Figure 2:The fixed inertial frameT, the first (initial) bone volume (I), and the follow-up bone volume (II), together with their local coordinate
frames.

3.1. Step 1: Feature Detection. A graph-based segmentation
[32] is applied to the two tomographic volumes, starting from
a seed point that is located by the user inside the bone of
interest. The volumes of interest (VOIs) referring to a given
carpal bone are thus created, consisting of the binary volumes𝑏I(𝑥, 𝑦, 𝑧) and 𝑏II(𝑥, 𝑦, 𝑧), which represent hereinafter the
starting point for the feature descriptor computation.

In other words, the segmentation process (𝑆) is amapping
from the original tomographic volume to a binary volume
where only voxels belonging to the bone have value 1:

𝑆 : 𝑉I (𝑥, 𝑦, 𝑧) → 𝑏I (𝑥, 𝑦, 𝑧) ,
𝑆 : 𝑉II (𝑥, 𝑦, 𝑧) → 𝑏II (𝑥, 𝑦, 𝑧) , (1)

where

𝑏I (𝑥, 𝑦, 𝑧) = {{{
1, if voxel (𝑥, 𝑦, 𝑧) in 𝑉I ∈ VOII
0, otherwise,

𝑏II (𝑥, 𝑦, 𝑧) = {{{
1, if voxel (𝑥, 𝑦, 𝑧) in 𝑉II ∈ VOIII
0, otherwise.

(2)

3.2. Step 2: Feature Description and Matching. For the two
obtained VOIs, the principal axes are extracted as descriptors
to be used in the feature correspondence step. They are
represented by (e1, e2, e3) terns, as shown in Figure 2, and are
the body frame coordinate systems 𝐸I and 𝐸II, respectively.
The detailed algorithm for feature description and matching
is described in the following section.

The centroid of both VOIs is computed by applying the
first absolute moments of 𝑏𝑊(𝑥, 𝑦, 𝑧),𝑊 being I or II:

𝑥𝑔 = ∑𝑥,𝑦,𝑧 𝑏𝑊 (𝑥, 𝑦, 𝑧) 𝑥∑𝑥,𝑦,𝑧 𝑏𝑊 (𝑥, 𝑦, 𝑧) ,

𝑦𝑔 = ∑𝑥,𝑦,𝑧 𝑏𝑊 (𝑥, 𝑦, 𝑧) 𝑦∑𝑥,𝑦,𝑧 𝑏𝑊 (𝑥, 𝑦, 𝑧) ,

𝑧𝑔 = ∑𝑥,𝑦,𝑧 𝑏𝑊 (𝑥, 𝑦, 𝑧) 𝑧∑𝑥,𝑦,𝑧 𝑏𝑊 (𝑥, 𝑦, 𝑧) .

(3)

Such information is needed to perform the translation of the
bodies, a necessary phase for the appropriate registration and
for the computation of the central moments𝑀𝑙𝑚𝑛 (of order𝑙, 𝑚, 𝑛) whence the inertia matrix 𝐼𝑊 is constructed:

𝑀𝑙𝑚𝑛
= ∑
𝑥,𝑦,𝑧

(𝑥 − 𝑥𝑔)𝑙 ⋅ (𝑦 − 𝑦𝑔)𝑚 ⋅ (𝑧 − 𝑧𝑔)𝑛 ⋅ 𝑏𝑊 (𝑥, 𝑦, 𝑧) ,

𝐼𝑊 = [[[
[

𝐼𝑥𝑥 −𝐼𝑥𝑦 −𝐼𝑥𝑧
−𝐼𝑦𝑥 𝐼𝑦𝑦 −𝐼𝑦𝑧
−𝐼𝑧𝑥 −𝐼𝑧𝑦 𝐼𝑧𝑧

]]]
]

(4)
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having defined

𝐼𝑥𝑥 = 𝑀020 +𝑀002,
𝐼𝑦𝑦 = 𝑀200 +𝑀002,
𝐼𝑧𝑧 = 𝑀200 +𝑀020,
𝐼𝑥𝑦 = 𝐼𝑦𝑥 = 𝑀110,
𝐼𝑦𝑧 = 𝐼𝑧𝑦 = 𝑀011,
𝐼𝑥𝑧 = 𝐼𝑧𝑥 = 𝑀101.

(5)

The matrix of the eigenvectors 𝐸𝑊 is finally extracted from
the inertia matrix:

𝐸𝑊 = [[
[

𝑒𝑥1 𝑒𝑥2 𝑒𝑥3
𝑒𝑦1 𝑒𝑦2 𝑒𝑦3
𝑒𝑧1 𝑒𝑧2 𝑒𝑧3

]]
]
. (6)

The first column is the first principal axis e1 associated
with the largest eigenvalue, the second column is the second
principal axis e2 and the last is the third principal axis e3.

The purpose of the method is to geometrically register𝑏I(𝑥, 𝑦, 𝑧) and 𝑏II(𝑥, 𝑦, 𝑧) in such a way that their affine
transformed versions, 𝑏ΩI (𝑥, 𝑦, 𝑧) and 𝑏ΩII (𝑥, 𝑦, 𝑧), occupy the
same spatial volume and can overlap to evaluate eventual
changes. The objective is then the maximization of the
intersection volume:

𝑏𝑋 (𝑥, 𝑦, 𝑧) = 𝑏ΩI (𝑥, 𝑦, 𝑧) ∩ 𝑏ΩII (𝑥, 𝑦, 𝑧) . (7)

At the same time, it is obvious that the correspondence
between the descriptors turns to be maximized in the final
result if the method is working properly.

The above metrics of (7) can be evaluated by means of
the confusion matrix, as shown in Table 1 in Supplementary
Material.

Specifically, sensitivity (SENS) and precision (PR) param-
eters are computed:

SENS = 𝑏𝑋 (𝑥, 𝑦, 𝑧)𝑏ΩI (𝑥, 𝑦, 𝑧) ,

PR = 𝑏𝑋 (𝑥, 𝑦, 𝑧)𝑏ΩII (𝑥, 𝑦, 𝑧) .
(8)

Sensitivity shows eventual loss of bone tissue between the
initial and the follow-up acquisition, which might be due
to some bone erosion process in pathological situations.
Precision indicates a possible presence of voxels in the follow-
up bone, which were not depicted in the initial bone, thus
indicating, for instance, an eventual reabsorbed edema in
pathological cases. In healthy subjects, both indexes should
be close to 1, and any deviation from this value indicates
imprecisions and processing errors.

Instead of sensitivity versus 1-specificity, the plot of sen-
sitivity versus 1-precision allows a more significant receiver-
operating-characteristic (ROC) scatterplot to be drawn and
will be used in Results to prove the performances of the
proposed method.

3.3. Step 3: Transformation Procedure and Parameter Estima-
tion. As already mentioned, the proposed approach is an
iterative method that avoids arbitrary rotations in the 3D
space but performs sequential basic rotations. At each step,
the central inertia matrix of the rigid body is computed
together with the eigenvectors. From here, the rotation angle
and direction are estimated. After each rotation, the volumes
are changed, and then new parameters must be recomputed
by means of a new inertia matrix.

From among the possible parametric configurations, the
most appropriate one can be evaluated for each carpal bone
through application to a dataset of real non-pathological
volumes where no changes are expected.

3.3.1. Rotation Angles. After obtaining the eigenvectors of
VOI 𝑏I(𝑥, 𝑦, 𝑧), rotation angles can be estimated. Let us
suppose that the VOI is rotated around versor z at first, that
is, on the coronal plane. The first rotation angle is measured
looking at the first eigenvector e1.

Let the projection of the first principal axis e1 on the
coronal plane (x, y) represent the following vector, whose
components are 𝑒𝑥1 and 𝑒𝑦1:

e𝑥𝑦1 = 𝑒𝑥1x + 𝑒𝑦1y. (9)

Two possible rotation angles are estimated by looking at the
angle formed between vector e𝑥𝑦1 and versor x or the one
formed with versor y. In the former case, the corresponding
angle is

𝜃𝑥 = cos−1 ( 𝑒𝑥1|x| e𝑥𝑦1 ) . (10)

In the latter case, the angle is

𝜃𝑦 = cos−1 ( 𝑒𝑦1y e𝑥𝑦1 ) . (11)

The smallest angle between 𝜃𝑥 and 𝜃𝑦 is chosen as the rotation
angle 𝜃1 to be applied for obtaining 𝑏I (𝑥, 𝑦, 𝑧). To avoid
incongruent alignment, for the follow-up volume 𝑏II(𝑥, 𝑦, 𝑧),
the correspondent angle is chosen and computed. After
rotation of both VOIs, a 3D translation of the second volume
with respect to the first one is applied. To this purpose, the
center of gravity of the rotated bodies is recalculated using
(3), and the corresponding translation is carried out so that𝑏II(𝑥, 𝑦, 𝑧) is obtained.

Starting from the newly computed eigenvectors (as
described at (4)–(6)), in the next iterative step, the angle value
and direction are estimated by repeating the same procedure
for a rotation about the y-axis, focalizing to the second
eigenvector e2. With the same criterion described above, the
new angles 𝜃2 for VOII and VOIII, respectively, are evaluated.
Again, after rotation of both volumes, a 3D translation is
applied. This time, 𝑏I (𝑥, 𝑦, 𝑧) and 𝑏II (𝑥, 𝑦, 𝑧) are obtained.
The last step also envisioned an equal process, with a rotation
in the sagittal plane (around x-axis), on the basis of the third
eigenvector, followed by a translation. Finally, 𝑏I (𝑥, 𝑦, 𝑧) and𝑏II (𝑥, 𝑦, 𝑧) are obtained.
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(a) (b)

Figure 3: (a) One slice of the synthetic volume and (b) one slice of the rotated synthetic volume.

It can be experimentally demonstrated that the best result
is sometimes obtained with less than three rotations. In any
case, according to (7), the final results are named 𝑏ΩI (𝑥, 𝑦, 𝑧)
and 𝑏ΩII (𝑥, 𝑦, 𝑧).

The proposed method has been implemented in Matlab
and the processing time on a i7-7500U, CPU 2.70GHz, RAM
8GB computer is approximately 1 minute.

4. Results

The proposed registration technique has been tuned and
characterized by utilizing a set of synthetic volumes. After a
t-shaped volume has been generated, as in Figure 3(a), it was
rotated in various ways (see, e.g., Figure 3(b), where one slice
is displayed). Considering that a perfect registration is made
difficult by the unavoidable interpolation blurring, as well as
by the estimation errors, the average sensitivity and precision
values of 0.992 and 0.823, respectively, are considered good
performances.

In addition, because the applied rotations are known,
the error between the computed and actual angles can be
evaluated, which is approximately 6 ⋅ 10−3 radians, in an
average.

After evaluation of the synthetic volumes, themethodwas
applied to real cases. These refer to wrist bones acquired in
T1-weighted modality using a low-field ESAOTE Artoscan
at 0.2 Tesla. All volumes were acquired in the coronal
plane, with a resolution of 0.5 × 0.5mm2 and image size
of 256 × 256 pixels. Six patients were analyzed, all having
an initial and a follow-up tomographic acquisition. Focus
of the study was the following eight wrist bones: capitate,
scaphoid, lunate, hamate, pisiform, trapezoid, triquetrum,
and trapezium. The number of healthy bones on which the
method was quantitatively evaluated was 35. A total of 13
pathological bones were also registered, but no quantitative
measures were possible in such cases.

In Figure 4, it is possible to see the corresponding MRI
slices of one patient as acquired at two different times. In
particular, in Figure 4(a), the first (initial) volume is shown,
and in Figure 4(b), the second (or follow-up) volume is
shown.

When required, to make the volume isotropic, an inter-
polation is applied, thus making the voxel size equal to 0.5 ×
0.5 × 0.5mm3. Once the isotropic volumes are obtained, the
segmentation is applied with the purpose of extracting indi-
vidual bones volumes 𝑏I(𝑥, 𝑦, 𝑧) and 𝑏II(𝑥, 𝑦, 𝑧) as explained
in (2). Figure 5 shows two sample coronal slices from the first
acquisition, along with the contours of the segmented bones.

As an example, a coronal section of the capitate bone
as segmented from the two original volumes is shown in
Figure 6. In addition, according to Figure 4, one can see how
the spatial location and orientation of the two bone volumes
are very different between the two acquisition times.

For each bone, the proposed registration procedure is
applied to volumes 𝑏I(𝑥, 𝑦, 𝑧) and 𝑏II(𝑥, 𝑦, 𝑧). In Figure 7, an
example of 3D visualization of the three different rotation
results as obtained for the capitate bone is shown. The initial
bone volume is shown in green, and the follow-up bone is
shown in blue. In particular, this figure illustrates the first
rotation in the coronal plane (𝑏I(𝑥, 𝑦, 𝑧) and 𝑏II(𝑥, 𝑦, 𝑧)), the
second rotation in the axial plane (𝑏I (𝑥, 𝑦, 𝑧) and 𝑏II (𝑥, 𝑦, 𝑧)),
and the third rotation in the sagittal plane (𝑏I (𝑥, 𝑦, 𝑧)
and 𝑏II (𝑥, 𝑦, 𝑧)). Figure 8 shows two corresponding sample
slices from the first initial MRI sequence and the follow-up
sequence after registration of the capitate bone.

The metrics proposed in Section 3.2 allow quantitative
evaluation and provide the possibility of assessing, for each
bone, the opportunity to carry out all three rotations or less.

Figure 9 reports the results of the proposed registration
as obtained with healthy bones, which do not show signs of
erosion or edema. In the abscissa, there is the parameter 1-
precision, while, in the ordinate, there is the parameter sensi-
tivity, as defined in (8). The ideal case of perfect registration
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(a) (b)

Figure 4: A sample coronal slice from the initial MRI spatial sequence (a) and the follow-up spatial sequence (b).

Hamate

Capitate

Triquetrum

Trapezoid

Lunate

Trapezium

Scaphoid

HamateTrapezium

Scaphoid Pisiform

Figure 5: Bone configuration: two sample coronal slices from the first acquisition, along with the contours of the segmented bones.

(a) (b)

Figure 6: (a) A sample coronal slice of the capitate bone volume segmented from the first acquisition 𝑏I(𝑥, 𝑦, 𝑧); (b) a sample coronal slice of
the capitate bone volume from the follow-up acquisition 𝑏II(𝑥, 𝑦, 𝑧).
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(a) (b) (c)

Figure 7: 3D surface visualization of the registered capitate bone (initial volume in green, follow-up volume in blue): from (a) first rotation
in the coronal plane, (b) second rotation in the axial plane, and (c) third rotation in the sagittal plane.

(a) (b)

Figure 8: Corresponding sample slices from the first initial MRI sequence (a) and the follow-up sequence (b) after registration of the capitate
bone.

corresponds to values near 0 for the former parameter and
values close to 1 for the latter parameter.

For each bone type, a triangle corresponds to the perfor-
mance of the first basic rotation, a square to two rotations,
and a circle to three rotations. As one can notice, all of the
bones, except the trapezoid and triquetrum, obtained the best
registration result with three rotations. For the other two
bones, one rotation was sufficient.

The trapezium showed the most remarkable improve-
ment when comparing the first, second, and third rotations.
The same trend, although a little less considerable, charac-
terized the hamate and capitate bones. For this last bone,
the result of the quantitative assessment was in line with the
visual evaluation. In fact, as shown in Figure 7, the volumes
obtained with the third rotation showed a better registration
than those obtained with the other rotations.

In general, the obtained results were satisfactory, with
all showing sensitivity values larger than 0.89 and precision
values larger than 0.77 (the worst result being reported for the
triquetrum).The best registration result was obtained for the
scaphoid, with a sensitivity value of 0.95 and precision value
of 0.89.

As an argumentation with respect to the more classical
Euler’s angles method, the same healthy cases were registered
by applying the single classical rotation matrix (Direction
Cosine Matrix), and a subsequent quantitative evaluation
was carried out. Additionally, in this case, the Euler angles
were estimated from the analysis of the principal inertia
axes of the segmented bone volumes. As an example of a
quantitative comparison, Table 1 shows the sensitivity and
precision values as averaged over all of the available non-
pathological scaphoid bones.
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Figure 9: ROC plot, where triangles correspond to one rotation, squares to two rotations, and circles to three rotations.

Figure 10: A pathological trapezoid bone: fusion of initial and follow-up volumes.

Table 1: Evaluation of Euler’s method and our method.

Scaphoid Sensitivity Precision
Euler’s method 0.737 0.672
Our method 0.949 0.891

The advantage of the proposed method is due to two
main reasons. In fact, the Euler method suffers from well-
known problems such as orientation ambiguity and non-
singularity, which do not affect the proposed approach. In
addition, with the proposed method, the best result could be
obtained after evaluating one, two, or three rotations based on
the specific bone (indeed, in the scaphoid case, three rotations
were considered the best solution, as shown in Figure 9).

The lower values for the sensitivity and precision of the
Euler method are actually due to the fact that, for some
scaphoid cases, the two volumes have been registered with a
correct direction but a wrong orientation of one axis. In other
words, the bottom and top of the two bones are not correctly
overlapping.

After confirming that the registration results were sat-
isfactory and accurate when dealing with non-pathological
bones, the method was applied to pathological cases to verify

its applicability for the assessment of disease evolution. As
mentioned previously, rheumatologists affirmed the presence
of rheumatoid arthritis on 13 different bones in the available
database. The pathological signs only locally affected bone
morphology, and the preserved similarity between the initial
and follow-up bone volumes enabled a sufficiently good
registration. In addition, the proposed segmentationmethod,
which does not make use of a priori knowledge or an
anatomical model, was able to extract in a correct way the
bone volumes, despite erosion or other pathological signs.

As an example, a pathological trapezoid bone is shown
in Figure 10 after registration. Four slices of the registered
volumes are reported where yellow pixels indicate a perfect
overlap between initial and follow-up volumes. The green
color is associated with voxels that belong to the follow-up
volume but not to the initial volume, while voxels belonging
to the initial volume but not to the follow-up volume are those
colored in red.

As a consequence, red pixels correspond to the erosion
process, while green pixels indicate more probable errors
of the registration processing chain (i.e., actual registration
errors along with segmentation errors). Even in this given
case, where significant erosion was shown to affect the bone,
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the registration result was very accurate, proving that the
pathological sign does not invalidate the proposed method.

5. Discussions and Conclusion

The proposed method, starting from intra-patient tomo-
graphic volumes acquired at different time points, proved to
reliably coregister carpal bones, in order to detect eventual
morphological changes. The approach operates directly on
MRI spatial sequences, without any atlas or anatomicalmodel
andwas also shown to be applicable to pathological cases.The
retrospective analysis of given cases represents a feasibility
study proving the effectiveness of the proposed method for
tracking the progression of erosion or edema related to
rheumatoid arthritis.

In contrast to other 3D model registration approaches,
which are based on surface feature representations and
matching, the present method is volume-based. Compared
with the more classical Euler angles, it does not suffer from
problems such as the ambiguity in axis direction and the fact
that an infinite number of rotations cannot be parametrized.
In addition, it is able to reduce the interpolation blurring
effect.

The assessment of the method’s performance was based
on healthy bones where no significant changes were expected
from the initial to the follow-up study, and a quantitative
evaluation was carried out, thus objectively demonstrating
the correctness and validity of the method. In these cases,
the registration purpose is a perfect result, where deviations
are only due to errors or approximations associated with the
phases of parameter estimation and interpolation, in addition
to eventual segmentation errors. For the specific registration
procedure, no phantom or other ground-truth standard data
are required because the direct comparison of corresponding
bones that are not changed over time is possible.

Indeed, the proposed method was also applied to patho-
logical studies, the location and size of the pathology being
identified by specialist physicians. Bone erosion only locally
affected the bone volume of interest, and changes were
minimal and limited, which showed that the method can
produce satisfactory results in pathological cases as well.
This approach allows tracking changes in bone morphology
without these changes affecting the registration process.

When comparing with published literature, quantitative
evaluation of individual cases is very seldom available, espe-
cially when dealing with longitudinal wrist bone analysis.
In some cases, such as in [5], shape changes are manually
evaluated.

In the statistical study presented in [12], the average RMS
surface distance between registered bone and atlas is reported
to be 0.25mm. Starting from the accuracy measures reported
at Figure 9, an average distance between the first and the
second bone is estimated to be around 0.27mm in the present
study. By taking into account the fact that the CT voxel
resolution was 0.32 × 0.32 × 0.26 (mm3) in that study, while
it is 0.5 × 0.5 × 0.5 (mm3) in the current one, the present
performances compare favorably.

In conclusion, the present feasibility study, starting from
low-field MRI spatial sequences, proved that it is possible
to automatically quantify bone erosion by simple image
processing algorithms, without a priori knowledge ormodels.
Innovative aspects rely on the fact that the proposed method
is an automatic, fast, and simple image processing procedure
for quantitative analysis in longitudinal wrist studies. Being
based on the only original MRI grey levels, no use of a priori
knowledge or models is required.

After this preliminary study, a rigorous clinical validation
of the method in pathological cases is planned as a future
activity.
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