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Abstract

Oysters, as a major group of marine bivalves, can tolerate a wide range of natural and anthropogenic stressors including
heat stress. Recent studies have shown that oysters pretreated with heat shock can result in induced heat tolerance. A
systematic study of cellular recovery from heat shock may provide insights into the mechanism of acquired thermal
tolerance. In this study, we performed the first network analysis of oyster transcriptome by reanalyzing microarray data from
a previous study. Network analysis revealed a cascade of cellular responses during oyster recovery after heat shock and
identified responsive gene modules and key genes. Our study demonstrates the power of network analysis in a non-model
organism with poor gene annotations, which can lead to new discoveries that go beyond the focus on individual genes.
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Introduction

Oysters are a major group of marine bivalves which represent

about 8,000 species worldwide [1]. They usually inhabit coastal

shallow waters and estuaries, and like other marine ectotherms

they can tolerate a wide range of natural and anthropogenic

stressors such as thermal fluctuation, anoxia, osmotic change, and

a variety of toxicants. Among environmental factors, temperature

has long been recognized as a key factor that can potentially

influence all physiological processes in marine ectotherms [2].

Oysters can experience rapid and dramatic temperature fluctua-

tions during diurnal/tidal cycles (up to 10,20uC within a few

hours) and seasonal changes (from 0 to 35,40uC) [3]. It has been

shown that thermal tolerance is rather a complex physiological

trait which requires the initiation of coordinated cellular responses

to thermal stress [4]. Many oyster studies focused on understand-

ing of cellular responses during heat stress [5,6], whereas the

recovery process after heat shock has been less studied. Recent

studies have shown that oysters recovered from sublethal heat

stress could be more resistant to subsequent thermal stress (i.e.

acquired thermal tolerance) [7]. However, most of these studies

focused on heat shock proteins (HSPs) or HSP-related proteins

[4,7,8]. A systematic study of cellular recovery from heat shock

would provide new insights into the mechanism of acquired

thermal tolerance. Lang et al. [9] have recently performed the

transcriptome profiling of selectively bred Pacific oyster (Crassostrea

gigas) families during recovery after heat shock (RHS) using an

oyster cDNA microarray containing 13,752 features [10].

Although they identified ,110 candidate genes that showed

differential expression patterns during RHS, their analytical

procedure basically represents a gene-centric approach that

focuses on individual genes with high statistical significance. Such

approach ignores gene interactions and might suffer from lack of

sufficient contextual information for generating scientifically sound

hypotheses.

Recent developments in statistical genomics provide a founda-

tion for a shift from the gene-centric to a network- or module-

centric approach in microarray data analysis [11]. In addition to

determining the roles of individual genes, network analysis enables

researchers to study cells as a complex network of biochemical

factors. Although network analysis has been widely used in gene

expression studies of human and model organisms [12–14], little

effort has been devoted to expanding its application to the less-

studied non-model organisms such as oysters.

Here we present the first network analysis of oyster transcrip-

tome by reanalyzing microarray datasets from Lang et al. [9] to

identify gene modules and candidate key genes responsible for

oyster RHS.

Results and Discussion

Network construction and identification of an RHS-
responsive module

In the study of Lang et al. [9], transcriptome profiling was

performed using an oyster cDNA microarray for Pacific oyster

families that were sampled at different recovery times (1, 3, 6 and

24 hours) after heat shock (40uC for 1 hour). Because barely little

difference of gene expression was observed among families in their

study, microarray data from these families were combined to

PLoS ONE | www.plosone.org 1 April 2012 | Volume 7 | Issue 4 | e35484



increase the power for detection of coexpression patterns in the

network analysis.

Network analysis was performed using a recently developed

weighted gene co-expression network analysis (WGCNA) method

[15] that enables identification of transcriptional modules and

key/driver genes within modules based on gene-to-gene correla-

tions across all microarray samples. A total of 60 samples (12

oyster samples65 time points) were used for calculation of gene-to-

gene correlations. The oyster cDNA microarray contained 13,752

probes, of which 3,362 probes representing 1,668 genes passed the

quality filter and were included in the network construction. In

total, six modules (M1,M6) containing almost all expressed genes

were identified with module size ranging from 211 to 1,075

(Figure 1, Table S1). It is worth mentioning that for genes that had

probe replicates, 96% of the replicate probes were assigned to the

same module colors, suggesting the high reproducibility of the

microarray data as well as the high reliability of network

construction. The analysis of variance (ANOVA) revealed that

336 probes were differentially expressed (FDR,0.05) among

sampling times (T0, T1, T3, T6 and T24), accounting for ,10%

of all expressed genes. To identify modules responsive to heat

stress, enrichment analysis of differentially expressed genes (DEGs)

was performed for each module using a hypergeometric test. It

turned out that only M1 was significantly enriched with DEGs

(p = 4e-128). Of the 332 probes in this module, 193 (58%) were

DEGs.

M1 subnetwork
In order to gain a better understanding of coexpression patterns

in M1, a subnetwork was constructed for M1. As shown in

Figure 1, M1 was composed of five submodules (M1a,M1e). Hub

genes (i.e. top 15% genes with high intramodular connectivity) in

M1 only distributed in four submodules (M1a, M1b, M1d and

M1e). A heat map was constructed for visualization of coexpres-

sion patterns of these hub genes in the 4 submodules (Figure 2).

Hub genes in M1a showed elevated expression at T1, T3 and T6

after heat shock. Two hub genes in this module were annotated;

one was SAG (senescence-associated protein) and the other was

CD151 (cluster of differentiation 151). Activation of SAG indicates

the induction of cellular senescence [16,17]. It has been shown

that senescence and apoptosis can compete with each other in an

exclusive way, and senescence can proceed when apoptosis is

inhibited [18]. A recent study has revealed that activation of

CD151 can facilitate the inhibition of apoptosis possibly through

regulation of Bax and Bcl-2 genes [19]. Besides CD151, M1a

contained other annotated DEGs such as CDH1 (Cadherin-1),

activation of which is also associated with inhibition of apoptosis

[20]. Therefore, coexpression patterns observed in M1a may

indicate the ongoing transition from apoptosis to cellular

senescence. At T24, gene expression in M1a went back to the

normal level, possibly suggesting the termination of cellular

senescence.

Subsequent to M1a, hub genes in M1b showed responsive

expression at T3, T6 and T24 after heat shock. IAP (inhibitor of

apoptosis protein), CREB (cAMP response element-binding

protein) and sHSPs (small heat shock proteins) are annotated

hub genes in this module. IAP blocks apoptosis at the core of the

apoptotic machinery by inhibiting effector caspases [21]. Interac-

tion between IAP and CREB was demonstrated in a previous study

showing that CREB can regulate the promoter activity of IAP by

binding to the IAP’s enhancer sequence [22]. In response to heat

stress, sHSPs can stabilize protein conformation, prevent aggre-

gation and thereby maintain the non-native proteins in a

competent state for subsequent refolding, which is achieved by

other HSPs/chaperones (e.g. HSP70 and HSP90) [23]. In

addition, sHSPs also play an important role in inhibition of

apoptosis [24–26]. It has been proposed that HSP-mediated

regulation of the apoptotic pathways probably constitutes a

fundamental protective mechanism that decreases cellular sensi-

tivity to damaging events to allow cells to escape the otherwise

inevitable engagement of apoptosis [27]. Therefore, M1b is

enriched with genes functioning in inhibition of apoptosis as well

as stabilization of protein conformation.

M1e contained hub genes with increased expression at T6 and

T24, indicating a later response during RHS than M1a and M1b.

HSP70 and HSP90 are dominant hub genes in this module, which

are well known as molecular chaperones that help in the refolding

of misfolded proteins and assist in their elimination if they become

irreversibly damaged. Elevated expression of TOP1 (topoisomerase

I) was observed in this module, which involves in regulation of

DNA supercoiling that might be accumulated during rapid

induction of the heat-shock genes [28]. It has been shown that

TOP1 plays an important role in the acquisition of thermotoler-

ance probably by preventing inhibition of further transcription of

HSPs caused by hyper negative supercoiling [29]. Expression of

NRX (nucleoredoxin) was also increased in this module. NRXs are

a novel member of thioredoxin family. Members of the

thioredoxin family have been shown to function as facilitators

and regulators of protein folding [30]. Taken together, it seems

that M1e is enriched with protein-refolding associated genes.

M1d was composed of hub genes with increased expression only

at T24. ACOD (delta-9-desaturase) is the only annotated hub gene

in this module, which functions in conversion of saturated fatty

acids to monounsaturated fatty acids. Up-regulation of ACOD

indicated the increase of unsaturation of lipid membrane (i.e.

increased membrane fluidity) during RHS. Cell membranes are

known to be a highly sensitive monitor of the most diverse

environmental changes. The unsaturation level of membranes is

involved in the transduction of thermal stress into cellular signals,

thus affecting the general stress-response mechanisms [31]. The

increase of membrane fluidity can elevate the sensitivity of cells to

heat [32], implying that when oysters are subject to subsequent

exposure to heat stress, the cells might respond at a temperature

lower than the original threshold, causing the repair system to

function faster than previously. This speculation may well explain

the previous observations that oysters pretreated with heat shock

can result in induced heat tolerance [7]. It has also been shown

that desaturase activation or hyper-induction plays an important

role in the response to heat stress in certain thermotolerant yeast

and bacterial strains [33,34].

Network visualization of the four submodules revealed a cascade

of cellular responses (M1aRM1bRM1eRM1d) during RHS. As

shown in Figure 3, inter-modular interactions only occurred

between adjacent modules. For example, M1b is the only module

that interacts with M1a, but no interactions between M1a and the

other two modules. According to Figure 3, the scenario of cellular

responses during oyster RHS is likely to be as follows: (i) after heat

shock, cellular senescence was induced accompanied by inhibition

of apoptosis (M1a); (ii) sHSPs were expressed to stabilize protein

conformation (M1b) and facilitate further protein refolding by

HSP70 and HSP90 (M1e); and (iii) then increase of membrane

fluidity was induced, which possibly enhanced the sensitivity of

cells to subsequent heat stress.

In addition, network analysis enables identification of key genes

responsible for module interactions. One advantage of the

coexpression network analysis is that it does not rely on the

information of gene annotation for identification of key genes in a

module, thus providing the opportunity for identification of novel

Oyster Gene Network Analysis

PLoS ONE | www.plosone.org 2 April 2012 | Volume 7 | Issue 4 | e35484



candidate genes in non-model species with poorly characterized

genome. For example, from a network perspective, the unanno-

tated gene (probe IDs 14059 and 14060) in M1b seems to be an

important hub gene that is responsible for interactions between

M1a and M1b. However, this gene could be possibly overlooked

by the traditional analysis methods since no annotation has been

assigned to this gene. Network analysis also revealed that NRX and

ACOD are important hub genes that maintain the interactions

between M1e and M1d. Although there is no documented direct

interaction between these two genes, it might be worthy of further

investigation due to the vital role of ACOD in maintaining the

fluidity of lipid membrane.

In summary, we performed the first network analysis of oyster

transcriptome by reanalyzing microarray datasets from Lang et al.

[9]. Network analysis revealed a cascade of cellular responses

during oyster RHS and identified responsive gene modules and

candidate key genes. Our study demonstrates the power of

network analysis in a non-model organism with poor gene

annotations, which can lead to new exciting discoveries that go

beyond the focus on individual genes.

Materials and Methods

Ethics Statement
Not applicable. Our research did not involve human partici-

pants or samples.

Microarray data acquisition
The vsn-transformed microarray data from Lang et al. [9] were

downloaded from the Gene Expression Ominibus website (http://

www.ncbi.nlm.nih.gov/projects/geo; Series GSE12070,

GSM304764,GSM304823).

Figure 1. Network analysis of the oyster gill transcriptome during recovery after heat shock (RHS). (A) and subnetwork analysis of the
RHS-responsive module M1 (B). Dendrograms are produced by average linkage hierarchical clustering of genes on the basis of topological overlap
(see Methods for details). Modules of coexpressed genes are labelled in unique colors. Unassigned genes are labelled in grey.
doi:10.1371/journal.pone.0035484.g001

Oyster Gene Network Analysis
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Probe annotation
In order to increase the probe annotation rate, 206,388 ESTs

and 1,080,743 raw reads from a 454 sequencing of Crassostrea gigas

transcriptome project (SRA accession no. SRX032364 and

SRX032365) were downloaded from NCBI databases and then

assembled using the Newbler v2.3 program (Roche) with default

parameter settings. The probes that can be unambiguously

mapped to the assembled isotigs were annotated by BlastX the

corresponding isotigs against the Nr and SwissProt databases with

an e-value threshold of 1E-6. For the remaining probes, they were

directly compared against the Nr and SwissProt databases using

BlastX with the same e-value threshold. To increase the

Figure 2. Heat map visualization of coexpression patterns of hub genes in submodules M1a, M1b, M1d and M1e. T0 represents an
oyster control without heat treatment, whereas time points T1, T3, T6 and T24 represent recovery time (hour) after heat shock. Probe IDs and their
associated gene annotations are shown on the right of the heat map. Red, up-regulation; Green, down-regulation.
doi:10.1371/journal.pone.0035484.g002

Figure 3. Network visualization of submodule interactions. Each node represents a hub gene. Hub genes derived from the same submodule
are labelled in the same color. Hub genes are connected by an edge if the topological overlap between them is more than 0.13. Interactions (i.e.
edges) between modules are labelled in grey.
doi:10.1371/journal.pone.0035484.g003

Oyster Gene Network Analysis
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computational speed, BlastX searches were limited to the first 20

significant hits for each query with non-characterized matching

entries (e.g. hypothetical genes/proteins) excluded. Gene names

were assigned to each probe based on the best Blast hit, and the

corresponding information was provided in Table S1.

Microarray data pre-processing
The oyster cDNA microarray contains 13,752 probes, of which

3,362 passed the previously defined signal-intensity filter [9] and

were included in the subsequent analysis. Outlier values for each

gene were removed based on the Grubbs’ test (p,0.05).

Gene network construction
Gene network was constructed using the R package WGCNA

following the procedure described in [35]. Here we chose a power

of eleven so that the resulting networks exhibited approximate

scale-free topology (model fitting index R‘2 = 0.71). Next, all genes

were hierarchically clustered based on dissimilarity measure of

topological overlap which measures inter-connectedness for a pair

of genes [15]. The resulting gene dendrogram was used for module

detection using the Dynamic Tree Cut method (minimum module

size = 80 and cutting height = 0.995) [36]. Fine cutting (minimum

module size = 30 and cutting height = 0.997) was further per-

formed for the module of interest.

Identification of RHS-responsive modules
Differential expression analysis among sampling times was

conducted for each probe using analysis of variance (ANOVA). To

account for multiple tests, false discovery rate (FDR) was

calculated using the qvalue package [37]. Only probes with

q,0.05 were considered to be differentially expressed. To identify

the RHS-responsive module, overrepresentation analysis of DGEs

was performed for each module using a hypergeometric test

(p,0.05).

Hub gene selection and visualization
Hub genes refer to highly connected genes in a module [15].

They can be determined by calculating the intramodular

connectivity Kin, which is a measure of a gene’s connection

strength to other genes in a module. In this study, top 15% genes

with high Kin were considered as hub genes for a given module.

Coexpression patterns and interactions of hub genes were

visualized using the heat map and Cytoscape [38], respectively.

Supporting Information

Table S1 Combined results of probe annotation,
WGCNA analysis and differential expression analysis.

(XLS)
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