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Summary
Innate lymphoid cells (ILCs) have been identified as potent regulators of inflammation, cell death
and wound healing, which are the main biological processes involved in the progression of chronic
liver disease. Obesity and chronic alcohol consumption are the leading contributors to chronic liver
diseases in developed countries, due to inappropriate lifestyles. In particular, inflammation is a key
factor in these liver abnormalities and promotes the development of more severe lesions such as
fibrosis, cirrhosis and hepatocellular carcinoma. Opposite roles of ILC subsets have been described
in the development of chronic liver disease, depending on the stage and aetiology of the disease. The
heterogeneous family of ILCs encompasses cytotoxic natural killer cells, the cytokine-producing
type 1, 2 and 3 ILCs and lymphoid tissue inducer cells. Dysfunction of these immune cells pro-
vokes uncontrolled inflammation and tissue damage, which are the basis for tumour development.
In this review, we provide an overview of the recent and putative roles of ILC subsets in obesity and
alcohol-associated liver diseases, which are currently the major contributors to end-stage liver
complications such as fibrosis/cirrhosis and hepatocellular carcinoma.
© 2023 The Authors. Published by Elsevier B.V. on behalf of European Association for the Study of the
Liver (EASL). This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/
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Introduction
The liver is a central organ that performs essential
functions to maintain body homeostasis in
response to metabolic and immunological cues.
Hepatocytes account for 80% of total liver cells and
the non-parenchymal fraction constitutes the
remaining 20%.1 The non-parenchymal fraction is
mostly composed of sinusoidal endothelial cells
and hepatic stellate cells (HSCs), which play a key
role in the synthesis of extracellular matrix pro-
teins and liver-resident immune cells. The func-
tions of these immune cells are to maintain a state
of tolerance as the liver is continuously exposed to
food products, while defending against viruses,
bacteria and toxins. Dysregulation of these func-
tions may be the cause or the consequence of the
development of chronic liver diseases which evolve
from inflammation to fibrosis and towards more
severe stages such as cirrhosis and cancer.2

Obesity is one of the main risk factors for
developing the chronic liver diseases known as
metabolic dysfunction-associated steatotic liver
disease (MASLD).3 The worldwide prevalence of
MASLD is growing in parallel with obesity, reaching
nearly 33% of the population in 2022.4 MASLD has a
wide pathological spectrum ranging from “simple”
steatosis, characterised by lipid accumulation in
hepatocytes, to metabolic dysfunction-associated
steatohepatitis (MASH). MASH is a progressive
and severe condition characterised by steatosis, a
persistent inflammatory state, hepatocyte death
and a predisposition to more severe liver
abnormalities such as fibrosis/cirrhosis and hepa-
tocellular carcinoma (HCC).2,4–7 The chronic
inflammation associated with MASH is associated
with the recruitment of circulating immune cells
and polarization of liver innate immune cells to-
wards a more inflammatory phenotype.2

Gut and adipose tissue are key players in the
development and progression of MASLD. Alteration
of the gut barrier and dysbiosis lead to increased
intestinal permeability and consequently to a
release of bacterial-derived products (pathogen-
associated molecular patterns) that reach the liver
via the portal vein.8–10 Pathogen-associated mo-
lecular patterns bind to pattern recognition re-
ceptors and accumulate in the liver, activating local
immune cells and hepatocytes.2,11 The adipose tis-
sue also plays an important role in the progression
of MASLD. When energy intake is excessive,
adipocyte storage is rapidly saturated, causing a
deregulation of lipid metabolism. In parallel, mac-
rophages that produce T helper 1-type cytokines
(tumour necrosis factor-a [TNF-a], interferon-c
[IFN-c]) are recruited into the adipose tissue,
leading to increased lipolysis and the development
of insulin resistance associated with hyper-
lipidaemia.12 All these alterations are responsible
for a modification in the secretion of several me-
diators at the hepatocyte (hepatokines) and
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Key points

� Metabolic dysfunction-associated steatotic liver disease (MASLD) and
alcohol-related liver disease (ALD) are the leading types of chronic liver
diseases in the developed world.

� Hepatocellular carcinoma is one of the most lethal cancers and patients
with alcohol use disorder or obesity are at increased risk of developing
it.

� Natural killer (NK) cells, and innate lymphoid cell (ILC)1 and ILC2
subsets have been found to play opposite roles (protective or patho-
genic) in MASLD and ALD, depending on the stage and aetiology of the
disease.

� NK cells and ILC1 have opposite roles in triggering steatohepatitis
depending on the aetiology.

� ILC2 may be protective in MASLD but deleterious in ALD and ILC3 seem
to be protective in MASLD and ALD.

� NK cells protect against liver fibrosis and HCC while ILC1, 2 and 3 may
be deleterious.

Review
adipocyte (adipokines) level, activating the immune system and
thus contributing to the development of MASLD.13 These intra-
and extrahepatic mechanisms promote the development of
MASLD and increase the susceptibility of patients to infection
and cancers.14,15

Alcohol-related liver disease (ALD) is the most common
chronic liver disease in the world and causes more than 3.3
million deaths every year.16 A chronic and large consumption of
alcohol (more than 20 g/day of alcohol for females and 30 g/day
of alcohol for males) leads to a build-up of fats in the liver
(steatosis) and to alcohol-related steatohepatitis, which is char-
acterised by steatosis, hepatocyte ballooning and infiltration of
neutrophils. Steatosis and steatohepatitis are critical in the
development and progression of ALD. Furthermore, alcoholic
hepatitis (AH) is a severe syndrome (symptoms of jaundice, fe-
ver, tachycardia, tachypnoea, hepatomegaly, leucocytosis with
neutrophilia) that can occur at any stage of ALD. Like MASLD,
adipose tissue and gut dysfunction trigger ALD pathogenesis.
Indeed, the spectrum of liver alterations in ALD and MASLD
share common mechanisms but with their own characteristics
(alcohol metabolism, specific dysbiosis, insulin resistance and
inflammation of adipose tissue).17–19 Histopathological charac-
teristics of ALD include acute portal inflammation, high neutro-
phil infiltration, alcoholic foamy degeneration and cholestasis.20

HCC is the sixth most common cancer in the world but the
third leading cause of cancer deaths. Its incidence has tripled in
developed countries over the past three decades,21,22 and is
associated with the incidence of ALD and MASLD. Dysregulation
of the local microenvironment and chronic inflammation asso-
ciated with altered genetic/epigenetic modifications promote
HCC development and progression.23,24 Advanced HCC (with
portal invasion and/or extrahepatic spread) accounts for around
a third of all treated cases. Recently, immune checkpoint in-
hibitors (ICIs), administered alone or with anti-angiogenic
agents, have been shown to significantly improve survival and
quality of life compared with the multi-targeted kinase in-
hibitors previously used in patients with advanced HCC. In fact,
based on their improved efficacy and acceptable tolerability, ICIs
are currently being evaluated in patients with mid-stage or even
early-stage HCC.25,26 However although a significant increase has
been observed in the median survival rate, not all patients
respond to ICIs.27 Therefore, it is critical to better characterise the
hepatic microenvironment during HCC development and to
better understand the interplay between local immune cells and
neighbouring cells in order to find new anti-tumour approaches
and improve existing strategies.

The family of innate lymphoid cells (ILCs) has recently
received attention in the field of liver diseases, as these cells
regulate inflammation and fibrosis and therefore the develop-
ment of cancer. Since they were first identified in 2008-2009, ILC
subsets have been extensively described and discussed in many
reviews.28–30 Briefly, ILCs are non-T and non-B lymphocytes that
lack rearranged antigen receptors; they form a heterogeneous
group and can be divided into five subsets: cytotoxic natural
killer (NK) cells, type 1, 2 and 3 ILCs (ILC1, ILC2, ILC3) and
lymphoid tissue inducer (LTi) cells.28,31–33 These cells share
similarities with T helper cells and cytotoxic T cells at both the
transcriptional and functional levels and most of them are
cytokine producers and tissue-resident cells (gut, skin, lung,
liver, adipose tissue), with the exception of NK cells which are
circulating cytotoxic cells.34 ILCs regulate tissue homeostasis but
also contribute to the onset of disease through their ability to
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produce proinflammatory and regulatory cytokines in response
to local injury or infection35,36 (Fig. 1). Dysregulation of ILC ac-
tivity can contribute to inflammatory disorders, thus they play a
role in tumour-associated inflammation.37–42 LTi cells are
essential for the formation of the secondary lymphoid organs
during embryogenesis. In adulthood, bone marrow Lti cells
replace these embryonic Lti cells and Lti-like subsets have been
described in adult gut mucosa. However, their role in adult dis-
eases is not yet well understood and needs to be studied in more
detail.43 There is growing interest in the contribution of ILC
subsets to the regulation of liver disease. Whether they play a
pathogenic or protective role in the development of disorders is a
matter of debate, which may be due to the difficulty of accurately
identifying each subset.

Here, we summarize current knowledge regarding the
involvement of ILC subsets in regulating the development and
progression of metabolic and alcohol-related liver disease in
order to better understand the pathogenesis of these liver dis-
eases and the therapeutic potential of targeting these cells.
NK cells and ILC1 in MASLD
The pathogenic or protective role of NK cells in MASH/MASLD
has long been debated. This may be due to the difficulty of dis-
tinguishing conventional NK cells from tissue-resident hepatic
ILC1 (also called liver-resident NK cells in some studies), which
share some similarities, but which are functionally different.
Conventional NK cells and ILC1 together account for approxi-
mately 30% and 10% of the total lymphocytes in the livers of
humans and mice, respectively.44 NK cells have more “killing”
properties, with higher expression of granzyme B and perforin
than ILC1, although recent studies indicate that under certain
conditions, ILC1 also exhibit cytotoxicity.45,46 However, the
phenotypic and developmental properties that distinguish NK
cells and ILC1 are often unclear and confusing, based on evidence
from different organs and pathological conditions.47,48 RNA
sequencing approaches have therefore been increasingly used to
better characterise and differentiate NK cells and ILC sub-
sets.49–51 The purpose of our review is not to resolve these dis-
crepancies, which are widely discussed elsewhere, but rather to
outline the pathogenic or protective roles of these cells in
chronic liver diseases associated with obesity or alcohol
consumption.
2vol. 6 j 100962
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Fig. 1. Major contributions of ILC subsets to immunity. Historically described roles and the main recently discovered contributions of ILCs to immune responses
are described. ILC(s), innate lymphoid cell(s); ILC1-3, type 1-3 ILC(s); MASH, metabolic dysfunction-associated steatohepatitis; MASLD, metabolic dysfunction-
associated steatotic liver disease; NK, natural killer.
Cytokines are known potent regulators of immune cell
development, activation and functions.52 In particular, inter-
leukin (IL)-12, IL-15 and IL-18 together control the homeostasis
of NK cells and the ILC1 subset.53 Il15-knockout (KO) mice fed a
high-fat diet (HFD) show a reduction of hepatic steatosis and
liver expression of chemokines (CCL2, CCL5, CXCL10) known to
attract NK cells. In turn, immune and NK cell infiltration into the
liver are lower in diet-induced obese mice in comparison to
control-diet mice.54 Albeit only correlative, these results suggest
that the absence of IL-15 could affect the biology of these cells as
well as other immune cells such as NKT cells and/or subsets of
CD8 T cells. Consistent with this, it was recently shown that IL-15
induces auto-aggressive hepatic CXCR6+ CD8 T cells by down-
regulating FOXO1 (forkhead box O1) transcription factor
expression during MASH, causing increased liver damage.55 The
study by Cepero et al. also hints that NK cells play a pathogenic
role in the onset of MASH.54 Therefore, although IL-15 is a key
cytokine for NK cell development and biology at steady state, a
local overproduction of IL-15 appears to be deleterious during
MASH. A recent study supported this observation, showing that
activated NK cells promote diet-induced MASH (methionine-
and choline-deficient diet or choline-deficient HFD).56 When
challenged with a MASH diet, Nfil3 (nuclear factor interleukin 3
regulated) KO mice, which lack NK cells but retain ILC1, showed
reduced liver steatosis, inflammation and injury compared to
control mice. This protective mechanism involves the reduction
of JAK-STAT and NF-kB-p65 signalling in hepatocytes. In contrast,
depletion of NKp46+ cells, which encompass NK cells and ILC1,
aggravates MASH.57 These data suggest that NK cells play a
pathogenic role while ILC1 possibly play a protective role during
MASH development. Further, the depletion of NK cells/ILC1 is not
liver specific in Nfil3-KO mice. Thus, we cannot rule out that NK
cells/ILC1 act via the regulation of gut and adipose tissue func-
tion, which are also important in the development and pro-
gression of MASLD. Further investigation is needed to explore
JHEP Reports 2024
the regulation of mechanisms controlling NK cell and ILC1
functions to determine the precise role of these subsets in MASH
progression.
NK cells and ILC1 in ALD
The immunosuppressive effect of alcohol has clearly been
established for several years, and patients with chronic alcohol
consumption are more susceptible to infection.58,59 Regarding
NK cells, it has been reported that chronic alcohol consumption
decreases the number and cytotoxicity of NK cells in human
peripheral blood. The reduction in NK cell degranulation capacity
has been related to decreased natural killer group 2, member D
(NKG2D) receptor expression.60–63 Primary pre-clinical studies
have provided insights into the effect of alcohol on NK cells and
their contribution to the development of ALD. As observed in
circulating NK cells in humans, alcohol has an immunosup-
pressive effect on murine hepatic NK cells, with a decrease in
their number and cytotoxic functions after chronic alcohol con-
sumption.64 Furthermore, chronic plus single-binge ethanol
consumption suppressed NK cell activity, which is partly due to
IL-10 secreted by NKT cells, leading to the aggravation of liver
steatosis.60 In addition, the removal of HSCs by hepatic NK cells is
impaired in ethanol-fed mice which is mainly related to a
reduction in the expression levels of NKG2D and IFN-c. This
decrease in NK cell activity has been associated with aggravation
of liver fibrosis.65 Alcohol consumption also compromises the
development and maturation of NK cells due to IL-15 defi-
ciency.66,67 This reduction in liver IL-15 levels upon ethanol
feeding has been related to a decrease in IL-15-producing cells
(IL15+CD11chi cells), and exogenous IL-15/IL-15 Ra supplemen-
tation is sufficient to normalise hepatic NK cell numbers.68

However, all these studies defined NK cells as CD3−NK1.1+ and
did not distinguish NK cells from ILC1. The study of Zhang et al.
addressed this point and demonstrated that 3 months of chronic
3vol. 6 j 100962
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alcohol consumption significantly decreased Eomes-expressing
NK cells without affecting ILC1.66 Furthermore, the relative
contributions of murine hepatic NK cells and ILC during alcoholic
steatohepatitis have recently been investigated.69 Chronic (10-
days chronic) plus single-binge ethanol feeding in mice
induced apoptosis of NK cells resulting in ILC1 dominance and a
negative outcome. Restoration of NK cells by cell transfer pro-
tected mice from alcohol-induced steatohepatitis, revealing the
protective role of NK cells. In contrast, hepatic ILC1 promoted the
development and aggravation of steatohepatitis through the
secretion of IL-17.69 In parallel, NK-cell-derived IFN-c, which is
significantly downregulated after chronic alcohol consumption,
inhibits IL-17 A production. This study highlighted the protective
role of NK cells in ALD, whereas ILC1 appeared to be deleterious.
It now remains to be determined whether this phenomenon also
occurs in humans and thereby whether targeting the balance
between NK cells and ILC1 holds therapeutic potential.
ILC2 in MASLD
Liver ILC2 represent less than 5% of all ILCs and have been little
studied in the context of liver diseases. However, their role in
white adipose tissue (WAT) dysfunction has been well described
during obesity, which could influence the progression of asso-
ciated liver diseases. In response to local IL-33, WAT ILC2 pro-
duce enkephalins and type 2 cytokines and are involved in the
browning of adipose tissue via IL-4Ra signalling. Further, the
activation of ILC2 by IL-33 is sufficient to promote the growth of
functional beige fat.70,71 Adipose tissue browning by increasing
caloric expenditure could limit the development of obesity and
improve insulin sensitivity, dyslipidaemia and MASLD.72,73 It has
been reported that elevated brown adipose tissue (BAT) activity
is associated with improvement of metabolic disorders, and pa-
tients with MASLD displayed lower BAT activity, which could be
due to defective ILC2. Specifically, it has been suggested that
increased BAT ILC2 activity could ameliorate chronic liver dis-
eases associated with obesity.74,75 However, the role of hepatic
ILC2 in MASLD remains to be determined.
ILC2 in ALD
Currently there are no reports concerning the potential role of
ILC2 in ALD. However, as for other ILCs, it is possible that alcohol
may cause a deregulation of ILC2. In a cohort of 12 patients with
cirrhosis of different aetiologies, those with alcohol-related
cirrhosis (n = 4) showed the highest expression of IL-33.76 IL-
33 is a potent activator of ILC2, which may facilitate the pro-
gression of fibrosis towards cirrhosis through the subsequent
release of IL-13 by activated ILC2 (discussed below). Further
studies are needed to evaluate the contribution of ILC2 to ALD
more precisely.
ILC3 in MASLD
ILC3 are relatively rare in the liver but are present in large
numbers in the intestine where they actively protect against
infections. Depending on the expression of the activator receptor
NKp46, ILC3 express RAR-related orphan receptor-gamma t
(RORct) and are classified into three subpopulations: NKp46+

ILC3 (NCR+ ILC3), NKp46- ILC3 (NCR- ILC3) and LTi cells. It has
been shown that NCR+ ILC3 are the main source of hepatic IL-22,
unlike NCR- ILC3 which produce significant quantities of IL-
17 A.77,78 The role of ILC3 and IL-22 in metabolic diseases has also
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been addressed. It has been shown that IL-22 secreted by ILC3
plays a protective role in HFD-induced hepatic steatosis via its
regulation of hepatic lipid metabolism.79 Further, in genetically
obese leptin receptor-deficient (db/db) mice and HFD-fed mice,
administration of exogenous IL-22 reverses many metabolic
symptoms, such as insulin resistance and hyperglycaemia.80

Recently, a study described the protective role of ILC3 in mice
with high-fat diet-induced steatohepatitis.81 ILC3 deficient mice
(RORctKI/KI) fed an HFD display significant fatty liver and liver
fibrosis, as well as elevated hepatic and circulating palmitic acid
levels, a key activator of proinflammatory macrophages. These
activated macrophages are an important source of IL-23 which
enhances the proliferation/activation of IL-22-producing ILC3.
The secreted IL-22 in the liver then regulates lipid metabolism,
decreases inflammation and has anti-apoptotic activity. Further,
exogenous IL-22 administration ameliorates liver injury,
inflammation, and fibrosis in diet-induced MASH mice, by cor-
recting liver oxidative stress and attenuating inflammatory
functions of hepatocyte-derived, mitochondrial DNA-enriched
extracellular vesicles.82
ILC3 in ALD
To date, no study has directly described the role of hepatic ILC3
in ALD in humans and mice. However, it has been shown in a
mouse model that gut ILC3 secrete decreased levels of IL-22 after
chronic plus binge ethanol feeding. This reduction in IL-22
secretion was reported to be the result of ethanol-induced in-
testinal dysbiosis and decreased levels of indole-3-acetic acid, a
microbiota-derived aryl hydrocarbon receptor ligand, which
regulates IL-22 expression. This deregulation leads to reduced
expression of the antimicrobial peptide REG3 (regenerating
islet-derived protein 3 gamma), which promotes bacterial
translocation to the liver and leads to the development of
alcohol-related steatohepatitis. This study also showed that in
mice fed with Lactobacillus reuteri engineered to produce IL-22,
along with a chronic-binge alcohol diet, liver inflammation and
injury were reduced and intestinal expression of IL-22 was
upregulated.83 Thus, even if the role of hepatic ILC3 is not clearly
described in ALD, intestinal ILC3 seem to play a protective role in
the development of alcohol-induced hepatic complications
through the gut/liver axis.
ILCs in fibrosis
Fibrosis and its advanced stage, cirrhosis, are caused by the
repeated death of a critical fraction of hepatocytes due to
persistent inflammation or infection, resulting in a loss of liver
tissue organisation and function. HSCs, located between hepa-
tocytes and the endothelial cells of the sinusoids in the space of
Disse, are key actors in the development of fibrosis. During
chronic inflammation, HSCs are activated by cytokines and
transdifferentiate into myofibroblasts, resulting in the produc-
tion of huge amounts of fibrous proteins (collagen, laminin,
fibronectin). The balance between the production of this extra-
cellular matrix and its degradation influences the evolution of
fibrosis.84

Because ILCs have only recently been identified, few studies
have investigated their role in the pathogenesis of fibrosis
induced by a metabolic and/or alcoholic insult and such studies
have mainly used mouse models of liver damage induced by
administration of hepatotoxic compounds, such as carbon tet-
rachloride (CCl4). NK cells are the most well-studied ILC subset
4vol. 6 j 100962



in the development of fibrosis. Several studies using mouse
models of diet and/or chemical induced-liver fibrosis have re-
ported that NK cells work against fibrosis by eliminating
HSCs.57,85–88 HSCs can be “killed” by NK cells through the
interaction of activating/inhibitory NK cell receptors and ligands
differentially expressed by the activated HSCs during their dif-
ferentiation, for example, RAE-1 (ribonucleic acid export-1)
recognised by the NKG2D receptor, or a lack of MHC I expres-
sion, which triggers NK cell activation.89–91 Other mechanisms
involve the anti-fibrotic activity of IFN-c, which inhibits HSC
proliferation and attenuates pro-fibrogenic transforming growth
factor-b (TGF-b) signalling.87 The source of IFN-c might be he-
patic NK cells but could also be ILC1, making both cell types
important in the resolution or prevention of fibrosis in chronic
liver diseases. Using mouse models of MASLD-induced hepatic
fibrosis, it has been shown that the regulation of fibrotic MASH
depends on the interaction between liver NK cells and macro-
phages. The depletion of NK cells and/or ILC1 favours the po-
larization of alternatively activated macrophages at the expense
of the proinflammatory macrophages that lead to MASLD pro-
gression.57,92 These data provide insight into the contributions of
NK cells and ILC1 during the development of fibrotic MASH in a
metabolic context.93 Furthermore, ILC2 could also be involved in
fibrosis associated with MASLD in an IL-33-dependent manner,
as reported in a mouse model of diet-induced MASH.94 The
results showed an increase in the expression of IL-33 and its
receptor ST2 in the livers of mice fed a methionine- and choline-
deficient diet or a HFD. While IL-33 treatment attenuated hepatic
steatosis, reduced serum alanine aminotransferase activity, and
improved systemic insulin resistance and glucose intolerance,
liver fibrosis was aggravated in an ST2-dependent manner.
Although this study does not clearly indicate the involvement of
ILC2, the results are in line with previous data showing the
involvement of ILC2 in liver fibrosis.95 In a mouse model of liver
fibrosis induced by CCl4 treatment, IL-33 was released in
response to chronic hepatocellular stress, leading to the accu-
mulation and activation of hepatic ILC2 in a ST2 signalling-
dependent manner. In turn, activated ILC2 produce IL-13,
promoting the activation of HSCs. Human studies confirmed
that ILC2 activation is strongly correlated with fibrosis severity.76

Since patients with fibrotic livers are at increased risk of devel-
oping cancer, this could suggest ILC2 plays a pathogenic role in
HCC development. It has recently emerged that IL-22- and IL-17-
producing ILC3 subsets are also important in liver fibrosis. The
role of IL-22 in fibrosis development has mainly been studied in
mouse models of CCl4-induced fibrosis. A decade ago, it was
reported that IL-22 ameliorates hepatic fibrosis by activating the
STAT2 pathway, thereby inducing HSC senescence and inhibiting
HSC activation.96 However, a more recent study refutes this hy-
pothesis and highlights the pathogenic role of ILC3 in hepatic
fibrosis.97 An increase in ILC3 (Lin-CD127+RORct+) was found in
mouse fibrotic livers, which contained more subpopulations of
ILC3 IL-17 A+ and ILC3 IL-22+ than ILC3 populations from control
mice. Furthermore, the adoptive transfer of ILC3 into Rag1-/- ILC-
depleted mice resulted in a significant increase in HSC activation.
These apparently contradictory results might be explained by
differences in technical approaches, such as the sorting and
transfer of the very rare population of ILC3 in vivo, and thus
further investigation is needed to ascertain the role of ILC3 in
liver fibrosis. Recently, in human fibrotic liver, an “unconven-
tional” ILC3-like cell producing the ILC2-related cytokine IL-13
was identified. The frequency of this subset was higher in
JHEP Reports 2024
fibrotic livers than in healthy livers, and IL-13+ ILC3-like cells can
modulate HSC activation by upregulating inflammatory genes/
proteins such as the monocyte-chemoattractant chemokine
CXCL8.98

Together, these data strongly support that ILC subsets play a
complex but important role in the pathogenesis of fibrosis and
must be considered in future studies and therapeutic strategies.
ILCs in HCC
Studies examining the role of ILCs in cancer, including HCC, have
yielded contradictory results, with some studies suggesting a
role in tumour progression while others suggest that ILCs confer
antitumor properties.99 However, the results are more consistent
for the NK cell subset. NK cells represent a key weapon against
tumours, as they have the unique ability to detect and eliminate
malignant cells without any sensitization.91,100 It has been shown
that the number of CD56+ NK cells infiltrating the liver in pa-
tients with HCC (aetiology not provided) positively correlated
with survival and the elimination of cancer cells, confirming that
NK cell activity protects against cancer.101 In addition, decreased
IFN-c production, upregulation of the expression of NK cell
inhibitory receptors (NKG2A, TIM3, CD96) and downregulation
of the expression of NK cell activating receptors (NKp46, NKG2D,
TIGIT, Siglec7, CD160 and NKp30) were reported in patients with
HCC.101 Furthermore, in patients with advanced HCC, NKp30-
positive NK cells show reduced expression of immunostimula-
tory splice variants of NKp30 (NKp30a and NKp30 b) and
increased expression of the inhibitory variant NKp30c.102 These
studies indicate that tumour-infiltrating NK cells are deregulated
in HCC and have a reduced capacity to eliminate cancer cells.
This reduction in NK cell activity could be mediated by different
cells and mechanisms, for example by tumour-derived mono-
cytes/macrophages, which boost the CD48/2B4 inhibitory axis, or
by myeloid-derived suppressor cells, which reduce the NKp30
receptor activating signalling pathway.103,104 Co-culture of NK
cells with cancer-associated fibroblasts (HCC-associated fibro-
blasts from tumour tissues) also leads to inhibition of NK cell
functions with a reduction in the expression of activating re-
ceptors and the production of granzyme B, perforin, IFN-c and
TNF-a.105 Zhang et al., uncovered the infiltration of double-
negative CD11b-CD27- NK cells into the tumour tissue of pa-
tients with HCC. This population displays an immature pheno-
type with impaired cytotoxic capacity and IFN-c production.
These infiltrating double-negative NK cells could explain the NK
cell dysfunction observed in patients with HBV-related HCC and
their tumour progression.106

Currently, most findings regarding the involvement of NK
cells in HCC have been observed in humans while few pre-
clinical studies are available. This may be explained by the dif-
ficulty in generating mouse models that reach the HCC stage
exclusively through diet-induced MASLD. Mouse models of HCC
are most often transplanted tumour models where cells from
human cancer cell lines are injected subcutaneously into mice. In
the study of Yu et al., the Hep3B cell line, representative of the
invasive and oncogenic nature of HCC, was used to investigate
the role of NK cells. The NK cells infiltrating these tumours
showed a non-functional phenotype associated with high
expression of the transcription factor NR4A1, a regulator of
antitumor immunity.107 The results thus appear to be consistent
with human data, where dysfunctional NK cells in HCC are
believed to promote tumour progression.
5vol. 6 j 100962



Table 1. Pathogenic and protective roles of ILCs in metabolic, alcohol-related.

Metabolic dysfunction-associated
steatotic liver disease

Alcohol-related
liver disease

Liver fibrosis HCC

NK cells Pathogenic role:
Responsible for inflammatory
macrophage polarization93

JAK-STAT and NF-kB pathway
activation
in hepatocytes resulting in
oxidative stress and hepatocyte
damage56

Protective role:
IFN-c produced by NK cells
inhibits IL-17 A production
and consequently
also liver inflammation69

Protective role:
Leads to HSC apoptosis57,85,86,89–91

IFN-c inhibits HSC proliferation
and pro-fibrogenic TGF-b
signalling87

Protective role:
Anti-tumoural activity101

ILC1 Pathogenic or protective role:
Not yet defined

Pathogenic role:
Drives liver inflammation
by producing IL-17 A69

Potential protective role:
IFN-c inhibits HSC proliferation
and pro-fibrogenic TGF-b
signalling87

Potential pathogenic role:
NK cell conversion into
ILC1-like cells by tumour
microenvironment112,113

ILC2 Potential protective role:
IL-33 treatment attenuated
hepatic steatosis and liver
injury94

Pathogenic or protective
role:
Not yet defined

Pathogenic role:
Activated ILC2 promote HSC
activation through IL-13
production76,94,95

Potential pathogenic role:
Could contribute to an
immunosuppressive microenvironment
which favours tumour development114

Potential protective role:
High ILC2/ILC1 ratio is associated
with better survival in patients
with HCC113

ILC3 Potential protective role:
IL-22, produced by ILC3,
decreases metabolic
syndrome79,80

Potential protective role:
Gut ILC3 indirectly promote
the development of hepatic
complications through
gut/liver axis83

Potential pathogenic role:
Lead to an increase in HSC
activation97

Potential pathogenic role:
IL-22 inhibits apoptosis and
promotes tumour growth
via STAT3117,118

HCC, hepatocellular carcinoma; ILC(s), innate lymphoid cell(s); ILC1-3, type 1-3 ILC(s); NK, natural killer.

Review
The contribution of ILC1 to the development of HCC is yet to
be well documented. The tumour microenvironment could play
an essential role in the orientation of the ILC1 phenotype, which
may lead these cells to a variety of different fates.40,108 For
example, in a mouse mammary tumour model, the abundance of
IL-15 within the microenvironment leads to an increase in a
specific subset of ILC1 that lacks expression of some ILC1-related
proteins (CD127, TNF-a) but expresses granzyme B.109 The in-
flammatory environment in a mouse model of cutaneous squa-
mous cell carcinoma also favours the increase of a peculiar
subset of ILC1 that produce less IFN-c but more of the proin-
flammatory cytokine IL-6 in pre-cancerous lesions, which could
contribute to tumour progression.40 Furthermore, studies in
other cancers (fibrosarcoma, colon carcinoma, lung carcinoma)
have shown that NK cells can be converted into “ILC1-like” cells,
mainly mediated by TGF-b released by the tumour microenvi-
ronment.110,111 Consistent with this, elevated concentrations of
TGF-b were reported in the supernatant derived from human
HCC.112 The conversion of NK cells into “ILC1-like” cells could
occur in HCC and could explain the decreased NK cell numbers
discussed above. Heinrich et al. showed that the cytokine profile
in the tumour microenvironment shapes ILCs in patients with
HCC. Single-cell RNA sequencing and flow cytometry analysis of
biopsies from patients with HCC also demonstrated the presence
of NK-like cells in the non-tumour tissue. These cells lose their
cytotoxic capacity as they evolve towards an ILC1-like profile.113

It would be of interest to evaluate whether HCC is infiltrated by
the recently described cytotoxic ILC1 subset and, if so, how the
HCC environment controls the fate of these cells.45,46 Taken
together, these studies suggest that the reduced ability of NK
cells to clear cancer cells or their reduced frequency through
possible conversion into ILC1-like cells, as well as the increase in
ILC1, could lead to HCC development.

As discussed above, recent studies have demonstrated that
ILC2 play a pro-fibrogenic role in the liver in mice and in humans.
Therefore, they may also contribute to HCC onset in the long
JHEP Reports 2024
term. In line with this, a significant correlation has been reported
between hepatic ILC2 number and poor prognosis in patients
with HCC.114 The same study showed decreased expression levels
of ILC2 activators (IL-33, IL-25) in HCC samples, and the loss of
expression of KLRG1, a marker of ILC2 maturation. This suggests
the existence of an HCC-derived ILC2 subpopulation that is
functionally divergent from canonical ILC2. This population also
produced elevated amounts of IL-13 and chemokines (such as
CXCL2 and CXCL8) involved in neutrophil recruitment. The
transfer of ILC2 into tumour-bearing mice confirmed the obser-
vation that these cells are associated with neutrophil recruit-
ment, increased arginase expression and tumour burden.114

These hepatic ILC2 identified in mouse and human HCC could
contribute to an immunosuppressive microenvironment that
favours tumour development. However, the study published by
Heinrich et al. reports contradictory results, suggesting that ILC2
play a protective role in human HCC. Specifically, the authors
show that a high ratio of ILC2/ILC1 within patients’ tumours is
associated with better survival. The high ratio corresponds to an
increase in tumour-associated ILC2 that could be dependent on
cytokine levels, in particular IL-33, which may promote ILC2
activation.113 This discrepancy may be due to different origins of
ILC2. ILC2 derived from ILC1 plasticity may not have the same
phenotype as the ILC2 described by Xu et al. Furthermore, in
human studies, the stages of HCC are not clearly specified and
may potentially influence the type of ILC2 and their role in the
tumour. The composition of the tumour microenvironment also
seems to play an essential role in the behaviour of these cells and
may potentially explain the divergent roles observed by the two
studies.

Several studies using orthotopic models or hepatotoxic agents
highlight the potential pro-tumoural role of liver ILC3 subsets in
HCC development. The pro-tumorigenic role of IL-17 A, the
cytokine noted above that is secreted by NCR- ILC3, T helper 17
cells and cd T cells, is clearly described in the literature.115 It has
also been reported that liver NCR- ILC3 promote the
6vol. 6 j 100962
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development of HCC in response to IL-23 in an orthotopic mouse
model (injection of hepa1.6 cell line into the liver) and a model of
diethylnitrosamine-induced HCC.116 IL-23 promotes the differ-
entiation of ILC1 into ILC3 in the tumour microenvironment
which in turn produces IL-17 A but not IL-22. IL-17 A-producing
NCR- ILC3 respond to IL-23 present in the tumour microenvi-
ronment and directly promote CD8+ T apoptosis and in turn HCC
progression.116 The role of NCR+ ILC3 in HCC progression has not
yet been described. However, one study showed that patients
with HCC had significant amounts of IL-22 in the tumour
microenvironment. IL-22 inhibits apoptosis and promotes
tumour growth and metastasis via STAT3 activation.117 Further-
more, a liver-specific IL-22 transgenic mouse model highlighted
the involvement of IL-22 in liver carcinogenesis. IL-22 acts as a
local paracrine factor capable of stimulating the proliferation of
liver cancer cells.118 Thus, this study hints that IL-22-producing
NCR+ ILC3 could play a pathogenic role during the develop-
ment of HCC. Taken together, these studies support a potential
pro-tumoural role for liver ILC3 subsets in HCC development.
Further work is needed to investigate whether this is also true
for metabolic and alcohol-induced HCC.

Targeting ILCs in liver diseases
Understanding the exact role of ILCs in inflammatory diseases or
cancers is still the subject of intense research and the specific
targeting of these cells for therapy is still in its infancy. Chronic
inflammation is a key driver of MASLD and many efforts have
been made recently to target inflammatory immune cells. Stra-
tegies to limit immune cell recruitment into the liver (CCR2/
CCR5, CXCR2 antagonists) and/or their activation (inhibition of
TLR4, NLRP3 inflammasome) in MASH have led to limited results,
and they mainly target myeloid cells.119 NK cells/ILCs can also
express these markers, at lower levels, thus it is possible that
their functions will also be impacted by these treatments. In any
case, since immune cells interact continuously and influence
each other, NK cells/ILCs could also be affected indirectly by such
approaches. The therapeutic manipulation of NK cells is much
more advanced for oncological indications than for liver diseases.
To date, over 200 clinical trials (clinicaltrials.gov) have been
conducted to exploit their anti-tumoural properties. NK cell-
based therapeutic approaches leading to promising results
include infusion of activated and/or engineered NK cells, NK cell
stimulation with cytokines and the use of agonistic and blocking
antibodies that target NK cells.120 Regarding the treatment of
HCC, it has been shown that injecting allogenic NK cells into
patients increased progression-free survival.121,122 The use of
chimeric antigen receptor (CAR)-modified NK cells also repre-
sents a promising approach in HCC treatment. CAR-NK cells have
been engineered against glypican-3, c-MET oncoproteins, CD147
glycoprotein (immune cell activator) and TGF-b (inhibitor of NK
cell cytotoxicity). These modified NK cells are fully functional,
with increased IFN-c production and cytotoxicity against HCC
cell lines, and are able to reduce tumour growth in xenograft
models.123–126 Cytokines targeting activation and expansion of
NK cells (and/or other ILC subsets) are also being tested in cancer
therapies, for example IL-2, IL-15 and IL-12. The strongest anti-
tumoural response is induced by infusion of IL-2 but the use of
this cytokine is limited by major adverse effects, such as an in-
crease in regulatory T cells and tissue inflammation.127 Mutated
IL-2, engineered to limit toxicity, represents an attractive
approach to boost NK cell anti-tumoural properties in HCC.128 IL-
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15 is known to activate NK cell proliferation and constitutes an
alternative to IL-2, as it has the capacity to recover antitumor
functionality in NK cells inhibited by in vitro exposure to HCC
cell lines or extracted directly from HCC.129 However, as
mentioned above, the use of IL-15 could be deleterious in
treating MASH as it favours the expansion of aggressive CD8 T
cells and inflammatory NK cells, highlighting that the nature of
the microenvironment constrains the use of this type of
approach. Finally, strategies that target NK cell or ILC receptors
and ICIs are also promising against chronic liver diseases. T cells
were the first immune cells targeted by immunotherapy. How-
ever, NK cells and other ILC subsets have also been shown to
express immune checkpoints (PD-1, TIGIT, LAG3, etc.) and thus
studies focusing solely on T cells have underestimated the po-
tential of targeting these cells as well.100 Multispecific engagers,
which target one or more activating NK cell receptors (NKp46,
NKG2D, etc.) and/or cytokine receptors (IL-2 receptor) designed
to stimulate NK cell function, represent a new class of thera-
peutic molecules being developed against cancer.130 It would be
of interest to evaluate the use of such molecules in chronic liver
diseases and HCC.

A better characterisation of liver NK cells and ILC subsets at
different stages of chronic liver diseases could lead to a better
understanding of the mechanisms that regulate the local im-
mune response and could help in the development of thera-
peutic strategies tailored to the liver microenvironment.

Conclusions
The involvement of ILCs in obesity- and alcohol-related liver
disease is undeniable (Table 1). However, the exact nature of the
protective or pathogenic roles these cells play remains difficult to
elucidate. In this review we highlighted that their roles can
rapidly change depending on the stage of progression of the
disease due to changes in the microenvironment (Fig. 2).
Currently, NK cells, due to their predominance among ILC pop-
ulations in the liver, are the ILCs whose roles are best described.
However, their close resemblance to ILC1 and their phenotypic
heterogeneity often make their role difficult to assess. ILC2 and
ILC3 are poorly represented in the liver and their involvement in
this organ is not yet very well described, unlike their respective
roles in adipose tissue and the gut. However, existing studies
have allowed us to put forward several hypotheses that point to a
pathogenic role for these cells that leads to HCC. New approaches
combining single-cell RNA sequencing, flow cytometry and
spatial transcriptomic technologies would help to better char-
acterise ILC subsets in order to better understand their role
within the tissue. The study of ILC metabolism could provide
additional indicators of the role of these cells in different stages
of obesity- and alcohol-related liver diseases, by giving insights
into the functional activity of ILCs. Finally, targeting the immune
system holds great promise in the fight against diseases, and in
particular in cancer. Immunotherapy strategies that target ICIs
and their effects on the host have mostly focused on T cells. ILCs
also express inhibitory receptors and could thus be targeted by
similar strategies. Recently developed cell therapy approaches
that target NK cells (CAR-NK cells, multispecific NK cell engag-
ers) to enhance their activities represent promising weapons in
the fight against cancer. The development of ILC-based cell
therapies that target these cells at different stages of MASLD and
ALD could similarly represent a new therapeutic option that
deserves further investigation.
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