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In the last two decades, there has been an explosion of interest in modeling the brain

as a network, where nodes correspond variously to brain regions or neurons, and edges

correspond to structural or statistical dependencies between them. This kind of network

construction, which preserves spatial, or structural, information while collapsing across

time, has become broadly known as “network neuroscience.” In this work, we provide

an alternative application of network science to neural data: network-based analysis

of non-linear time series and review applications of these methods to neural data.

Instead of preserving spatial information and collapsing across time, network analysis

of time series does the reverse: it collapses spatial information, instead preserving

temporally extended dynamics, typically corresponding to evolution through some kind of

phase/state-space. This allows researchers to infer a, possibly low-dimensional, “intrinsic

manifold” from empirical brain data. We will discuss three methods of constructing

networks from nonlinear time series, and how to interpret them in the context of

neural data: recurrence networks, visibility networks, and ordinal partition networks. By

capturing typically continuous, non-linear dynamics in the form of discrete networks,

we show how techniques from network science, non-linear dynamics, and information

theory can extract meaningful information distinct from what is normally accessible in

standard network neuroscience approaches.

Keywords: network science, complex system, information theory, manifold learning, time series analysis,

recurrence analysis, visibility graph, ordinal partition network

1. INTRODUCTION

Over the course of the last decade “network neuroscience” has emerged as a rapidly expanding
research paradigm in computational and cognitive neuroscience (Sporns, 2010; Fonito et al.,
2016). A core breakthrough has been the development and refinement of the idea of the
“connectome” (Sporns et al., 2005), which generally refers to a network model that encodes all
pairwise connections between elements of the brain (or, if we’re feeling particularly ambitious,
the whole nervous system). In a connectomics model, the nodes of the network are naturally
understood as neurons, brain regions, or other components of the nervous system and the edges are
physical connections (e.g., white matter tracts) or statistical dependencies (functional or effective
connectivity). The resulting network can be weighted, unweighted, directed, or undirected and
methods developed in graph theory and network science provide insights into the systematic
organization of the brain, the underlying biology, and alterations seen in disease (Sporns, 2010;
Fonito et al., 2016).
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Functional connectivity networks have become a particular
object of interest among network neuroscientists (van den
Heuvel and Hulshoff Pol, 2010; Smith et al., 2011). The appeal
of functional connectivity networks is obvious: by providing a
map of how different brain regions couple, it becomes possible
to decompose the whole system into sets of interacting elements,
or sub-networks (Yeo et al., 2011), which can be analyzed
independently. There is a price to be paid for constructing
functional connectivity networks, however: in its raw form, the
data that comes out of many neuroimaging modalities (fMRI,
M/EEG, single-neuron recordings, etc.) contains both spatial
information (in the sense that every recorded element has its
own unique time series) and temporal information, recorded as
a multidimensional time series. Functional connectivity analysis
can be thought of as “collapsing” across the temporal dimension,
while preserving the spatial distinction between elements. The
individual elements are preserved as distinct nodes, while
much of the rich temporal dynamics are lost and replaced
with a vector-valued summary statistic indicating some sort
of coupling between elements (typically the expected value of
some statistic: e.g., Pearson correlation, transfer entropy, etc.)
(Friston, 1994).

This collapsing often throws out important dynamical
information, which can reveal how the system evolves through
time. This is a core area of research in modern computational
neuroscience—understanding the low-dimensional structure of
neural dynamics (described as dynamics on a “manifold”)
(Woodman and Jirsa, 2013). While the nervous system can
have functionally infinite degrees of freedom (corresponding to
the number of neurons, or voxels in a dataset), correlations
between elements can constrain the evolution of the whole
system to a subspace of the possible global state-space (the
manifold). These low-dimensional neural manifolds have been
found at every level of neural function: ensembles of spiking
neurons (Gallego et al., 2017, 2018, 2020; Chaudhuri et al., 2019),
electrophysiological recordings (Kuo et al., 2018; Varley et al.,
2021b) whole-brain fMRI studies (Shine et al., 2018, 2019a,b),
and have been conjectured to relate to differences associated
with mental illness and psychopathology (Carhart-Harris and
Friston, 2019; McIntosh and Jirsa, 2019). Conceptually, the idea
of a neural manifold can be understood as a “space”, every point
of which corresponds to a possible “state” a system can be in.
The evolution of the system through time can be understood as
a flow, or path, traversing the state-space landscape. Modeling
these manifolds, and the particular path the system traverses over
them, requires understanding how the instantaneous states at
different moments in time (typically individual frames or time
points of a multivariate time series) relate to each other and
requires time-resolved analysis of the whole system, rather than
global measures of interaction.

Typically, manifolds are modeled as continuous surfaces,
using differential equation models (Huys et al., 2014), or
dimensionality-reduction algorithms like PCA (Shine et al., 2018)
or diffusion-map embedding (Margulies et al., 2016). While
continuous embeddings provide insights and don’t automatically
require coarse-graining, they come with inevitable practical
limitations when compared to discrete models, and in fact,

many “continuous” manifold-embeddings use discrete nearest-
neighbor networks to approximate distances in high-dimensional
spaces [e.g., tSNE (Hinton and Roweis, 2003), UMAP (McInnes
et al., 2018), or KSG information estimators (Kraskov et al.,
2004)].

Historically, there has been considerable interest in creating
discrete state-space and state transition models of continuous
brain dynamics. Popular approaches may include unsupervised
clustering algorithms (e.g., k-means clustering) or inferring
hidden Markov models. While both have been informative
(discussed blow), a common limitation of these measures is
typically small number of “states” (often < 10), which is likely
not enough to fully characterize a manifold. Combined sliding-
windows functional connectivity analysis and k-means clustering
can reveal differences in the state transition structure of the brain
under different conditions (Li et al., 2019; Lord et al., 2019;
Schumacher et al., 2019; Singleton et al., 2021), however a state-
space model of 5–10 unique “states” may be too impoverished to
extract detailed information about the structure of the intrinsic
neural manifold. Hidden Markov models have been similarly
applied to multiple neuroimaging modalities, including spiking
networks in rodents (Jones et al., 2007), MEG data from humans
(Baker et al., 2014), and fMRI data from humans (Eavani et al.,
2013; Chen et al., 2016). As with k-means based state-detection
pipelines, the number of states that can be discerned is typically
less than 15.

In this paper, we describe a suite of alternative methods of
inferring discrete manifolds (in the form of networks) from
neural data. In contrast to k-means and HMM-based models,
these techniques are finely time-resolved and can allow for
the distinction of hundreds of unique micro-states. Collectively
referred to as “network analysis of time series” (Lacasa et al.,
2008, 2015; Donner et al., 2010; Small, 2013; McCullough
et al., 2015; Zou et al., 2019), these methods aim to provide a
best-of-both-worlds approach: allowing researchers to leverage
the considerable power of graph theory and network science
to understand neural manifolds without reducing the number
of states to the same extent that more well-known standard
algorithms do. We suggest that these approaches constitute
a complementary branch of network neuroscience based on
analyzing manifold networks rather than functional or structural
connectivity networks. This kind of network-based analysis can
be thought of as “orthogonal” to traditional, connectome-based
analyses. Instead of preserving spatially distinct elements as
nodes and collapsing temporal dynamics into edges, in network
analysis of time series, the whole system (or time series) at
a given instant is collapsed into a single state vector, and
the edges (which can be directed, undirected, weighted, or
unweighted) correspond to movement through a state-space.
Local temporal dynamics become encoded in the local graph
neighborhood of a single node, allowing every moment to be
assessed independently, while global properties of the whole
dataset are encoded in the global structure and topology of the
network.

Network-based analysis of time series is a comparatively novel
field and has only begun gaining momentum in the last few years.
Much of its history can be traced back to analysis of non-linear
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signals, specifically (although not exclusively) techniques for
attractor reconstruction (Takens, 1981) and recurrence analysis.
The basic motivation for attractor-reconstruction is to try and
infer the overall “state-space landscape”: the set of states that
the system under study can adopt, how it is likely to evolve
through time (corresponding to a trajectory through the state-
space), and what it’s long-term behavior might look like. A
particular set of states that the system gets “stuck” in long-term
is called the “attractor.” The canonical example of non-linear
attractor analysis is the discovery of the Lorenz Attractor, and
by extension, dynamical chaos, in an atmospheric model (Gleick,
2011). Since then, dynamical systems models have been applied
in a variety of fields, including neuroscience to understand
the different dynamics driving different cognitive states and
behaviors (Chaudhuri et al., 2019; Shine et al., 2019a). In classical
attractor reconstruction analysis, a continuous, non-linear signal
is “embedded” in an n-dimensional space using a time-delay
embedding (described in detail below), resulting in a point-
cloud, where every moment in the initial time series corresponds
to a vector in n-dimensional space. Analyzing the structure of
this point-cloud, such as its topology, correlation dimension, or
chaosticity, can provide insights into the generating processes
that gave rise to that signal (for an overview of these concepts
and others from chaos theory, see Strogatz, 2018). Network
analysis of time series follows a similar pipeline. Every moment
in the time series is mapped to a node in a network, and
edges are assigned to nodes according to some criteria (the
specifics of which vary with the construction algorithm). In this
paper, we explore three ways of constructing a network from
time series:

1. Recurrence Networks: Networks which encode the tendency of
the system to return to, or dwell in, particular subspaces (or
macro-states) as it evolves over a continuous manifold. See
Section 2

2. Visibility Networks Networks which encode the structure of
extreme and common events throughout the duration of the
time series. See Section 3

3. Ordinal Partition Networks: Networks which encode
probabilistic state transition dynamics through a space of
discrete system “states” in a manner similar to a finite state
machine. See Section 4

As with continuous attractor-embeddings, analysis of the
topology of the resulting networks can provide insights into
dynamics of the original time series. One significant benefit of
this method, however, is that a network is a discrete, rather
than continuous manifold, which allows us to leverage the
considerable work that has been done at the intersection of graph
theory and information theory (Cover and Thomas, 2012; Klein
and Hoel, 2020; Rosas et al., 2020) to understand information
dynamics in brain data in ways that cannot be as easily done when
operating on a continuous signal.

In this paper, we follow the outline provided by Zou et al.
(2019), who lay out a mathematically rigorous and extremely
comprehensive introduction to multiple methods of constructing
networks from time series data. As we are writing for an audience
of neuroscientists, we will focus less on the mathematical details,

and instead on the significance of these methods in the explicit
context of neural data. We encourage the interested reader to
refer either to Zou et al. (2019) or any of the cited primary source
papers for further details. In addition to providing the technical
details of how these networks can be constructed and analyzed,
we have taken pains to propose intuitive interpretations of the
various metrics proposed here, particularly as they might relate
to neural data. As network neuroscience has developed, a critique
of the field has been that the development of mathematical
techniques has often outpaced scientific interpretation, resulting
in studies where researchers apply analyses or calculate metrics
without a clear understanding of what those metrics mean
in the context of the data being sampled (De Vico Fallani
et al., 2014; Hallquist and Hillary, 2018). Graph metrics are
mathematically well defined, but the biological interpretation is
often not obvious, particularly when operating on structures such
as fMRI connectivity networks, which are themselves statistical
abstractions created from an indirect measure used to infer
neural activity. By providing intuitive interpretations of the
various network measures proposed here, we hope that this
new branch of applied mathematics can be made accessible to
neuroscientists, biologists, and cognitive scientists who can use
it to answer outstanding about the brain and mind.

2. RECURRENCE NETWORKS

Recurrence Networks (RNs) were the first proposed method of
constructing networks from embedded time series (Donner et al.,
2010), and can be built using both univariate and multivariate
time series. The intuition behind a RN is that the evolution of a
complex system through time can be thought of as a trajectory
over some kind of manifold (for a 128-channel EEG array, each
state would be a point in a 128-dimensional space), and that, over
time, the system will return to subsets of the state-space that it
has already visited (Strogatz, 2018). If we consider each moment
in the time series as a node in the network, then we can then
draw an undirected edge between two nodes if the “distance”
between the two points on the manifold (typically formalized
with a metric such as an Lp norm) is less than some arbitrary
value of ǫ. RNs are isomorphic to the notion of a recurrence
plot (Eckmann et al., 1987), as the recurrence plot is taken as
the adjacency matrix defining a RN. The RN is very powerful
in that, unlike most other methods for analysis of time series,
there is no requirement that the underlying data be regularly
sampled, since there is no temporal information encoded directly
in the network. Missing bins and irregular sampling rates are
nonissues since every node is treated as a random sample
from the underlying manifold: RNs have been used to analyse
irregularly-sampled paleoclimate data (Donges et al., 2011a,b).
This could potentially make recurrence networks extremely
useful for analyzing behavioral data (particularly longitudinal
studies) which is often irregularly sampled [a similar algorithm—
Recurrence Quantification Analysis has been used in longitudinal
behavioral data (Brick et al., 2017; Danvers et al., 2020)].

An RN can be thought of as one way of approximating an
attractor driving a system under observation. The most basic
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method of constructing an RN assigned a weight of 1 to all edges
with distance less than ǫ, regardless of the actual metric. The
result is one of the simplest kinds of networks: an unweighted,
undirected network, which will admit almost all of the standard
algorithms in network science. Alternately, we can preserve
“spatial” information by assigning the actual metric between
two points to the weight of the edge connecting them, resulting
in an undirected, weighted network. The weighted network
contains significantly more information than the unweighted
network and can be useful when doing a spatial embedding where
relative distances are meaningful. The weighted network also
has the advantage that all edges are strictly positive (in contrast
to a Pearson correlated-based functional connectivity network),
removing the uncertainty around interpreting negative weights
on networks.

One appeal of recurrence networks is that they encode many
features of interest in classical recurrence analysis in new ways,
as well as providing new analyses based on the global structure
of the network. For an example, consider the sample entropy,
which approximates the entropy rate of a continuous signal
(Richman andMoorman, 2000; Lake, 2011). Given an embedding
dimension m and a threshold ǫ, the sample entropy of a time
series is:

S(Xt) = −log
(A

B

)

Where A is the number of recurrences when the embedding
dimension ism+ 1 and B is the number of recurrences when the
embedding dimension is just m. In the context of a recurrence
network, A and B become the number of edges in the respective
networks and the sample entropy is the log-ratio of the two
network densities. As an approximation of entropy rate (Lake,
2011), sample entropy is typically used as a measure of the
“complexity” of a time series and multiple graph measures could
be used to capture additional dimensions of “complexity”, such as
the degree distribution, global efficiency, or clustering coefficient.
While each of these new versions of sample entropy will have
their own interpretations and mathematical properties (which
we will not explore here), this example highlights how casting a
recurrence plot as an RN can help facilitate new and potentially
insightful analyses of dynamical processes.

2.1. Constructing a Recurrence Network
Recurrence networks can be easily constructed from
multidimensional time series data, and most neural data
comes in this form (e.g., BOLD signals from multiple parcels,
multiple neurons recorded using an multi-electrode array, etc.).
Recurrence networks can be constructed from univariate time
series, in which case the first step is to perform a time-delay
embedding on the series, using some appropriately selected
embedding dimension d and lag τ (see Section 4.1)

Given some multivariate time series with n dimensions:

Xt = (X1,X2, ...,Xt)|Xi∈Rn ,

Where each element Xi corresponds to an n-dimensional vector,
we can teat each vector Xi as a point embedded in n-dimensional

space. We then define a t × t matrixM and populate it such that:

Mij = 2(ǫ − ||Xi,Xj||)

Where 2() is the Heaviside function and || || corresponds to
some suitable distance measure. M can then be understood as
the adjacency matrix for some binary, undirected network GR,
whose sparseness varies inversely with ǫ. Other methods of
matrix construction are possible, for instance we could define
Mij = d(Xi,Xj), for some distance metric d() which provides a
fully-connected distance matrix for all pairs of points. This dense
matrix could be thresholded at some arbitrary percentile or value
of ǫ, thus producing a sparse network that preserves distance
information. The specific value of ǫ is also relevant (Marwan
et al., 2007; Marwan and Webber, 2015) as the network becomes
fully dense as ǫ gets large (for a visualization of the effect of ǫ

on network construction, see Figure 1). Furthermore, as ǫ grows
larger than the mean distance between points, edges are likely
to form between subsequent points, as opposed to temporally
distinct recurrences. Several different heuristics for selecting the
threshold have been suggested, usually focused on enforcing
sparse networks, such as a few percent of the maximum distance
(Mindlin and Gilmore, 1992; Zbilut and Webber, 1992; Koebbe
et al., 1994), or to force a particular density of recurrences (edges
in the network) (Zbilut et al., 2002). Thiel et al. (2002) argues that
it is important to consider the effect of experimental noise on the
structure of data, and that, given noise with a standard deviation
of σ , ǫ should be selected such that ǫ > 5σ , although this
requires having a good estimate of the noise distribution of the
data, which can be difficult to achieve. Numerical explorations of
the effects of adding white and colored noise to the Lorenz System
on the resulting RN have shown that noise can compromise the
specific recurrence structure, however the ability of the network
to preserve the overall structure of the attractor is remarkably
robust (Jacob et al., 2016).

Other possible landmarks that leverage network analysis
might include: the minimum value for which the network is fully
connected, the value which maximizes the variance in the degree
distribution (McCullough et al., 2015), or the value that optimizes
the community structure of the network (for a discussion of
community detection in RNs, see Section 2.2.1).

2.1.1. Choosing a Distance Metric
The question of exactly which distance function to use is
a non-trivial one. In low-dimensional systems, Euclidean
distance can be used for an intuitive interpretation, however as
dimensions grow, many distance metrics (Manhattan, Euclidean,
Chebyschev, etc.) become increasingly uninformative (this is
known as the curse of high dimensionality, Aggarwal et al.,
2001). While there is no “right” answer for every context, the
cosine distance is one appealing alternative to Lp-metrics as it
does not suffer from the curse of dimensionality. For very high
dimensional data, the Pearson correlation can serve as a distance
metric as well.

If one is not concerned about losing regionally-specific
information in the embedded vector (where each element
corresponds to the instantaneous activation at the associated
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point in the brain or recording array), dimensionality reduction
techniques can reduce the effects of the “curse of dimensionality.”
If the dynamic activity in the brain is truly represented by a low-
dimensional manifold, such an initial dimensionality reduction
shouldn’t compromise the integrity of the resulting network
attractor (again, at the cost of loosing topographic information),
although this remains an area requiring further exploration.

2.2. Analyzing a Recurrence Network
Many of the basic graph theoretic measures applied to RNs
were explored in Donner et al. (2010) (which focuses on RNs
constructed from time-delay embeddings of a univariate time
series—for an explanation of such embeddings, see Section 4.1),
and have subsequently been elaborated upon. The most basic
measure that can be extracted from an RN is the number of
edges (network density), which quantifies the ǫ-recurrence of
the system under study. The degree (or normalized degree-
density) of a node provides information about the local density
of that region of phase-space: a high degree indicates the a dense
region of phase space (i.e., the system visits this region a lot or
spends a lot of time there), while a low, or zero degree suggests
that the system was visiting a rare or unlikely configuration.
Interestingly, Donner et al. (2010) and Zou et al. (2019) offer an
argument that the local and global clustering coefficient provides
information about the dimensionality of the underlying system:
periods of time characterized by high clustering, where many
points are all mutually ǫ-close are associated with an alignment
of the state-vectors that suggests low-dimensional dynamics.
The betweenness centrality of a node is thought to encode the
local fragmentation of the system (Donner et al., 2010): as Zou
et al. (2019) describes, if the attractor is characterized by several
dense regions of phase space, connected by a small number of
intermediate points, those points “bundle” shortest paths into
a single walk characterized by a high degree centrality. Those
nodes with high betweenness centrality indicate states that might
serve as “bridge states” between two distinct, dense regimes.
Finally, if the data is sampled regularly, the distance between two
subsequent samples (Xi(t) and Xi(t + 1)) is proportional to a
measure of “velocity”, or how fast the system is evolving through
the state space at a given instant. Previous analysis has found that
the distributions of velocities reflects gross changes in brain states
(Varley et al., 2021b).

In addition to the network-based measures, all the standard
techniques from basic recurrence quantification analysis (RQA)
can also be applied. For detailed reviews of these methods, see
(Marwan et al., 2007; Marwan and Webber, 2015).

2.2.1. Community Detection
One key, but rarely explored, application of recurrence
networks is as a measure of where the state-space is “dense”
and where it is “sparse.” As an analogy, consider a dataset
that consists of random samples from a unimodal, bivariate
Gaussian distribution. Regions of the distribution where
the probability density is high (the peak of the “hill”) will
see a higher density of samples, while the tails will not
and the relative probability maxima can be determined
based on the where the points are densest. This is the
logic that underlies many K-nearest neighbors-based

techniques for non-parametric probability estimation [e.g.,
the well-known KSG Nonparametric Mutual Information
estimator (Kraskov et al., 2004)].

A similar logic applies to higher-dimensional manifolds,
although we should note that in a complex, non-linear
time series, we cannot necessarily assume that each point
is independently sampled from the manifold. Regions of the
state-space that the system frequently returns to (or slows
down upon visiting) are characterized by a large number of
closely-spaced samples, which will become high-dimensional
simplicial complexes, even for comparatively small values of
ǫ. A community-detection algorithm could be used to find
“macro-states”: those regions of the state-space that the system
revisits or gets “stuck” in, and provide a more principled coarse-
graining than selecting an arbitrary k for a k-means algorithm.
The optimal community-detection algorithm to use on an RN
remains uncertain and is an area worthy of future investigation,
although standard techniques promise a useful starting point (for
a visualization of community assignments for RNs of different
densities, see Figure 2).

2.2.2. Relationship to Topological Data Analysis
A key feature of the RN, in contrast to other methods described
later, is that, under certain conditions, the recurrence network
is able to preserve the topology of the underlying, continuous
attractors (Donner et al., 2011), and therefore points to a natural
association between RNs and an emerging field of topological
data analysis [TDA; for an accessible general introduction, see
(Chazal and Michel, 2017), for a discussion of TDA’s relevance
to modern neuroscience, see (Sizemore et al., 2018)]. TDA
is used to assess the presence (or absence) of higher-order
structure in large datasets, where every observation is treated
as a point embedded in a high-dimensional space. In the case
of neural data, this may be the distribution of instantaneous
activity across a recording array (Varley et al., 2021b) or a point
cloud constructed by embedding a single time series (Ouyang
et al., 2008). The presence of densities and sparse regions
(such as cycles, cavities, and higher-dimensional analogues of
such voids) can provide insights into the structure of data
and, in the context of embedded time series, the generating
dynamics (Perea, 2018). The relationship between TDA and
network analysis of time series is highlighted by recent work
that takes a precision dynamics approach to understanding global
state-transition dynamics in the brain (Saggar et al., 2021): by
casting on going brain dynamics as a network of states, the
authors found that certain states have hub-like characteristics
that enable ongoing dynamics. Similar results are reported in
Saggar et al. (2018) who used the Mapper algorithm (Singh et al.,
2007) to construct a network representation of the underlying
neural manifold and then performed community detection on
the network to recover differences between behavioral states
consistent with the “ground truth.”

A core method in TDA is “persistence homology,” which
involves assessing the structure of a dataset at multiple scales
by means of a “filtration” (e.g., Vietoris-Rips filtration). Without
going into the mathematical details [again, see (Chazal and
Michel, 2017) or (Perea, 2018) for specifics], the Vietoris-Rips
filtration works by expanding balls around every point in the
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embedded point cloud, increasing the radius of each ball at a
constant rate.When two balls intersect, an edge is drawn between
the core points, creating a graph where geometrically close points
are connected, while distant points remain disconnected. As the
balls expand to a maximum radius (given by max(D(i, j))/2,
where D(i, j) corresponds to some distance measure between
two points i and j), the resulting network evolves, increasing in
density as densely connected components and voids appear and
disappear. The relationship with recurrence networks is obvious:
every value of radius r in the Vietois-Rips filtration constructs
a recurrence network with ǫ = 2r. In this way, persistence

homology can be thought of as a generalization of the idea of a
recurrence network that frees the user from having to select ǫ as
a static free parameter: all possible values are searched instead.
In addition to the insights gained from analyzing the whole
filtration (which can be done with structures like bar-codes,
persistence diagrams, Betti-curves, etc.) it is possible to “sample”
keymoments in the filtration, such as the moment the underlying
network becomes connected, or the moment where variance of
the degree-distribution is maximized, by treating the network at
that moment as an RN and doing a more thorough analysis of the
graph structure.

FIGURE 1 | Visualization of how GR changes when the value of ǫ is varied. The networks are constructed from ECoG data from the Neurotycho database and the

distance function is the cosine distance (Nagasaka et al., 2011). (A) The weighted adjacency matrix and the associated RN thresholded at 10% of the maximal

distance in the point cloud. It is clear that this is too low of a threshold, since every point is only similar to it’s immediate past and future, creating a path graph. (B) The

same network, this time thresholded at 20% of the maximum distance. Note that clear cyclic structures, indicating recurrences have started to appear, suggesting

that the system is returning to particular regions of phase-space at distinct points in time. (C) The same network, this time thresholded at 30% of the maximum

distance. This one captures even more meaningful recurrences, although at the cost of a much denser network.
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2.3. Applications of Recurrence Networks
in Neuroscience
Recurrence-based analyses of EEG signals is a developing
area of research in neuroscience, using both network and
classical approaches. Recurrence networks have been found to
help distinguish between healthy and epileptic brain activity
(Subramaniyam and Hyttinen, 2013; Subramaniyam et al.,
2015; Ngamga et al., 2016; Gao et al., 2017). Using TDA-
based analyses of recurrence networks, Varley et al. (2021b)
found distinct differences between awake macaques and those
that had been anaesthetized with propofol or ketamine, such
as a collapse of higher-order structure and a slowing of the
“velocity” of the system in the embedded point clouds following
propofol administration. A non-network-based techniques such
as recurrence quantification analysis has been found to track
changes to brain dynamics following anaesthesia (Li et al., 2007;
Becker et al., 2010) or sleep (Song et al., 2004; Rolink et al., 2015),
as has a closely-related measure, Poincare analysis (Hayashi et al.,
2015).

The notion that, given a sufficiently large dataset, an RN
can trace out a plausible “map” of the state-space of the
system, complete with a “topography” of relatively higher or
lower probabilities, allows for a detailed characterization of the
emergent dynamics playing out in the brain complementary
to static functional connectivity or cluster-based dynamic
connectivity models. Returning to the notion of community
detection in an RN, a dense community corresponds to a general
pattern of activations across the cortex that the brain repeatedly
returns to as it evolves through time. How “fuzzy” a pattern is
(that is to say, how different two instantiations can be before we
stop acknowledging them as “the same”) depends on the value
of ǫ, but assuming a sufficiently dense community, it would be
possible to take the average of the spatial distributions of activities
across all nodes in the community and extract neurological
information from that pattern.

RNs could be applied to a number of questions in
computational and cognitive neuroscience. In the context of
whole-brain analyses, the “map” provided by the RN can
allow the comparison of different sizes, or “geographies” of
neural state-space landscapes. Differences in the state-transition
structure have been hypothesized to reflect a number of different
mental states (Carhart-Harris and Friston, 2019). In the context
of local circuits, attractor analysis can provide insights into the
particular computations a network is performing (Breakspear,
2001).

3. VISIBILITY NETWORKS

Visibility networks (VNs) are arguably the most well-used
method for constructing a network from a time series in
neuroscience. In contrast to OPNs and RNs, the VN algorithm
(described below) has no free parameters that need to be
optimized, which contrasts favorably with methods which
require selecting embedding dimensions, temporal lags, distance
thresholds, etc. Unlike OPNs and RNs, the VN does not involve
any kind of spatial embedding process, operating on the raw

time series directly to construct the associated network. First
proposed by Lacasa et al. (2008), the VN has been well-explored
both analytically and experimentally, resulting in a rich literature
of theory and applications (for review, see Zou et al., 2019,
Section 4).

3.1. Constructing a Visibility Network
Like an OPN, a visibility network is typically constructed from a
univariate time series, although multivariate extensions do exist,
such a multi-layer, or multiplex network frameworks (Lacasa
et al., 2015). In a visibility graph, each moment in the time series
maps to a node in the network, and an edge exists between the
nodes if they satisfy a “mutual visibility” condition.

Given a time series:

Xt = (x1, x2, ..., xt)|xi∈R

“Mutual visibility” can be understood by imagining Xt as a
landscape and two points xi at time ti and xj at time tj are
“mutually visible” if a person standing on xi has an unobstructed
line of sight to the person standing on xj. Formally, two points
are mutually visible if, all values of xk between ti and tj satisfy:

xi − xk

tk − ti
>

xi − xj

tj − ti

The VN can bemade directed by including temporal information
(i.e., edges can only point from past to future and not vice versa),
although this is not necessarily standard practice. Constructing a
VN, particularly for a long time series can be computationally
expensive, as it requires testing the visibility condition a large
number of times for every possible pair, and so an alternative,
the “horizontal visibility network” (HGN), where a point is
connected to the first moment in the future that has the same
instantaneous amplitude. Formally, ti and tj are connected if, for
all values xk between them:

xk < min({xi, xj})

It is obvious that the HGV represents a subgraph of the natural
VN, as all links in the HVN must appear in the natural VN.
For a visualization of both methods of constructing a network,
see Figure 3. The result of the VN algorithm is a network that
will always be connected, un-weighted, undirected, and invariant
under affine transformations of the original time series (Ahmadi
et al., 2018).

3.2. Analyzing a Visibility Network
As with the OPN and RN, a significant benefit of the VN is
that it can enable analyses of time series that can be difficult
to do on continuous data. For example, the entropy of the
degree distribution of an (H)GV has been used to approximate
the entropy of a continuous time series (Gonçalves et al.,
2016; Luque et al., 2016). This has certain benefits over more
standard techniques of point-processing or discrete binning as
the degree of a node in a VN encodes information about an
excursion relative to the other points around it, as opposed to
assuming that every moment is independently sampled from
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some underlying distribution. Similarly, this method of entropy
estimation is not constrained by assumptions of Gaussianity in
the original time series. This has enabled the development of
information-theoretic analyses of continuous signals, such as
the mutual information, or transfer entropy (Yu et al., 2017),
which are ordinarily difficult to operationalize in the context
of a continuous signal. Exactly how these measures compare to
“standard” non-parametric estimators such as the KSG mutual
information estimator (Kraskov et al., 2004) remains to be
seen, although all Kraskov-based estimators require constructing
nearest-neighbor networks, which make them prohibitive for
long time series in a way that the VN is not. This may make them
a less computationally intensive non-parametric estimator.

The degree of individual nodes is a core feature of VN analysis.
Given a time series and its associated VN, it is possible to
construct a symbolic time series where every xt at time t is
replaced with the degree of the associated node in the network
dt . This time series is discrete and amenable to information-
theoretic analysis, while still encoding temporal information
from the original series. Furthermore, the degree distribution of
the VN provides considerable insight into the dynamical regime
of the original time series (Lacasa et al., 2008): fractal time
series (i.e., Brownian motion) produce VNs with a scale-free
degree distribution, while white noise produce networks with an
exponential-random degree distribution. There are well-known,
analytic solutions to the problem of constructing a visibility
graph from random, unstructured data. For example (Luque
et al., 2009) showed that, for a HVN, the degree distribution
of the network follows an exponential form with a known
value, regardless of the generating distribution of the original
random data. Others have used the degree distribution of HVNs
to discriminate between truly stochastic and deterministic, but
chaotic, dynamics in temporal data (Ravetti et al., 2014). To
the best of our knowledge, these insights have not yet been
deployed on empirical data, but suggest that VNs may be useful

for extracting stochastic (or noisy) components of data from
deterministic (causal) ones.

Other standard network science measures such as community
detection or density still want for interpretation to an extent.

3.3. Applications in Neuroscience
As previously mentioned, of the three methods of constructing a
network from a time series presented here, visibility networks are
the most well-explored, having been applied to multiple neural
recording modalities. A particular focus has been the application
of visibility graphs to assessing epileptiform activity in EEG data
(Bhaduri and Ghosh, 2015; Gao et al., 2016; Liu et al., 2016;
Supriya et al., 2016a,b; Wang et al., 2017; Zhang et al., 2018),
although researchers have also used them to assess the differences
between healthy and alcoholic volunteers (Zhu et al., 2014b), as
well as the effects of stress (Ji et al., 2016), fatigue (Cai et al., 2018),
sleep stages (Zhu et al., 2014a), autism spectrum (Ahmadlou
et al., 2012), and Alzheimer’s disease (Ahmadlou et al., 2010;
Wang et al., 2016). Furthermore, natural VNs and HVNs have
been used to explore the temporal irreversibility of EEG activity
(Donges et al., 2013), which is an expanding area of interest based
on the relationship between irreversibility, statistical complexity,
and thermodynamic entropy (Lynn et al., 2021). One recent study
took a multilayer VN approach to analyse fMRI data (Sannino
et al., 2017) and showed that the multilayer VN enabled a novel,
nonlinear analysis of multivariate interactions between brain
regions and was sensitive to differences between control and
disease states. VNs have also been applied to calcium imaging
data as well (Zhu et al., 2018) for dynamic state detection in
neuronal activity.

While VNs are, themselves quite amenable to assessing the
dynamics of individual time series, they are also effective for
inferring functional connectivity networks between time series
(Sannino et al., 2017; Yu et al., 2017; Ahmadi et al., 2018).
Different methods have been described, such as producing

FIGURE 2 | Community detection in recurrence networks. The effects of ǫ on the higher-order community structure of the RNs. Communities were determined using

a greedy modularity maximization function in networkX (Hagberg et al., 2008). (A) The community structure when ǫ is 20% of the maximum distance. Here, there are

four distinct communities corresponding to temporally distinct “regions” of the phase space that the system visits in sequence. (B) The community structure when ǫ is

30% of the maximum distance, which only returns two communities that are not as restricted in time. Depending on the threshold, two moments can be lumped into

the same, or different macro-states.

Frontiers in Neuroscience | www.frontiersin.org 8 February 2022 | Volume 15 | Article 787068

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Varley and Sporns Network Analysis of Time Series

FIGURE 3 | Complete and horizonal visibility networks. A comparison of the VN and HVN networks for the same Human Connectome Project BOLD data (Van Essen

et al., 2013). A single time series was selected from a subject at random for demonstration purposes. (A) A cartoon of the visibility graph algorithm. For each origin

point, an edge is drawn between it and all the points that it can “see”, illustrated by the multiple blue lines. (B) A cartoon of the horizontal visibility graph, where an

edge is only drawn between an origin point at the next point at the same height. (C,D) The binary adjacency matrices for the above univariate time series. (E,F) The

networks for the associated binary adjacency matrices. The colors correspond to the flow of time, as in Figure 1.

a multiplex network, effective connectivity networks, or
synchronization-based measures, which leverage the network
structure of the VN to assess the information contained in pairs
of time series. A significant benefit of this method is that it
allows for simultaneous analysis of individual time series, as well
as higher order connectivity patterns using the same general
framework: for example, a VN could be used to explore the
relationship between the individual Hurst exponents of a pair of

time series and their associated connectivity. This is a non-trivial
problem, which can be avoided by deriving both the signal
analysis and connectivity analysis from the same underlying
VNs. As evidence accumulates that dynamics, in addition to
connectivity are essential for complex cognition (Ezaki et al.,
2020; Varley et al., 2020, 2021a,b) tools to simultaneously analyse
dynamics and connectivity are likely to play a significant role in
the future of computational neuroscience.
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4. ORDINAL PARTITION NETWORKS

An ordinal partition network (OPN) provides a natural method
of reconstructing a state transition network from a one
dimensional time series produced by a system Xt , such as an
EEG signal, or LFP. In a state transition network, each node
corresponds to one of a finite number of configurations that the
system under study can adopt, and directed, weighted edges give
the probability that the system will transition into a particular
state, given the state it is currently occupying. Formally, given a
graph G = (V ,E):

Eij = P(Xt+1 = j|P(Xt = i)) (1)

State transition networks leverage the considerable work that
has been done on finite-state machine analysis (Cover and
Thomas, 2012) and are closely related to the idea of an ǫ-machine
(Crutchfield, 1994, 2012), a provably optimal symbolic model of
a dynamical process.

Described in detail below, OPNs are based on permutation
embeddings (Bandt and Pompe, 2002; Riedl et al., 2013), which
map a continuous, real valued time series to a series of discrete
symbols (typically strings of numbers) taken from a finite-
sized dictionary. This effectively coarse-grains the time series,
and from this symbolic series, transition probabilities can be
easily constructed by counting the number of times two symbols
appear in sequence. The OPN can be thought of as a symbolic
approximation of the attractor driving the original, continuous
dynamics (Small, 2013; McCullough et al., 2015), and frequently
makes use of classical Taken’s phase-space embedding procedures
(Takens, 1981) to reconstruct the attractor model. The utility
of such a state transition network is that, by coarse graining
the continuous signal and forming a finite-state machine, the
door is opened to a large number of information-theoretic
and computational analyses that are not naturally applicable to
continuous data (for a visual summary of OPNs, see Figure 4).

Currently, OPNs are almost exclusively used on univariate
time series, although mulivariate generalizations have been
proposed. Zhang et al. (2017) explored a multidimensional
generalization based on the first derivative of the time
series: permutations are assigned based on the direction, and
magnitude, of the change in value at each timestep, for each
time series, although this method has not yet been well-explored.
Related alternatives, developed to assess the dependency between
time series, are the joint and cross OPNs (Guo et al., 2018),
which have been successfully used to characterize complex
systems, such as interacting climatic systems (Wu et al., 2020).
An issue that all multivariate OPN construction algorithms run
into is the explosion of the number of possible joint states
observable from high-dimensional time series. As the number
of dimensions grows, the amount of raw data required to infer
reliable estimates for the entire joint probability space explodes,
which restricts the space of possible applications. For example,
without dimensionality reduction, there is likely no practical way
to construct a multidimensional OPN from a 128-channel EEG
dataset, regardless of the specific algorithm chosen.

4.1. Constructing an OPN
Permutation embeddings were first introduced by Bandt and
Pompe as a natural method of discretizing a continuous, real-
valued time series. As previously discussed, many information
theoretic analysis of interest to scientists working with time series
data do not readily generalize to continuous data, as they require
a finite number of discrete, non-overlapping states on which
probability distributions can be defined (Cover and Thomas,
2012). The permutation embedding defines the “state” of a time
series at a given time t as a temporally-extended pattern of
fluctuations which begins at t and ends at some later time. Given
a time series:

Xt = (x1, x2, ..., xt)|xi∈R

the first step is a standard time-delay embedding with embedding
dimension d and time-lag τ such that, for all i ∈ t:

Vi = (xi, xi+τ , xi+2τ , ..., xi+(d−1)τ )

The result is, for all xi in Xt , we have created an associated vector
embedded inRd. To discretize these vectors, we assign an ordinal
rank (in ascending order) to each element of Vi:

Si = π1π2...πd, πi ∈ {1, 2, ..d}, ,πi 6= πj

This discretizing operation is typically denoted as φ(Vi). As an
example, consider the time series:

Xt = (0.1, 0.3, 1.2, 0.2, 0.8, 1.7, 1.3, 0.4, 0.2)

Embedding with d = 3 and τ = 2 returns:

V1 = (0.1, 1.2, 0.8)

V2 = (0.3, 0.2, 1.7)

V3 = (1.2, 0.8, 1.3)

V4 = (0.2, 1.7, 0.4)

V5 = (0.8, 1.3, 0.2)

Applying the φ operator:

S1 = φ(V1) = 132

S2 = φ(V2) = 213

S3 = φ(V3) = 213

S4 = φ(V4) = 132

S5 = φ(V5) = 231

The sequence St = (132, 213, 213, 132, 231) corresponds to the
permutation embedding of Xt . Note that we do not include
values xi where i > τ × d, as these would produce embedded
vectors of less than d-dimensions. The φ operatormakes theOPN
remarkably robust to outliers in the data: since the absolute value
of a sample is irrelevant (only the relative extremity is relevant),
high-amplitude outliers are “damped” (contrast this with VNs
where outliers can take central roles in the network).
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To construct the OPN GO, each Si maps to a node in GO,
and the weighted, directed edge eij between nodes i and j is
given by the probability that Si is followed by Sj. Continuing
with our example, the node corresponding to 132 has two out-
going edges, each with weight 0.5: one going to 213 and another
going to 231. The weights of the out-going edges define a
probability distribution over the possible futures of a random
walker standing on node i.

4.1.1. Selecting d and τ

Currently, there is no universally agreed-upon method for
selecting the embedding dimension d and lag τ (Zou et al.,
2019), although several different criteria have been suggested. An
optimal value of d should meet several standards: if it is too small,
then the associated OPN will quickly become “saturated,” as all
possible ordinal partitions will appear, obscuring more complex
dynamics (this can be thought of as a kind of excessively lossy
compression of the time series). In contrast if d is too large,
then every moment in the resulting ordinal partition embedding
will be unique and so the time series is simply recreated as
a path graph. For visualization, see Figure 5, where, for small
embedding dimensions (top row), all possible permutations
are realized, while the network gets progressively more path-
like as embedding dimension increases. One commonly-used
method for selecting d is the False Nearest Neighbors technique
(Kennel et al., 1992; Ruan et al., 2019; Wu et al., 2020),
which finds the minimum number of dimensions that preserves
local relationships between points. Alternately, given some pre-
defined lag τ , the optimal value of d can be defined as the first

peak of the permutation entropy over a range of values of d
(Riedl et al., 2013; Myers et al., 2019). Another method that takes
advantage of the network structure of the OPN is to select a value
of d that, given some pre-selected lag τ , maximizes the variance
in the degree distribution of the resulting network, which was
found to create networks that most closely captured the structure
of continuous attracts such as the Rossler attractor (McCullough
et al., 2015). This measure has appeal as a natural solution to
the original problem of constructing an optimal network on a
continuum between a complete graph and a path graph: the
network with the highest-variance degree-distribution may be
thought of as the graph with the “richest” internal structure. In
a context where the researcher wants to compare two OPNs from
distinct time series, it may be necessary to ensure that the value of
d for both time series is the same, thus forcing both OPNs to be
constructed from a common alphabet (in the “same language,” as
it where). In this case, we recommend selecting the smallest value
of d for which both networks are unsaturated.

When selecting the value of the embedding lag τ , it is common
practice to define it as the first zero of the autocorrelation
function (McCullough et al., 2015; Zou et al., 2019). While
this is by far the most commonly-used heuristic, it comes
with the significant limitation that it is only sensitive to linear
relationships within the time series under question. McCullough
et al. (2015) suggests using the auto-mutual information (Fraser
and Swinney, 1986) as a generalization sensitive to non-linearities
in the dataset. As one of the key benefits of information-theoretic
analyses, such as permutation embedding andOPN construction,
is that they are model-agnostic, using an autocorrelationmeasure

FIGURE 4 | Constructing an Ordinal Partition Network from a single time series. An example of an OPN constructed from a single ECoG time series taken from the

Neurotycho database (Nagasaka et al., 2011). (A) The time series itself: an electrophysiological time series recorded using invasive intra-cortical arrays. (B) The

transition probability matrix for the OPN. (C) The OPN itself, nodes colored by community assignment determined using the Informap algorithm (Rosvall and

Bergstrom, 2008; Rosvall et al., 2009). Note the mixture of long, path-like cycles corresponding to rare excursions through state-space, as well as denser regions with

a high degree of interconnectivity.
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FIGURE 5 | Exploring the space of possible ordinal partition networks. Possible OPNs for a single time series with lags ranging from 12 to 24 (rows, in increments of

2) and dimensions ranging from 3 to 8 (columns). Nodes are colored according to community assignment determined using the Infomap algorithm (Rosvall and

Bergstrom, 2008; Rosvall et al., 2009). Note that, as the embedding dimension gets large, the networks become increasingly path-like, as every embedded vector

gets it’s own unique ordinal partition vector, creating an illusion of determinism. The data is the same Neurotycho time series as what was used above in Figure 4.

that throws out non-linearities in the data seems to defeat
the purpose somewhat. A significant difficulty of auto-mutual
information measures, however, is that they are often not
naturally applicable to continuous, real-valued time series, so
some binning procedure is likely to be required (for a discussion
of mutual information estimators for continuous data, see
Papana and Kugiumtzis, 2009). Recently, much more involved
algorithms for automatic optimization of d and τ based on
frequency-domain analysis have been proposed as well (Myers
and Khasawneh, 2020), and debate on this question is likely to
be on-going for the foreseeable future. One possibility that has
not been explored is selecting parameters that produce surrogate
data that best preserves some feature of interest in the original
data: (McCullough et al., 2017) provides an algorithm for how

a constrained random walk on an OPN can be used to generate
synthetic time series that preserve the ordinal partition transition
dynamics of the original time series and so d and τ might be
selected as the values that create OPNs than produce synthetic
data that has (for example) the frequency band profile most like
the original data.

There has been little work assessing the effects of noise
contamination on OPNs constructed from empirical time series.
However, it is known that the OPN associated with unstructured,
white noise has a surprising degree of non-trivial structure (Pessa
and Ribeiro, 2019) that does not correspond to a either simple
Erdos-Renyi graph (the characteristic random null model in
network science) or a complete graph (since certain transitions
are impossible). Furthermore, Pessa and Ribeiro (2019) found
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that there was a characteristic pattern of changes that emerged
as purely periodic OPNs were increasingly contaminated with
noise: the number of unique nodes in the networks rapidly
increased to the maximum, but the overall transition structure
remained the same (i.e., those nodes existed, but had low
transition probabilities). It was only after the series was strongly
contaminated with noise that the transition structure of the
network began to take on the characteristics of a truly random
OPN.

4.2. Analyzing an OPN
The OPN encodes a number of relevant features of the original
dynamics in its topology, and even simple graph metrics can
provide a rich picture of the dynamics present in the original
time series. The simplest measure is the number of nodes in
the network (corresponding to the number of unique ordinal
partitions in the original embedding). This provides an estimate
of the “richness” of the original time series, and the size of
the repertoire of states available to the generating process. The
entropy, or variance, of the number of times each node is
visited corresponds to Bandt and Pompe’s original measure of
permutation entropy (Bandt and Pompe, 2002). Work with
modeling well-understood dynamical systems (e.g., Rossler or
Lorenz systems) with OPNs has found that the distribution
of out-going edges (mean out-degree or variance in out-
degree distributions) increases dramatically near the onset of
deterministic chaos (McCullough et al., 2015). As the evolution
of chaotic systems is associated with a high degree of long
term unpredictability, this makes intuitive sense. A related set
of measures, the determinism and degeneracy of the process can
be related to the entropy of the out-degrees as well (Klein and
Hoel, 2020). Determinism gives a measure of how reliably the
future can be predicted based on the past, while degeneracy, in
contrast is a measure of how much information about the past is
lost when distinct past states flow into the same present state (for
review, see Hoel et al., 2013; Klein and Hoel, 2020). As with other
out-degree-based measures, determinism and degeneracy appear
to be sensitive to the dynamical regime the system is in Varley
(2020). Analysis of a diode resonator circuit found that, near the
critical boundary between periodicity and chaos (the bifurcation
cascade), the network diameter diverged (McCullough et al.,
2015), and in a Rossler system, the presence of higher order
community structure appeared to collapse around the critical
point as well (Varley, 2020).

Being weighted, directed graphs, OPNs are not assumed to
exhibit transitional symmetry (i.e., pij 6= pji). The degree of
asymmetry can be quantified in several ways, such as a ratio
between |pij − pji|/(pij + pji) as in (Masoller et al., 2015), or as
a measure of entropy-production:

∑

i,j pij log(pij/pji), as in Lynn

et al. (2021). In systems near a thermodynamic equilibrium, the
associated OPN should generally be symmetrical, while systems
far from equilibrium should have obvious, non-random flows
through state-space (Lynn et al., 2021). The association between
irreversibility, complex statistical state transition dynamics, and
thermodynamic processes is an emerging field of research
(Roldan and Parrondo, 2010, 2012; Masoller et al., 2015) and

OPNs provide a natural avenue to assess these questions in
empirical time series data.

4.2.1. Community Detection
As far as we know, there has not yet been an explicit treatment of
the question of community detection in OPNs, or state transition
networks more broadly, although we consider this a promising
area of future study. Standard definitions of a community in a
network typically hinge on a greater degree of within-community
edges than between-community edges (Barabási and Pósfai,
2016), and in the context of an OPN (or any state transition
graph) a community can be understood as a subset of states
that the system gets transiently “stuck” in as it evolves through
time. This logic is already the basis of multiple community
detection algorithms in network science, such as the Walktrap
algorithm (Pons and Latapy, 2005) and the Infomap algorithm
(Rosvall and Bergstrom, 2008; Rosvall et al., 2009). For an
OPN, following community detection with an algorithm like
Infomap, the original network can be “renormalized” so that each
community in the “micro-scale” network maps to a node in the
“macro-scale” network (Klein and Hoel, 2020), where causally
similar micro-states are aggregated. There are clear parallels here
to the notion of “metastability” (Cocchi et al., 2017), where a
system is described as metastable if its behavior is dominated by
winnerless competition between attracting “macro-states” (in this
case, communities in the network that the walker gets transiently
trapped in).

4.3. Applications in Neuroscience
Being comparatively novel, the use of OPNs in neuroscience
has been limited. Ref. Mccullough (2019) found that OPNs can
differentiate between EEG data from healthy and epileptiform
activity in a machine learning task. Myers et al. (2019)
included EEG data in their analysis of persistent homology
of OPNs as a proof-of-concept for physiological signals
although there was no neuroscientific question being investigated
in that paper. The most detailed application of OPNs to
neuroscientific questions was done in Varley et al. (2021b),
where OPN-based measures were found to be highly sensitive
for discriminating between healthy, waking brain states and
those states induced by anaesthetics ketamine and propofol.
A key feature of the anesthesia analysis is that the OPN
naturally provides a battery of measures that can be used to
characterize brain dynamics (number of unique micro-states,
determinism/degeneracy, metastability, etc.). This contrasts with
much of the previous work that has been done which focuses
on single point measures of brain complexity such as Lempel-
Ziv compressibility (Schartner et al., 2015, 2017) or integrated
information (Toker and Sommer, 2019).

The metastability analysis described above may be of
particular interest to neuroscientists, as metastability has been
proposed as a key feature of brain dynamics essential for
cognitive flexibility and learning (Tognoli and Kelso, 2014;
Cocchi et al., 2017). Consequently, a potentially fruitful avenue
of research might be using OPNs to characterize individual
differences at the level of the dynamics of individual brain
regions. Researchers have found that analysis of dynamics
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from single brain regions tracks differences such as ageing,
development, and differences such as autism spectrum disorder
(Grady and Garrett, 2014; Nomi et al., 2017; Easson and
McIntosh, 2019). Given appropriate data, an OPN provides a
rich feature-space that can be explored to assess the similarities
and differences between dynamical processes [previously referred
to as a “dynamical morphospace.” (Varley et al., 2021b)].
This could be used to provide a detailed exploration of
state- and individual-differences between subjects. For example,
are individuals who score more highly on tasks related to
creativity have more flexible state-transition dynamics? Or
are the deficits associated with Alzheimer’s associated with a
contraction of the repetoire of available states? Finally, since the
OPN can be constructed for each region individually (out of the
corresponding, univariate time series), regional differences and
their differential contributions can be assessed as well.

While OPNs are typically restricted to univariate time series,
the interaction of multiple time series by analyzing the coupling
between their associated OPNs may provide a path forward. A
suite of measures based on permutation embeddings as proposed
by Ruan et al. (2019) to assess information flow between coupled
time series, which could be applied to the construction of
functional or effective connectivity networks across the whole
brain. Furthermore, measures of overall network structural
similarity, such as Bagrow and Bollt (2019) can provide ameasure
of the “dynamical similarity” between two processes. How these
functional connectivity networks may differ from more standard
measures, such as correlation-based associations remains to be
explored.

Finally, an OPN can be used to generate surrogate time
series data (McCullough et al., 2017) which preserve the
information dynamics of the original. Null-models are of crucial
importance in modern, computational neuroscience, ensuring
that an observed effect is “real” (Moore, 1999; Rubinov, 2016).
While much work has been done developing measures for
generating null time series that preserve measures such as
autocorrelation or other properties (Lancaster et al., 2018), data
generated by a random walk on the OPN preserves information
dynamics in a way that, to the best of our knowledge, has not
been done before. An important future line of research will be
determining what features of a continuous time series (frequency
spectrum, autocorrelation, etc.) are also preserved using
this method.

5. SOFTWARE IMPLEMENTATIONS

At the time of this writing, there are no universal packages that
will construct and analyse OPNs, RNs and VNs from provided
time series data, although individual packages do exist. For
those interested in recurrence networks and visibility graphs,
the Python package pyunicorn (Donges et al., 2015) provides
fast implementations of both. Written in Python, C/C++, and
Fortran, pyunicorn can handle long time series and large
networks. Although primarily aimed at researchers working with
climatological data, it should be useful for any neuroscientists
interested in recurrence networks and visibility graphs.

As far as we can tell, there are no publicly available
implementations for constructing OPNs from time series data.
To that end, we are providing one: OPyN is a Python-based
package for rapid construction and analysis of ordinal partition
networks and permutation embeddings. Built in Cython (Behnel
et al., 2011) and Python-iGraph (Csardi and Nepusz, 2006),
OPyN can quickly embed long time series, construct large
networks, and help identify optimal values of the embedding
dimension d and the time-lag τ . Code is available on Github.
OPyN can also be incorporated into C code, thanks to cross-
comparability provided by Cython.

Here we will briefly review the functions native to OPyN and
illustrate how they might be used to analyse neural data. Given
a 1-dimensional time series (BOLD, electrophysiological, LFP,
etc.), OPyN provides two functions for selecting the optimal
embedding procedures: optimal_lag() will return the
delay corresponding to the first zero of the autocorrelation
function (McCullough et al., 2015; Zou et al., 2019) and
optimal_dim() will estimate the optimal embedding
dimension as the dimension that maximizes the variance in
the OPN’s degree distribution, given some lag (McCullough
et al., 2015). Given these two parameters, the user can either
construct the entire OPN using the OPN() function [which
returns a directed, weighted python-igraph (Csardi and Nepusz,
2006) object], or create the permutation-embedded time series
using the permutation_embedding() function. If the user
wishes to use the OPN as a generativemodel to produce surrogate
time series that preserve the dynamics of the system, the function
constrained_walk implements the algorithm details in
McCullough et al. (2017). While the package was written by
neuroscientists, the OPN framework is very general and can be
applied to a number of fields, such as climate modeling (Wu
et al., 2020) and researchers outside of neuroscience should feel
at liberty to be creative when using this package.

6. CONCLUSIONS

In this work, we provide an introduction to three methods to
analyse nonlinear physiological signals by constructing network
models that map temporal dynamics to topological structures.
The first method is the recurrence network (RN) (Donner
et al., 2010) (Section 2). The RN is constructed by treating a
classical recurrence plot as the adjacencymatrix for an undirected
network, where two nodes are connected if they are closer to each
other than some minimum metric distance (ǫ). Consequently,
frequently visited regions of phase-space are characterized by
the emergence of densely connected subgraphs, while sparsely
visited, or “forbidden” configurations appear as voids. Unlike
the OPN and the visibility graph, the RN is the only one
of the three that has a natural embedding in metric space,
which can be visualized using topology-preserving techniques
such as multidimensional scaling (Borg and Groenen, 2005)
or UMAP (McInnes et al., 2018). Of the three algorithms
described here, RNs are the most suited for work with very
high-dimensional data, and are also more suited for shorter
recordings (as is common in fMRI studies), although short,
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artifact-free slices of M/EEG or LFP data could also work (as was
done in Varley et al., 2021b). RNs are also related to techniques
from Recurrence Quantification Analysis (RQA) (Marwan et al.,
2007) and topological data analysis (TDA) (Chazal and Michel,
2017). Computationally, the RN is the most intensive, requiring
computing the distance between every point (represented in
memory as a two-dimensional array of floating-point values) in
the time series and runs in approximately O(n2) time. If the
network is then thresholded, sparse matrix representations can
cut down on computational overhead, but the initial inference is
exhaustive.

The second method introduced in this paper is the visibility
network (VN) (Lacasa et al., 2008) (Section 3). In a VN, an
edge exists between two nodes if they satisfy a mutual visibility
condition (i.e., if two people standing on two differing parts of the
time series can see each other). The VN can be naturally applied
to both univariate time series data (as was done in the classic
VN and HVN), or expanded to multivariate time series using
a multi-layer network approach (as was done in Sannino et al.,
2017 using fMRI data). This makes VNs amenable to both low-
temporal resolution data such as fMRI, as well as high-frequency
data such as M/EEG data.

The VN naturally encodes extreme events as hubs (since
most points on the network can see a large excursion from
baseline), and it is well-documented that different dynamical
regimes translate into distinct VN structures: for example, fractal
time series map to scale-free networks, while random networks
show an exponential-random degree distribution (Lacasa et al.,
2008). This tendency for the VN to assign a central location in the
network to extreme events brings with it the added caveat that an
outlier artefact from recording could interfere with the analysis
of the network in a way that is not the case in a symbolic network
like an OPN. Consequently, care should be taken when preparing
time series data for analysis. Computationally, inferring a VN is
similar to an RN, although the restriction on “looking backwards”
means that the runtime complexity is decreased by a factor of two
O(k2/2). The resulting networks are typically sparse, allowing for
efficient representation in memory.

The final method is that of constructing ordinal partition
networks (OPNs) from univariate time series (Section 4). The
OPN, based on the notion of a discrete, permutation embedding
(Bandt and Pompe, 2002), maps a continuous signal to a finite
set of “state words” and then constructs a state transition
network based on the probability of transitioning to a given
state conditioned on the current state (McCullough et al., 2015).
The OPN encodes a large number of dynamical properties
in its structure, such as the relative size of the repertoire
of available states (number of nodes), the determinism and
degeneracy of the original signal (from the entropy of out-
degrees), and the presence/absence of higher-order “emergent”
dynamics (community structure) (Klein and Hoel, 2020; Varley,
2020). Furthermore, the OPN is arguably the most amenable
to information-theoretic analysis, based on the large literature
applying such analyses to finite-state machines (Cover and
Thomas, 2012). Unlike RNs and VNs, however, the OPN is
not currently well-equipped to handle multivariate time series
of more than two or three dimensions, instead being highly

optimized for univariate analysis. Furthermore, it requires
the most data to effectively estimate the full joint transition
probability matrix. This makes it optimal for electrophysiological
recordings with high temporal density (as was done in Varley
et al., 2021b).

Of the three algorithms, the OPN is the most computationally
efficient, requiring the permutation embedding for every point
in the series, and then the construction of the state-transition
network, which can be done with a runtime complexity of
approximately O(k) (given that the embedding dimension is
rarely greater than five, the runtime on the sorting algorithm
is negligible). Like the VN, the resulting OPN network is also
typically sparse, allowing for efficient representation in memory.

A key question in modern complex systems approaches to
neuroscience is understanding the relationship between on-going
brain dynamics, cognition, and behavior (Shine et al., 2018,
2019a). This is naturally a more involved question than assessing
what elements of the nervous system interact and requires the
ability to describe time-resolved activity (Lizier, 2014; Esfahlani
et al., 2020; Sporns et al., 2021), and the flow of the system
over an “intrinsic manifold” (Huys et al., 2014; Shine et al.,
2018; McIntosh and Jirsa, 2019) that can describe how different
dynamical regimes map onto distinct cognitive states (Cocchi
et al., 2017), both in health and disease. Network analysis of time
series is a natural set of tools to use to tackle these questions. Since
every node maps to a particular moment in time, it is easy to
do both time-resolved analysis (corresponding to understanding
the local neighborhood around a given node) and characterize
global patterns (corresponding to whole network structures).
When using networks to analyse time series, the relationship
between local and global network analysis naturally correspond
to time-resolved and average temporal properties.

Network analysis of time series may prove useful in clinical
practice, where considerable focus is on assessing differences
between states such as health, anaesthesia (Varley et al., 2020,
2021b), sleep (Zhu et al., 2014a; Schartner et al., 2017; Chaudhuri
et al., 2019), disorders of consciousness (Comolatti et al., 2019;
Luppi et al., 2021), or neurobiological illnesses (Subramaniyam
and Hyttinen, 2013; Subramaniyam et al., 2015; Ngamga et al.,
2016; Gao et al., 2017). More subtle comparisons may also be
possible, such as local or global differences between rest and task
states (Shine et al., 2018, 2019a). As all of these methods can be
deployed on univariate time series, it is also possible to do finer
grain analysis at the level of the dynamics from individual brain
regions (as in Zhu et al., 2014b).

There are some limitations inherent in network analysis of
time series. One limitation is that many of these methods require
sufficiently long time series to get a full picture of the dynamics.
While this is not typically an issue for M/EEG methods, for
fMRI analysis which often have BOLD signals with less than a
few hundred samples, this can represent a significant hazard.
The most obvious limitation, as mentioned in the introduction,
is that these networks trade spatial resolution for temporal
resolution, typically collapsing many brain regions into a single
mathematical object (although this not universal, for example the
RN can preserve information about the distribution of activities
across the channels). An area of future research might be the
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development of higher-order OPNs and VNs that can handle
multidimensional time series.

The field of network analysis of time series is still novel,
and its application to neuroscience even moreso. This opens the
door to a rich area to explore at the intersection of information-
theoretic, dynamic, and network science-based approaches (for
a discussion of the intersection of dynamical systems and
computational approaches to neuroscience, see Mediano et al.,
2021; Varley et al., 2021a). By enabling time-resolved inference
of complex state-spaces, network analysis of time series allows
researchers to leverage the considerable power of network science
and graph theory to questions of neural activity in ways that were
not previously enabled by “classical” network neuroscience, and
we are optimistic that these newmethods will provide a powerful,
complementary branch of network neuroscience with which to
explore brain structure and function.

AUTHOR CONTRIBUTIONS

TV conceptualized the project and wrote the initial manuscript.
OS provided supervision and edits to the manuscript.
All authors contributed to the article and approved the
submitted version.

FUNDING

TV was supported by NSF-NRT grant 1735095, Interdisciplinary
Training in Complex Networks and Systems.

ACKNOWLEDGMENTS

We would like to thank Dr. Alice Patania for her insights and
assistance.

REFERENCES

Aggarwal, C. C., Hinneburg, A., and Keim, D. A. (2001). “On the Surprising

Behavior Of Distance Metrics In High Dimensional Space,” in Database

Theory - ICDT 2001, eds G. Goos, J. Hartmanis, J. van Leeuwen, J.

Van den Bussche, and V. Vianu (Berlin; Heidelberg: Springer), 420–434.

doi: 10.1007/3-540-44503-X_27

Ahmadi, N., Besseling, R. M. H., and Pechenizkiy, M. (2018). Assessment

of visibility graph similarity as a synchronization measure for chaotic,

noisy and stochastic time series. Soc. Netw. Anal. Mining 8:47.

doi: 10.1007/s13278-018-0526-x

Ahmadlou, M., Adeli, H., and Adeli, A. (2010). New diagnostic EEG markers

of the Alzheimer’s disease using visibility graph. J. Neural Transmission 117,

1099–1109. doi: 10.1007/s00702-010-0450-3

Ahmadlou, M., Adeli, H., and Adeli, A. (2012). Improved visibility graph fractality

with application for the diagnosis of Autism Spectrum Disorder. Phys. A Stat.

Mech. Appl. 391, 4720–4726. doi: 10.1016/j.physa.2012.04.025

Bagrow, J. P., and Bollt, E. M. (2019). An information-theoretic, all-

scales approach to comparing networks. Appl. Netw. Sci. 4, 1–15.

doi: 10.1007/s41109-019-0156-x

Baker, A. P., Brookes, M. J., Rezek, I. A., Smith, S. M., Behrens, T., Probert Smith,

P. J., et al. (2014). Fast transient networks in spontaneous human brain activity.

eLife 3:e01867. doi: 10.7554/eLife.01867

Bandt, C., and Pompe, B. (2002). Permutation entropy: a natural

complexity measure for time series. Phys. Rev. Lett. 88:174102.

doi: 10.1103/PhysRevLett.88.174102

Barabási, A.-L., and Pósfai, M. (2016). Network Science. Cambridge, UK:

Cambridge University Press.

Becker, K., Schneider, G., Eder, M., Ranft, A., Kochs, E. F., Zieglgansberger, W.,

et al. (2010). Anaesthesia monitoring by recurrence quantification analysis of

EEG data. PLoS ONE 5:e8876. doi: 10.1371/journal.pone.0008876

Behnel, S., Bradshaw, R., Citro, C., Dalcin, L., Seljebotn, D. S., and Smith,

K. (2011). Cython: the best of both worlds. Comput. Sci. Eng. 13, 31–39.

doi: 10.1109/MCSE.2010.118

Bhaduri, S., and Ghosh, D. (2015). Electroencephalographic data analysis with

visibility graph technique for quantitative assessment of brain dysfunction.

Clin. EEG Neurosci. 46, 218–223. doi: 10.1177/1550059414526186

Borg, I., and Groenen, P. J. F. (2005). Modern Multidimensional Scaling: Theory

and Applications, 2nd Edn. New York, NY: Springer.

Breakspear, M. (2001). Perception of odors by a nonlinear model of the olfactory

bulb. Int. J. Neural Syst. 11, 101–124. doi: 10.1142/S0129065701000564

Brick, T. R., Gray, A. L., and Staples, A. D. (2017). Recurrence quantification

for the analysis of coupled processes in aging. J. Gerontol. 73, 134–147.

doi: 10.1093/geronb/gbx018

Cai, Q., Gao, Z.-K., Yang, Y.-X., Dang, W.-D., and Grebogi, C. (2018).

Multiplex limited penetrable horizontal visibility graph from EEG

signals for driver fatigue detection. Int. J. Neural Syst. 29:1850057.

doi: 10.1142/S0129065718500570

Carhart-Harris, R. L., and Friston, K. J. (2019). REBUS and the anarchic brain:

toward a unified model of the brain action of psychedelics. Pharmacol. Rev. 71,

316–344. doi: 10.1124/pr.118.017160

Chaudhuri, R., Gercek, B., Pandey, B., Peyrache, A., and Fiete, I. (2019).

The intrinsic attractor manifold and population dynamics of a canonical

cognitive circuit across waking and sleep. Nat. Neurosci. 22, 1512–1520.

doi: 10.1038/s41593-019-0460-x

Chazal, F., and Michel, B. (2017). An introduction to topological data

analysis: fundamental and practical aspects for data scientists. arXiv preprint

arXiv:1710.04019.

Chen, S., Langley, J., Chen, X., and Hu, X. (2016). Spatiotemporal modeling

of brain dynamics using resting-state functional magnetic resonance

imaging with Gaussian Hidden Markov Model. Brain Connect. 6, 326–334.

doi: 10.1089/brain.2015.0398

Cocchi, L., Gollo, L. L., Zalesky, A., and Breakspear, M. (2017). Criticality in the

brain: a synthesis of neurobiology, models and cognition. Prog. Neurobiol. 158,

132–152. doi: 10.1016/j.pneurobio.2017.07.002

Comolatti, R., Pigorini, A., Casarotto, S., Fecchio, M., Faria, G., Sarasso, S., et al.

(2019). A fast and general method to empirically estimate the complexity of

brain responses to transcranial and intracranial stimulations. Brain Stimul. 12,

1280–1289. doi: 10.1016/j.brs.2019.05.013

Cover, T. M., and Thomas, J. A. (2012). Elements of Information Theory. Hoboken,

NJ: John Wiley & Sons.

Crutchfield, J. P. (1994). The calculi of emergence: computation,

dynamics and induction. Phys. D Nonlinear Phenomena 75, 11–54.

doi: 10.1016/0167-2789(94)90273-9

Crutchfield, J. P. (2012). Between order and chaos. Nat. Phys. 8, 17–24.

doi: 10.1038/nphys2190

Csardi, G., and Nepusz, T. (2006). The igraph software package for complex

network research. InterJournal. doi: 10.5281/zenodo.3630268

Danvers, A. F., Sbarra, D. A., and Mehl, M. R. (2020). Understanding personality

through patterns of daily socializing: applying recurrence quantification

analysis to naturalistically observed intensive longitudinal social interaction

data. Eur. J. Pers. 34, 777–793. doi: 10.1002/per.2282

De Vico Fallani, F., Richiardi, J., Chavez, M., and Achard, S. (2014). Graph analysis

of functional brain networks: practical issues in translational neuroscience.

Philos. Trans. R. Soc. B Biol. Sci. 369:1653. doi: 10.1098/rstb.2013.0521

Donges, J., Donner, R. V., and Kurths, J. (2013). Testing time series

irreversibility using complex network methods. Europhys. Lett. 102:10004.

doi: 10.1209/0295-5075/102/10004

Donges, J. F., Donner, R. V., Rehfeld, K., Marwan, N., Trauth, M. H., and Kurths,

J. (2011a). Identification of dynamical transitions in marine palaeoclimate

records by recurrence network analysis. Nonlinear Process. Geophys. 18,

545–562. doi: 10.5194/npg-18-545-2011

Frontiers in Neuroscience | www.frontiersin.org 16 February 2022 | Volume 15 | Article 787068

https://doi.org/10.1007/3-540-44503-X_27
https://doi.org/10.1007/s13278-018-0526-x
https://doi.org/10.1007/s00702-010-0450-3
https://doi.org/10.1016/j.physa.2012.04.025
https://doi.org/10.1007/s41109-019-0156-x
https://doi.org/10.7554/eLife.01867
https://doi.org/10.1103/PhysRevLett.88.174102
https://doi.org/10.1371/journal.pone.0008876
https://doi.org/10.1109/MCSE.2010.118
https://doi.org/10.1177/1550059414526186
https://doi.org/10.1142/S0129065701000564
https://doi.org/10.1093/geronb/gbx018
https://doi.org/10.1142/S0129065718500570
https://doi.org/10.1124/pr.118.017160
https://doi.org/10.1038/s41593-019-0460-x
https://doi.org/10.1089/brain.2015.0398
https://doi.org/10.1016/j.pneurobio.2017.07.002
https://doi.org/10.1016/j.brs.2019.05.013
https://doi.org/10.1016/0167-2789(94)90273-9
https://doi.org/10.1038/nphys2190
https://doi.org/10.5281/zenodo.3630268
https://doi.org/10.1002/per.2282
https://doi.org/10.1098/rstb.2013.0521
https://doi.org/10.1209/0295-5075/102/10004
https://doi.org/10.5194/npg-18-545-2011
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Varley and Sporns Network Analysis of Time Series

Donges, J. F., Donner, R. V., Trauth, M. H., Marwan, N., Schellnhuber, H.-

J., and Kurths, J. (2011b). Nonlinear detection of paleoclimate-variability

transitions possibly related to human evolution. Proc. Natl. Acad. Sci. U.S.A.

108, 20422–20427. doi: 10.1073/pnas.1117052108

Donges, J. F., Heitzig, J., Beronov, B., Wiedermann, M., Runge, J., Feng, Q.

Y., et al. (2015). Unified functional network and nonlinear time series

analysis for complex systems science: the pyunicorn package. Chaos 25:113101.

doi: 10.1063/1.4934554

Donner, R. V., Heitzig, J., Donges, J. F., Zou, Y., Marwan, N., and Kurths, J. (2011).

The geometry of chaotic dynamics–a complex network perspective. Eur. Phys.

J. B 84, 653–672. doi: 10.1140/epjb/e2011-10899-1

Donner, R. V., Zou, Y., Donges, J. F., Marwan, N., and Kurths, J. (2010). Recurrence

networks–a novel paradigm for nonlinear time series analysis. N. J. Phys.

12:033025. doi: 10.1088/1367-2630/12/3/033025

Easson, A. K., and McIntosh, A. R. (2019). BOLD signal variability and complexity

in children and adolescents with and without autism spectrum disorder. Dev.

Cogn. Neurosci. 36:100630. doi: 10.1016/j.dcn.2019.100630

Eavani, H., Satterthwaite, T. D., Gur, R. E., Gur, R. C., and Davatzikos, C. (2013).

“Unsupervised learning of functional network dynamics in resting state fMRI,”

in Information Processing in Medical Imaging, eds J. C. Gee, S. Joshi, K. M.

Pohl, W. M., Wells, and L. Zallei (Berlin; Heidelberg: Springer), 426–437.

doi: 10.1007/978-3-642-38868-2_36

Eckmann, J.-P., Kamphorst, S. O., and Ruelle, D. (1987). Recurrence plots of

dynamical systems. Europhys. Lett. 4, 973–977. doi: 10.1209/0295-5075/4/9/004

Esfahlani, F. Z., Jo, Y., Faskowitz, J., Byrge, L., Kennedy, D. P., Sporns, O., et

al. (2020). High-amplitude co-fluctuations in cortical activity drive functional

connectivity. bioRxiv 117:800045. doi: 10.1101/800045

Ezaki, T., Fonseca dos Reis, E., Watanabe, T., Sakaki, M., and Masuda, N.

(2020). Closer to critical resting-state neural dynamics in individuals with

higher fluid intelligence. Commun. Biol. 3, 1–9. doi: 10.1038/s42003-020-

0774-y

Fonito, A., Zalesky, A., and Bullmore, E. (2016). Fundamentals of Brain Network

Analysis. London: Elsevier.

Fraser, N., and Swinney, N. (1986). Independent coordinates for strange

attractors from mutual information. Phys. Rev. A Gen. Phys. 33, 1134–1140.

doi: 10.1103/PhysRevA.33.1134

Friston, K. J. (1994). Functional and effective connectivity in neuroimaging: a

synthesis. Hum. Brain Mapp. 2, 56–78. doi: 10.1002/hbm.460020107

Gallego, J. A., Perich, M. G., Chowdhury, R. H., Solla, S. A., andMiller, L. E. (2020).

Long-term stability of cortical population dynamics underlying consistent

behavior. Nat. Neurosci. 23, 260–270. doi: 10.1038/s41593-019-0555-4

Gallego, J. A., Perich, M. G., Miller, L. E., and Solla, S. A. (2017).

Neural manifolds for the control of movement. Neuron 94, 978–984.

doi: 10.1016/j.neuron.2017.05.025

Gallego, J. A., Perich, M. G., Naufel, S. N., Ethier, C., Solla, S. A., and

Miller, L. E. (2018). Cortical population activity within a preserved

neural manifold underlies multiple motor behaviors. Nat. Commun. 9:4233.

doi: 10.1038/s41467-018-06560-z

Gao, Z.-K., Cai, Q., Yang, Y.-X., Dong, N., and Zhang, S.-S. (2016).

Visibility graph from adaptive optimal kernel time-frequency representation

for classification of epileptiform EEG. Int. J. Neural Syst. 27:1750005.

doi: 10.1142/S0129065717500058

Gao, Z.-K., Yang, Y.-X., Dang, W.-D., Cai, Q., Wang, Z., Marwan, N., et al. (2017).

Reconstructing multi-mode networks from multivariate time series. Europhys.

Lett. 119:50008. doi: 10.1209/0295-5075/119/50008

Gleick, J. (2011). Chaos: Making a New Science. New York, NY: Open Road Media.

Gonçalves, B. A., Carpi, L., Rosso, O. A., and Ravetti, M. G. (2016).

Time series characterization via horizontal visibility graph and Information

Theory. Phys. A Stat. Mech. Appl. 464, 93–102. doi: 10.1016/j.physa.2016.

07.063

Grady, C. L., and Garrett, D. D. (2014). Understanding variability in the BOLD

signal and why it matters for aging. Brain Imaging Behav. 8, 274–283.

doi: 10.1007/s11682-013-9253-0

Guo, H., Zhang, J.-Y., Zou, Y., and Guan, S.-G. (2018). Cross and joint ordinal

partition transition networks for multivariate time series analysis. Front. Phys.

13:130508. doi: 10.1007/s11467-018-0805-0

Hagberg, A., Schult, D., and Swart, P. (2008). “Exploring network structure,

dynamics, and function using networkX,” in Proceedings of the 7th Python in

Science Conference, eds G. Varoquaux, T. Vaught, and J. Millman (Pasadena,

CA), 11–15.

Hallquist, M. N., and Hillary, F. G. (2018). Graph theory approaches to functional

network organization in brain disorders: a critique for a brave new small-world.

Netw. Neurosci. 3, 1–26. doi: 10.1162/netn_a_00054

Hayashi, K., Mukai, N., and Sawa, T. (2015). Poincare analysis of the

electroencephalogram during sevoflurane anesthesia. Clin. Neurophysiol. 126,

404–411. doi: 10.1016/j.clinph.2014.04.019

Hinton, G., and Roweis, S. (2003). “Stochastic neighbor embedding,” in Advances

in Neural Information Processing Systems,Vol.15, eds S. Becker, S. Thrun, and K.

Obermayer (Boston, MA: MIT Press). Available online at: https://proceedings.

neurips.cc/paper/2002/file/6150ccc6069bea6b5716254057a194ef-Paper.pdf

Hoel, E. P., Albantakis, L., and Tononi, G. (2013). Quantifying causal emergence

shows that macro can beat micro. Proc. Natl. Acad. Sci. U.S.A. 110,

19790–19795. doi: 10.1073/pnas.1314922110

Huys, R., Perdikis, D., and Jirsa, V. K. (2014). Functional architectures and

structured flows on manifolds: a dynamical framework for motor behavior.

Psychol. Rev. 121, 302–336. doi: 10.1037/a0037014

Jacob, R., Harikrishnan, K. P., Misra, R., and Ambika, G. (2016). Characterization

of chaotic attractors under noise: a recurrence network perspective. Commun.

Nonlinear Sci. Num. Simul. 41, 32–47. doi: 10.1016/j.cnsns.2016.04.028

Ji, H., Xu, T., Wu, W., and Wang, J. (2016). “Visibility graph analysis on EEG

signal,” in 2016 9th International Congress on Image and Signal Processing,

BioMedical Engineering and Informatics (CISP-BMEI), Datong, 1557–1561.

doi: 10.1109/CISP-BMEI.2016.7852963

Jones, L. M., Fontanini, A., Sadacca, B. F., Miller, P., and Katz, D. B. (2007). Natural

stimuli evoke dynamic sequences of states in sensory cortical ensembles. Proc.

Natl. Acad. Sci. U.S.A. 104, 18772–18777. doi: 10.1073/pnas.0705546104

Kennel, M. B., Brown, R., and Abarbanel, H. D. I. (1992). Determining embedding

dimension for phase-space reconstruction using a geometrical construction.

Phys. Rev. A 45, 3403–3411. doi: 10.1103/PhysRevA.45.3403

Klein, B., and Hoel, E. (2020). The emergence of informative higher scales in

complex networks. Complexity 2020:e8932526. doi: 10.1155/2020/8932526

Koebbe, M., Mayer-kress, G., and Zbilut, J. (1994). Use of Recurrence Plots in the

Analysis of Time-Series Data.

Kraskov, A., Stoegbauer, H., and Grassberger, P. (2004). Estimating mutual

information. Phys. Rev. E 69, 066138. doi: 10.1103/PhysRevE.69.066138

Kuo, P.-C., Chen, Y.-S., and Chen, L.-F. (2018). Manifold decoding for

neural representations of face viewpoint and gaze direction using

magnetoencephalographic data. Hum. Brain Mapp. 39, 2191–2209.

doi: 10.1002/hbm.23998

Lacasa, L., Luque, B., Ballesteros, F., Luque, J., and Nuno, J. C. (2008). From time

series to complex networks: the visibility graph. Proc. Natl. Acad. Sci. U.S.A.

105, 4972–4975. doi: 10.1073/pnas.0709247105

Lacasa, L., Nicosia, V., and Latora, V. (2015). Network structure of multivariate

time series. Sci. Rep. 5:15508. doi: 10.1038/srep15508

Lake, D. E. (2011). “Improved entropy rate estimation in physiological data,” in

2011 Annual International Conference of the IEEE Engineering in Medicine and

Biology Society, Boston, MA, 1463–1466. doi: 10.1109/IEMBS.2011.6090339

Lancaster, G., Iatsenko, D., Pidde, A., Ticcinelli, V., and Stefanovska, A. (2018).

Surrogate data for hypothesis testing of physical systems. Phys. Rep. 748, 1–60.

doi: 10.1016/j.physrep.2018.06.001

Li, D., Vlisides, P. E., Kelz, M. B., Avidan, M. S., Mashour, G. A., and

ReCCognition Study Group (2019). Dynamic cortical connectivity during

general anesthesia in healthy volunteers. Anesthesiology 130, 870–884.

doi: 10.1097/ALN.0000000000002656

Li, X., Sleigh, J. W., Voss, L. J., and Ouyang, G. (2007). Measure of the

electroencephalographic effects of sevoflurane using recurrence dynamics.

Neurosci. Lett. 424, 47–50. doi: 10.1016/j.neulet.2007.07.041

Liu, H., Meng, Q., Zhang, Q., Zhang, Z., and Wang, D. (2016). “A novel

feature extraction method for epileptic seizure detection based on the degree

centrality of complex network and SVM,” in Intelligent Computing Theories

and Application, eds D. S. Huang and K. H. Jo (Cham: Springer International

Publishing), 170–180. doi: 10.1007/978-3-319-42294-7_14

Lizier, J. T. (2014). “Measuring the dynamics of information processing on a local

scale in time and space,” in Directed Information Measures in Neuroscience, eds

M. Wibral, R. Vicente, and J. T. Lizier (Berlin; Heidelberg: Springer), 161–193.

doi: 10.1007/978-3-642-54474-3_7

Frontiers in Neuroscience | www.frontiersin.org 17 February 2022 | Volume 15 | Article 787068

https://doi.org/10.1073/pnas.1117052108
https://doi.org/10.1063/1.4934554
https://doi.org/10.1140/epjb/e2011-10899-1
https://doi.org/10.1088/1367-2630/12/3/033025
https://doi.org/10.1016/j.dcn.2019.100630
https://doi.org/10.1007/978-3-642-38868-2_36
https://doi.org/10.1209/0295-5075/4/9/004
https://doi.org/10.1101/800045
https://doi.org/10.1038/s42003-020-0774-y
https://doi.org/10.1103/PhysRevA.33.1134
https://doi.org/10.1002/hbm.460020107
https://doi.org/10.1038/s41593-019-0555-4
https://doi.org/10.1016/j.neuron.2017.05.025
https://doi.org/10.1038/s41467-018-06560-z
https://doi.org/10.1142/S0129065717500058
https://doi.org/10.1209/0295-5075/119/50008
https://doi.org/10.1016/j.physa.2016.07.063
https://doi.org/10.1007/s11682-013-9253-0
https://doi.org/10.1007/s11467-018-0805-0
https://doi.org/10.1162/netn_a_00054
https://doi.org/10.1016/j.clinph.2014.04.019
https://proceedings.neurips.cc/paper/2002/file/6150ccc6069bea6b5716254057a194ef-Paper.pdf
https://proceedings.neurips.cc/paper/2002/file/6150ccc6069bea6b5716254057a194ef-Paper.pdf
https://doi.org/10.1073/pnas.1314922110
https://doi.org/10.1037/a0037014
https://doi.org/10.1016/j.cnsns.2016.04.028
https://doi.org/10.1109/CISP-BMEI.2016.7852963
https://doi.org/10.1073/pnas.0705546104
https://doi.org/10.1103/PhysRevA.45.3403
https://doi.org/10.1155/2020/8932526
https://doi.org/10.1103/PhysRevE.69:066138
https://doi.org/10.1002/hbm.23998
https://doi.org/10.1073/pnas.0709247105
https://doi.org/10.1038/srep15508
https://doi.org/10.1109/IEMBS.2011.6090339
https://doi.org/10.1016/j.physrep.2018.06.001
https://doi.org/10.1097/ALN.0000000000002656
https://doi.org/10.1016/j.neulet.2007.07.041
https://doi.org/10.1007/978-3-319-42294-7_14
https://doi.org/10.1007/978-3-642-54474-3_7
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Varley and Sporns Network Analysis of Time Series

Lord, L.-D., Expert, P., Atasoy, S., Roseman, L., Rapuano, K., Lambiotte,

R., et al. (2019). Dynamical exploration of the repertoire of brain

networks at rest is modulated by psilocybin. Neuroimage 199, 127–142.

doi: 10.1016/j.neuroimage.2019.05.060

Luppi, A. I., Cain, J., Spindler, L. R. B., Gorska, U. J., Toker, D., Hudson, A. E., et

al. (2021). Mechanisms underlying disorders of consciousness: bridging gaps

to move toward an integrated translational science. Neurocrit. Care 35, 37–54.

doi: 10.1007/s12028-021-01281-6

Luque, B., Ballesteros, F. J., Robledo, A., and Lacasa, L. (2016). “Entropy and

renormalization in chaotic visibility graphs,” inMathematical Foundations and

Applications of Graph Entropy, eds M. Dehmer, F. Emmert-Streib, Z. Chen, X.

Li and Y. Shi (JohnWiley & Sons, Ltd.), 1–39. doi: 10.1002/9783527693245.ch1

Luque, B., Lacasa, L., Ballesteros, F., and Luque, J. (2009). Horizontal visibility

graphs: exact results for random time series. Phys. Rev. E 80:046103.

doi: 10.1103/PhysRevE.80.046103

Lynn, C. W., Cornblath, E. J., Papadopoulos, L., Bertolero, M. A., and Bassett, D.

S. (2021). Broken detailed balance and entropy production in the human brain.

Proceed. Nat. Acad. Sci. 118: e2109889118. doi: 10.1073/pnas.2109889118

Margulies, D. S., Ghosh, S. S., Goulas, A., Falkiewicz, M., Huntenburg, J. M.,

Langs, G., et al. (2016). Situating the default-mode network along a principal

gradient of macroscale cortical organization. Proc. Natl. Acad. Sci. U.S.A. 113,

12574–12579. doi: 10.1073/pnas.1608282113

Marwan, N., Carmen Romano, M., Thiel, M., and Kurths, J. (2007). Recurrence

plots for the analysis of complex systems. Phys. Rep. 438, 237–329.

doi: 10.1016/j.physrep.2006.11.001

Marwan, N., and Webber, C. L. (2015). “Mathematical and computational

foundations of recurrence quantifications,” in Recurrence Quantification

Analysis: Theory and Best Practices, eds L. C. Webber and M. Nobert

(Cham: Springer International Publishing), 3–43. doi: 10.1007/978-3-319-07

155-8_1

Masoller, C., Hong, Y., Ayad, S., Gustave, F., Barland, S., Pons, A. J.,

et al. (2015). Quantifying sudden changes in dynamical systems using

symbolic networks. N. J. Phys. 17:023068. doi: 10.1088/1367-2630/17/2/

023068

McCullough, M., Sakellariou, K., Stemler, T., and Small, M. (2017). Regenerating

time series from ordinal networks. Chaos 27:035814. doi: 10.1063/1.

4978743

McCullough, M., Small, M., Stemler, T., and Iu, H. H.-C. (2015). Time lagged

ordinal partition networks for capturing dynamics of continuous dynamical

systems. Chaos 25:053101. doi: 10.1063/1.4919075

Mccullough, M. H. (2019). Nonlinear time series analysis using ordinal networks

with select applications in biomedical signal processing. Bull. Austral. Math.

Soc. 100, 170–172. doi: 10.1017/S0004972719000480

McInnes, L., Healy, J., and Melville, J. (2018). UMAP: uniform manifold

approximation and projection for dimension reduction. arXiv preprint

arXiv:1802.03426. doi: 10.21105/joss.00861

McIntosh, A. R., and Jirsa, V. K. (2019). The hidden repertoire of brain

dynamics and dysfunction. Netw. Neurosci. 3, 994–1008. doi: 10.1162/netn_a_

00107

Mediano, P. A. M., Rosas, F. E., Farah, J. C., Shanahan, M., Bor, D., and Barrett,

A. B. (2021). Integrated information as a common signature of dynamical and

information-processing complexity. arXiv preprint arXiv:2106.10211.

Mindlin, G. M., and Gilmore, R. (1992). Topological analysis and synthesis

of chaotic time series. Phys. D Nonlinear Phenomena 58, 229–242.

doi: 10.1016/0167-2789(92)90111-Y

Moore, J. H. (1999). Bootstrapping, permutation testing and the method

of surrogate data. Phys. Med. Biol. 44, L11–L12. doi: 10.1088/0031-9155/

44/6/101

Myers, A., and Khasawneh, F. A. (2020). On the automatic parameter

selection for permutation entropy. Chaos 30:033130. doi: 10.1063/1.51

11719

Myers, A., Munch, E., and Khasawneh, F. A. (2019). Persistent homology

of complex networks for dynamic state detection. arXiv preprint

arXiv:1904.07403. doi: 10.1103/PhysRevE.100.022314

Nagasaka, Y., Shimoda, K., and Fujii, N. (2011). Multidimensional recording

(MDR) and data sharing: an ecological open research and educational

platform for neuroscience. PLoS ONE 6:e22561. doi: 10.1371/journal.pone.

0022561

Ngamga, E. J., Bialonski, S., Marwan, N., Kurths, J., Geier, C., and Lehnertz, K.

(2016). Evaluation of selected recurrence measures in discriminating pre-ictal

and inter-ictal periods from epileptic EEG data. Phys. Lett. A 380, 1419–1425.

doi: 10.1016/j.physleta.2016.02.024

Nomi, J. S., Bolt, T. S., Ezie, C. E. C., Uddin, L. Q., and Heller, A.

S. (2017). Moment-to-moment BOLD signal variability reflects regional

changes in neural flexibility across the lifespan. J. Neurosci. 37, 5539–5548.

doi: 10.1523/JNEUROSCI.3408-16.2017

Ouyang, G., Li, X., Dang, C., and Richards, D. A. (2008). Using recurrence

plot for determinism analysis of EEG recordings in genetic absence

epilepsy rats. Clin. Neurophysiol. 119, 1747–1755. doi: 10.1016/j.clinph.2008.

04.005

Papana, A., and Kugiumtzis, D. (2009). Evaluation of mutual information

estimators for time series. Int. J. Bifurc. Chaos 19, 4197–4215.

doi: 10.1142/S0218127409025298

Perea, J. A. (2018). Topological time series analysis. arXiv preprint

arXiv:1812.05143.

Pessa, A. A. B., and Ribeiro, H. V. (2019). Characterizing stochastic time series with

ordinal networks. Phys. Rev. E 100:042304. doi: 10.1103/PhysRevE.100.042304

Pons, P., and Latapy, M. (2005). Computing communities in large networks

using random walks (long version). arXiv preprint arXiv:physics/0512106.

doi: 10.1007/11569596_31

Ravetti, M. G., Carpi, L. C., Goncalves, B. A., Frery, A. C., and Rosso,

O. A. (2014). Distinguishing noise from chaos: objective versus

subjective criteria using horizontal visibility graph. PLoS ONE 9:e108004.

doi: 10.1371/journal.pone.0108004

Richman, J. S., and Moorman, J. R. (2000). Physiological time-series analysis using

approximate entropy and sample entropy. Am. J. Physiol. Heart Circ. Physiol.

278, H2039–H2049. doi: 10.1152/ajpheart.2000.278.6.H2039

Riedl, M., Muller, A., and Wessel, N. (2013). Practical considerations

of permutation entropy. Eur. Phys. J. Spcl. Top. 222, 249–262.

doi: 10.1140/epjst/e2013-01862-7

Roldan, E., and Parrondo, J. M. R. (2010). Estimating dissipation

from single stationary trajectories. Phys. Rev. Lett. 105:150607.

doi: 10.1103/PhysRevLett.105.150607

Roldan, E., and Parrondo, J. M. R. (2012). Entropy production and Kullback-

Leibler divergence between stationary trajectories of discrete systems. Phys. Rev.

E 85:031129. doi: 10.1103/PhysRevE.85.031129

Rolink, J., Kutz, M., Fonseca, P., Long, X., Misgeld, B., and Leonhardt, S. (2015).

Recurrence quantification analysis across sleep stages. Biomed. Signal Process.

Control 20, 107–116. doi: 10.1016/j.bspc.2015.04.006

Rosas, F. E., Mediano, P. A. M., Jensen, H. J., Seth, A. K., Barrett, A. B., Carhart-

Harris, R. L., et al. (2020). Reconciling emergences: an information-theoretic

approach to identify causal emergence in multivariate data. arXiv preprint

arXiv:2004.08220. doi: 10.1371/journal.pcbi.1008289

Rosvall, M., Axelsson, D., and Bergstrom, C. T. (2009). The map equation. Eur.

Phys. J. Spcl. Top. 178, 13–23. doi: 10.1140/epjst/e2010-01179-1

Rosvall, M., and Bergstrom, C. T. (2008). Maps of random walks on complex

networks reveal community structure. Proc. Natl. Acad. Sci. U.S.A. 105,

1118–1123. doi: 10.1073/pnas.0706851105

Ruan, Y., Donner, R. V., Guan, S., and Zou, Y. (2019). Ordinal partition transition

network based complexity measures for inferring coupling direction and delay

from time series. Chaos 29:043111. doi: 10.1063/1.5086527

Rubinov, M. (2016). Constraints and spandrels of interareal connectomes. Nat.

Commun. 7:13812. doi: 10.1038/ncomms13812

Saggar, M., Shine, J. M., Liegeois, R., Dosenbach, N. U. F., and Fair,

D. (2021). Precision dynamical mapping using topological data analysis

reveals a unique hub-like transition state at rest. bioRxiv. [preprint].

doi: 10.1101/2021.08.05.455149

Saggar, M., Sporns, O., Gonzalez-Castillo, J., Bandettini, P. A., Carlsson, G.,

Glover, G., et al. (2018). Towards a new approach to reveal dynamical

organization of the brain using topological data analysis.Nat. Commun. 9:1399.

doi: 10.1038/s41467-018-03664-4

Sannino, S., Stramaglia, S., Lacasa, L., and Marinazzo, D. (2017). Visibility graphs

for fMRI data: Multiplex temporal graphs and their modulations across resting-

state networks. Netw. Neurosci. 1, 208–221. doi: 10.1162/NETN_a_00012

Schartner, M., Seth, A., Noirhomme, Q., Boly, M., Bruno, M.-A., Laureys, S.,

et al. (2015). Complexity of multi-dimensional spontaneous EEG decreases

Frontiers in Neuroscience | www.frontiersin.org 18 February 2022 | Volume 15 | Article 787068

https://doi.org/10.1016/j.neuroimage.2019.05.060
https://doi.org/10.1007/s12028-021-01281-6
https://doi.org/10.1002/9783527693245.ch1
https://doi.org/10.1103/PhysRevE.80.046103
https://doi.org/10.1073/pnas.2109889118
https://doi.org/10.1073/pnas.1608282113
https://doi.org/10.1016/j.physrep.2006.11.001
https://doi.org/10.1007/978-3-319-07155-8_1
https://doi.org/10.1088/1367-2630/17/2/023068
https://doi.org/10.1063/1.4978743
https://doi.org/10.1063/1.4919075
https://doi.org/10.1017/S0004972719000480
https://doi.org/10.21105/joss.00861
https://doi.org/10.1162/netn_a_00107
https://doi.org/10.1016/0167-2789(92)90111-Y
https://doi.org/10.1088/0031-9155/44/6/101
https://doi.org/10.1063/1.5111719
https://doi.org/10.1103/PhysRevE.100.022314
https://doi.org/10.1371/journal.pone.0022561
https://doi.org/10.1016/j.physleta.2016.02.024
https://doi.org/10.1523/JNEUROSCI.3408-16.2017
https://doi.org/10.1016/j.clinph.2008.04.005
https://doi.org/10.1142/S0218127409025298
https://doi.org/10.1103/PhysRevE.100.042304
https://doi.org/10.1007/11569596_31
https://doi.org/10.1371/journal.pone.0108004
https://doi.org/10.1152/ajpheart.2000.278.6.H2039
https://doi.org/10.1140/epjst/e2013-01862-7
https://doi.org/10.1103/PhysRevLett.105.150607
https://doi.org/10.1103/PhysRevE.85.031129
https://doi.org/10.1016/j.bspc.2015.04.006
https://doi.org/10.1371/journal.pcbi.1008289
https://doi.org/10.1140/epjst/e2010-01179-1
https://doi.org/10.1073/pnas.0706851105
https://doi.org/10.1063/1.5086527
https://doi.org/10.1038/ncomms13812
https://doi.org/10.1101/2021.08.05.455149
https://doi.org/10.1038/s41467-018-03664-4
https://doi.org/10.1162/NETN_a_00012
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Varley and Sporns Network Analysis of Time Series

during propofol induced general anaesthesia. PLoS ONE 10:e0133532.

doi: 10.1371/journal.pone.0133532

Schartner, M. M., Pigorini, A., Gibbs, S. A., Arnulfo, G., Sarasso, S., Barnett, L.,

et al. (2017). Global and local complexity of intracranial EEG decreases during

NREM sleep. Neurosci. Conscious. 2017:niw022. doi: 10.1093/nc/niw022

Schumacher, J., Peraza, L. R., Firbank, M., Thomas, A. J., Kaiser, M., Gallagher,

P., et al. (2019). Dynamic functional connectivity changes in dementia

with Lewy bodies and Alzheimer’s disease. Neuroimage Clin. 22:101812.

doi: 10.1016/j.nicl.2019.101812

Shine, J. M., Breakspear, M., Bell, P. T., Ehgoetz Martens, K. A., Shine, R.,

Koyejo, O., et al. (2019a). Human cognition involves the dynamic integration

of neural activity and neuromodulatory systems. Nat. Neurosci. 22, 289–296.

doi: 10.1038/s41593-018-0312-0

Shine, J. M., Breakspear, M., Bell, P. T., Martens, K. E., Shine, R., Koyejo, O., et al.

(2018). The low dimensional dynamic and integrative core of cognition in the

human brain. bioRxiv 266635. doi: 10.1101/266635

Shine, J. M., Hearne, L. J., Breakspear, M., Hwang, K., Muller, E. J., Sporns, O., et

al. (2019b). The low-dimensional neural architecture of cognitive complexity

is related to activity in medial thalamic nuclei. Neuron 104, 849.e3–855.e3.

doi: 10.1016/j.neuron.2019.09.002

Singh, G., Memoli, F., and Carlsson, G. (2007). “Topological methods for

the analysis of high dimensional data sets and 3D object recognition,” in

Eurographics Symposium on Point-Based Graphics, Prague, CZ.

Singleton, S. P., Luppi, A. I., Carhart-Harris, R. L., Cruzat, J., Roseman,

L., Deco, G., et al. (2021). LSD flattens the brain’s energy landscape:

evidence from receptor-informed network control theory. bioRxiv. [preprint].

doi: 10.1101/2021.05.14.444193

Sizemore, A. E., Phillips-Cremins, J., Ghrist, R., and Bassett, D. S. (2018).

The importance of the whole: topological data analysis for the network

neuroscientist. arXiv preprint arXiv:1806.05167.

Small, M. (2013). “Complex networks from time series: capturing dynamics,” in

2013 IEEE International Symposium on Circuits and Systems (ISCAS2013), San

Diego, CA, 2509–2512. doi: 10.1109/ISCAS.2013.6572389

Smith, S. M., Miller, K. L., Salimi-Khorshidi, G., Webster, M., Beckmann, C. F.,

Nichols, T. E., et al. (2011). Networkmodelling methods for FMRI.Neuroimage

54, 875–891. doi: 10.1016/j.neuroimage.2010.08.063

Song, I.-H., Lee, D.-S., and Kim, S. I. (2004). Recurrence quantification analysis of

sleep electoencephalogram in sleep apnea syndrome in humans. Neurosci. Lett.

366, 148–153. doi: 10.1016/j.neulet.2004.05.025

Sporns, O. (2010). Networks of the Brain. Boston, MA: MIT Press.

doi: 10.7551/mitpress/8476.001.0001

Sporns, O., Faskowitz, J., Teixeira, A. S., Cutts, S. A., and Betzel, R. F. (2021).

Dynamic expression of brain functional systems disclosed by fine-scale analysis

of edge time series. Netw. Neurosci. 5, 405–433. doi: 10.1162/netn_a_00182

Sporns, O., Tononi, G., and Katter, R. (2005). The human connectome:

a structural description of the human brain. PLoS Comput. Biol. 1:e42.

doi: 10.1371/journal.pcbi.0010042

Strogatz, S. H. (2018).Nonlinear Dynamics and Chaos:With Applications to Physics,

Biology, Chemistry, and Engineering. Boca Raton, FL: CRC Press.

Subramaniyam, N. P., Donges, J. F., and Hyttinen, J. (2015). Signatures of chaotic

and stochastic dynamics uncovered with ǫ-recurrence networks. Proc. R. Soc. A

Math. Phys. Eng. Sci. 471:20150349. doi: 10.1098/rspa.2015.0349

Subramaniyam, N. P., and Hyttinen, J. (2013). “Analysis of nonlinear dynamics

of healthy and epileptic EEG signals using recurrence based complex network

approach,” in 2013 6th International IEEE/EMBS Conference on Neural

Engineering (NER), San Diego, CA, 605–608. doi: 10.1109/NER.2013.6696007

Supriya, S., Siuly, S., Wang, H., Cao, J., and Zhang, Y. (2016a). Weighted visibility

graph with complex network features in the detection of epilepsy. IEEE Access

4, 6554–6566. doi: 10.1109/ACCESS.2016.2612242

Supriya, S., Wang, H., Zhuo, G., and Zhang, Y. (2016b). “Analyzing EEG signal

data for detection of epileptic seizure: introducing weight on visibility graph

with complex network feature,” inDatabases Theory and Applications, edsM. A.

Cheema, W. Zhang, and L. Chang (Cham: Springer International Publishing),

56–66. doi: 10.1007/978-3-319-46922-5_5

Takens, F. (1981). “Detecting strange attractors in turbulence,” in Dynamical

Systems and Turbulence, Warwick 1980, eds D. Rand and L. S. Young (Berlin;

Heidelberg: Springer), 366–381. doi: 10.1007/BFb0091924

Thiel, M., Romano, M. C., Kurths, J., Meucci, R., Allaria, E., and Arecchi,

F. T. (2002). Influence of observational noise on the recurrence

quantification analysis. Phys. D Nonlinear Phenomena 171, 138–152.

doi: 10.1016/S0167-2789(02)00586-9

Tognoli, E., and Kelso, J. A. S. (2014). The metastable brain. Neuron 81, 35–48.

doi: 10.1016/j.neuron.2013.12.022

Toker, D., and Sommer, F. T. (2019). Information integration in large brain

networks. PLoS Comput. Biol. 15:e1006807. doi: 10.1371/journal.pcbi.1006807

van den Heuvel, M. P., and Hulshoff Pol, H. E. (2010). Exploring the

brain network: a review on resting-state fMRI functional connectivity. Eur.

Neuropsychopharmacol. 20, 519–534. doi: 10.1016/j.euroneuro.2010.03.008

Van Essen, D. C., Smith, S. M., Barch, D. M., Behrens, T. E. J., Yacoub, E., and

Ugurbil, K. (2013). The WU-Minn human connectome project: an overview.

Neuroimage 80, 62–79. doi: 10.1016/j.neuroimage.2013.05.041

Varley, T., Sporns, O., Scherberger, H., and Dann, B. (2021a). Information

dynamics in neuronal networks of macaque cerebral cortex reflect cognitive

state and behavior. bioRxiv. [preprint]. doi: 10.1101/2021.09.05.458983

Varley, T. F. (2020). Causal emergence in discrete and continuous dynamical

systems. arXiv preprint arXiv:2003.13075.

Varley, T. F., Denny, V., Sporns, O., and Patania, A. (2021b). Topological analysis

of differential effects of ketamine and propofol anaesthesia on brain dynamics.

R. Soc. Open Sci. 8:201971. doi: 10.1098/rsos.201971

Varley, T. F., Sporns, O., Puce, A., and Beggs, J. (2020). Differential effects

of propofol and ketamine on critical brain dynamics. PLoS Comput. Biol.

16:e1008418. doi: 10.1371/journal.pcbi.1008418

Wang, J., Yang, C., Wang, R., Yu, H., Cao, Y., and Liu, J. (2016). Functional brain

networks in Alzheimer’s disease: EEG analysis based on limited penetrable

visibility graph and phase spacemethod. Phys. A Stat.Mech. Appl. 460, 174–187.

doi: 10.1016/j.physa.2016.05.012

Wang, L., Long, X., Arends, J. B. A. M., and Aarts, R. M. (2017). EEG

analysis of seizure patterns using visibility graphs for detection of generalized

seizures. J. Neurosci. Methods 290, 85–94. doi: 10.1016/j.jneumeth.2017.

07.013

Woodman, M. M., and Jirsa, V. K. (2013). Emergent dynamics from spiking

neuron networks through symmetry breaking of connectivity. PLoS ONE

8:e64339. doi: 10.1371/journal.pone.0064339

Wu, H., Zou, Y., Alves, L. M., Macau, E. E. N., Sampaio, G., and Marengo, J. A.

(2020). Uncovering episodic influence of oceans on extreme drought events in

Northeast Brazil by ordinal partition network approaches. Chaos 30:053104.

doi: 10.1063/5.0004348

Yeo, B. T., Krienen, F. M., Sepulcre, J., Sabuncu, M. R., Lashkari, D.,

Hollinshead, M., et al. (2011). The organization of the human cerebral cortex

estimated by intrinsic functional connectivity. J. Neurophysiol. 106, 1125–1165.

doi: 10.1152/jn.00338.2011

Yu, M., Hillebrand, A., Gouw, A. A., and Stam, C. J. (2017). Horizontal

visibility graph transfer entropy (HVG-TE): a novel metric to characterize

directed connectivity in large-scale brain networks. Neuroimage 156, 249–264.

doi: 10.1016/j.neuroimage.2017.05.047

Zbilut, J. P., and Webber, C. L. (1992). Embeddings and delays as derived

from quantification of recurrence plots. Phys. Lett. A 171, 199–203.

doi: 10.1016/0375-9601(92)90426-M

Zbilut, J. P., Zaldivar-Comenges, J.-M., and Strozzi, F. (2002).

Recurrence quantification based Liapunov exponents for monitoring

divergence in experimental data. Phys. Lett. A 297, 173–181.

doi: 10.1016/S0375-9601(02)00436-X

Zhang, H., Meng, Q., Liu, M., and Li, Y. (2018). “A new epileptic seizure

detection method based on fusion feature of weighted complex network,”

in Advances in Neural Networks–ISNN 2018, eds T. Huang, J. Lv, C. Sun,

and A. V. Tuzikov (Cham: Springer International Publishing), 834–841.

doi: 10.1007/978-3-319-92537-0_94

Zhang, J., Zhou, J., Tang, M., Guo, H., Small, M., and Zou, Y. (2017). Constructing

ordinal partition transition networks from multivariate time series. Sci. Rep.

7:7795. doi: 10.1038/s41598-017-08245-x

Zhu, G., Li, Y., and Wen, P. (2014a). Analysis and classification of sleep

stages based on difference visibility graphs from a single-channel EEG signal.

IEEE J. Biomed. Health Inform. 18, 1813–1821. doi: 10.1109/JBHI.2014.

2303991

Frontiers in Neuroscience | www.frontiersin.org 19 February 2022 | Volume 15 | Article 787068

https://doi.org/10.1371/journal.pone.0133532
https://doi.org/10.1093/nc/niw022
https://doi.org/10.1016/j.nicl.2019.101812
https://doi.org/10.1038/s41593-018-0312-0
https://doi.org/10.1101/266635
https://doi.org/10.1016/j.neuron.2019.09.002
https://doi.org/10.1101/2021.05.14.444193
https://doi.org/10.1109/ISCAS.2013.6572389
https://doi.org/10.1016/j.neuroimage.2010.08.063
https://doi.org/10.1016/j.neulet.2004.05.025
https://doi.org/10.7551/mitpress/8476.001.0001
https://doi.org/10.1162/netn_a_00182
https://doi.org/10.1371/journal.pcbi.0010042
https://doi.org/10.1098/rspa.2015.0349
https://doi.org/10.1109/NER.2013.6696007
https://doi.org/10.1109/ACCESS.2016.2612242
https://doi.org/10.1007/978-3-319-46922-5_5
https://doi.org/10.1007/BFb0091924
https://doi.org/10.1016/S0167-2789(02)00586-9
https://doi.org/10.1016/j.neuron.2013.12.022
https://doi.org/10.1371/journal.pcbi.1006807
https://doi.org/10.1016/j.euroneuro.2010.03.008
https://doi.org/10.1016/j.neuroimage.2013.05.041
https://doi.org/10.1101/2021.09.05.458983
https://doi.org/10.1098/rsos.201971
https://doi.org/10.1371/journal.pcbi.1008418
https://doi.org/10.1016/j.physa.2016.05.012
https://doi.org/10.1016/j.jneumeth.2017.07.013
https://doi.org/10.1371/journal.pone.0064339
https://doi.org/10.1063/5.0004348
https://doi.org/10.1152/jn.00338.2011
https://doi.org/10.1016/j.neuroimage.2017.05.047
https://doi.org/10.1016/0375-9601(92)90426-M
https://doi.org/10.1016/S0375-9601(02)00436-X
https://doi.org/10.1007/978-3-319-92537-0_94
https://doi.org/10.1038/s41598-017-08245-x
https://doi.org/10.1109/JBHI.2014.2303991
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Varley and Sporns Network Analysis of Time Series

Zhu, G., Li, Y., Wen, P. P., and Wang, S. (2014b). Analysis of alcoholic EEG

signals based on horizontal visibility graph entropy. Brain Inform. 1, 19–25.

doi: 10.1007/s40708-014-0003-x

Zhu, L., Lee, C. R., Margolis, D. J., and Najafizadeh, L. (2018). Decoding

cortical brain states from widefield calcium imaging data using

visibility graph. Biomed. Opt. Express 9, 3017–3036. doi: 10.1364/BOE.9.

003017

Zou, Y., Donner, R. V., Marwan, N., Donges, J. F., and Kurths, J. (2019). Complex

network approaches to nonlinear time series analysis. Phys. Rep. 787, 1–97.

doi: 10.1016/j.physrep.2018.10.005

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 Varley and Sporns. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The

use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neuroscience | www.frontiersin.org 20 February 2022 | Volume 15 | Article 787068

https://doi.org/10.1007/s40708-014-0003-x
https://doi.org/10.1364/BOE.9.003017
https://doi.org/10.1016/j.physrep.2018.10.005
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

	Network Analysis of Time Series: Novel Approaches to Network Neuroscience
	1. Introduction
	2. Recurrence Networks
	2.1. Constructing a Recurrence Network
	2.1.1. Choosing a Distance Metric

	2.2. Analyzing a Recurrence Network
	2.2.1. Community Detection
	2.2.2. Relationship to Topological Data Analysis

	2.3. Applications of Recurrence Networks in Neuroscience

	3. Visibility Networks
	3.1. Constructing a Visibility Network
	3.2. Analyzing a Visibility Network
	3.3. Applications in Neuroscience

	4. Ordinal Partition Networks
	4.1. Constructing an OPN
	4.1.1. Selecting d and τ

	4.2. Analyzing an OPN
	4.2.1. Community Detection

	4.3. Applications in Neuroscience

	5. Software Implementations
	6. Conclusions
	Author Contributions
	Funding
	Acknowledgments
	References


