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Spatial eco-evolutionary feedbacks 
mediate coexistence in prey-
predator systems
Eduardo H. Colombo   1*, Ricardo Martínez-García   2,3, Cristóbal López1 &  
Emilio Hernández-García   1

Eco-evolutionary frameworks can explain certain features of communities in which ecological 
and evolutionary processes occur over comparable timescales. Here, we investigate whether an 
evolutionary dynamics may interact with the spatial structure of a prey-predator community in which 
both species show limited mobility and predator perceptual ranges are subject to natural selection. In 
these conditions, our results unveil an eco-evolutionary feedback between species spatial mixing and 
predators perceptual range: different levels of mixing select for different perceptual ranges, which in 
turn reshape the spatial distribution of prey and its interaction with predators. This emergent pattern 
of interspecific interactions feeds back to the efficiency of the various perceptual ranges, thus selecting 
for new ones. Finally, since prey-predator mixing is the key factor that regulates the intensity of 
predation, we explore the community-level implications of such feedback and show that it controls 
both coexistence times and species extinction probabilities.

One of the major goals of ecology is to understand the mechanisms that sustain the coexistence of antagonistic 
species, such as one prey and its predator, a host and its parasite, or multiple competitors for common resources. 
Under the traditional assumption that ecological and evolutionary changes occur on very different time scales, 
the connection between ecology and evolution is unidirectional, with the former driving the later. Therefore, the 
first attempts to explain species coexistence neglected the role of evolutionary processes and relied exclusively on 
ecological factors, such as species neutrality1, frequency-dependent interactions2, and environmental heteroge-
neity, either in space or in time3–7.

More recently, however, evidences that ecological and evolutionary processes can occur at congruent 
time-scales have been found8–10. This result suggests that both processes can affect each other and establish 
‘eco-evolutionary feedbacks’ (EEFs) that may alter the ecological dynamics and the stability of communities. Due 
to rapid evolution, the frequency of the genotypes and their associated phenotypes may change, within a popula-
tion, as fast as ecological variables, such as population sizes or spatial distributions, and affect their dynamics. In 
turn, these new ecological configurations can redirect the evolutionary process11–17.

The consequences of these EEFs at the community level have been studied mainly in single-species popula-
tions and simple two-species communities13. In prey-predator systems, empirical studies have shown that both 
prey and predator traits can evolve over ecological time scales, leading to EEFs that alter some features of the 
dynamics of both populations18,19. For instance, in a rotifer-algal system, rapid prey evolution induced by oscil-
latory predator abundance can drive antiphase in prey-predator cycles14. Theoretical investigations have also 
suggested that prey-predator coevolution can induce a rich set of behaviors in population abundances, including 
reversion in the predator-prey cycles20. Another family of studies has focused on the role of EEFs on the stability 
of the community, showing that different feedbacks influence the stability of prey-predator dynamics in different 
ways depending on the shape of the trade-offs between the evolving traits13,21,22.

However, despite these insightful studies, the interplay between eco-evolutionary feedbacks and spatial 
dynamics, this last being a crucial aspect that often controls species interactions, remains largely unexplored in 
ecological communities. EEFs in spatially structured populations have been studied mostly for single-species 
populations in which evolutionary dynamics affects the rate of dispersal, either across patches or during 
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range expansion13,23,24. Here, we extend those scenarios and investigate how eco-evolutionary dynamics can 
modulate two-species interactions in a spatially-extended prey-predator community. To this aim, we use an 
individual-based model in which both species have limited mobility and only prey within a finite region around 
the predator are susceptible to predation. The radius of this region defines predators perceptual range, which in 
our model varies across the population and is subject to natural selection. Perceptual ranges, generally defined as 
the maximal distance at which individuals can identify elements of the landscape, vary tremendously within spe-
cies and strongly determine the success of foraging and hunting strategies via several trade-offs25,26. For instance, 
large perceptual ranges increase the number of potentially detectable prey individuals, but may lead to a reduced 
attacking efficiency, as information is integrated over a large area26–28. Moreover, the detection of many prey may 
also induce prey-crowding effects that reduce predation efficiency29,30. These trade-offs bound the evolution of 
the perceptual range, setting a finite optimal value. Overall, due to its large intraspecific variability, important 
contribution to individual fitness, and sensitivity to species spatial distribution, the perceptual range arises as 
an important trait for studying the interplay between its evolutionary dynamics and spatial ecological processes 
within the community.

In fact, our results reveal that a feedback between the evolution of the predator perceptual range and species 
spatial distributions controls several community-level processes. We perform a systematic investigation of the 
prey-predator dynamics under different levels of mobility and mutation intensities and characterize the com-
munity long-time behavior using Shannon-entropy mixing measures, the distribution of predators’ perceptual 
ranges, and species coexistence time and extinction probabilities. Depending on individual mobility (and the 
ecological interactions taking place), different levels of spatial mixing emerge, ranging from segregation to high 
mixing, and select for different perceptual ranges. Simultaneously, due to predation, perceptual ranges alter the 
spatial mixing of prey and predators, establishing an eco-evolutionary feedback. Importantly, since species mix-
ing modulates the intensity of the prey-predator interaction, the eco-evolutionary feedback strongly influences 
the stability of the community. A diagram summarizing the coupling between individual traits, species spatial 
distribution, and community-level processes is shown in Fig. 1.

Finally, although derived for the particular case of a prey-predator system, these results will more generally 
improve our understanding of how information gathering over different spatial scales may influence species inter-
actions and how evolutionary processes may alter the ecological dynamics and stability of spatially-structured 
communities.

Results
We aim to investigate the interplay between the spatial structure and the evolution of the spatial range of interspe-
cific interactions in ecological communities (see the diagram in Fig. 1). To this end, we build an individual-based 
model for a simple prey-predator system (see Methods for full details) in which individuals of both species move 
within a square environment of lateral length L with periodic boundary conditions. Movement is modeled using 
Brownian motions with diffusion coefficients Dp and Dv for predator and prey respectively (v stands for victims). 
The intensity of the diffusion influences the spatial distribution of the populations. Strong diffusion leads to 
homogeneously distributed populations, whereas clusters form for weak diffusion due to the existence of repro-
ductive pair correlations31.

The composition of the community is characterized by the number of prey individuals, =N N t( )v v , and pred-
ators, =N N t( )p p . These population sizes change in time driven by an asexual, stochastic population dynamics in 
which prey reproduction and predator death occur with constant rates r and d respectively. The predation or 
catching rate of each predator, c, however, is dictated by the availability of prey and the efficiency of the predator 
at attacking them. Mathematically, this can be written as =c R E R M R( ) ( ) ( )v , where M R( )v  accounts for the num-
ber of prey individuals within predator’s perceptual range, R, and E(R) is the attacking efficiency for a given per-
ceptual range R. We have defined the perceptual range, different for each predator, as the maximum distance 
measured from the position of the predator at which a prey can be detected. Hence, the number of prey individ-
uals detected by the predator increases as the perceptual range increases. We assume, however, that it does so at 

Figure 1.  Schematic representation of the eco-evolutionary framework. Diffusion coefficients, Dv and Dp, 
control individual movement and act as control parameters of the emergent eco-evolutionary feedback (yellow 
box) between species mixing, measured using Shannon-entropy based metrics (green box), and the distribution 
of predators’ perceptual ranges (orange box). Finally, the eco-evolutionary feedback determines prey-predator 
coexistence times  . Arrows indicate the influence between the different elements of the framework.
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the cost of a reduced predation likelihood, leading to a trade-off between prey detection and attacking efficiency. 
We implement this trade-off by assuming that the attacking efficiency E(R) is a decreasing function of the percep-
tual range. This trade-off between perception and attacking efficiency, as well as the choice of E such that preda-
tion rate maximizes at intermediate scales of perception, is grounded on previous theoretical studies showing that 
foraging success decreases when individuals have to integrate information over very large spatial scales26–28,32,33.

The specific shape of E(R) may depend on several factors related to prey behavior, predator behavior or envi-
ronmental features. Here, we assume that it decays exponentially with the perceptual range as 

= −E R c R R( ) exp( / )c0 , where c0 is the maximum efficiency and Rc fixes how quickly this efficiency decays as the 
perceptual range increases. We expect similar results for other functional forms of E(R) as far as its decay with R 
is faster than the growth of M R( )v . Considering a homogeneous distribution of prey with density =v N L/v

2, the 
number of prey detected by one predator is π=M R v R( )v

2. Then, the predation rate for that predator is

π
=





−






c R c N R
L

R
R

( ) exp ,
(1)

v
c

0

2

2

which is maximal for ≡⁎R R2h c (see the solid line in Fig. 2 for a plot of c R N( )/ v, normalized to make it independ-
ent of the prey density). In the next sections, we will use this value ⁎Rh  as a reference to measure the effect of 
non-homogeneous distributions of individuals on the optimal perceptual range. When the spatial distributions of 
the populations are heterogeneous, the predation rate per prey varies across the population because the number 
of prey perceived by each predator does so. In these cases, we measure the mean predation rate per prey, 
〈 〉c R N( )/ v p, from numerical simulations of the non-evolutionary dynamics in which all predators have the same 
perceptual range R and there are no mutations. The notation 〈…〉p indicates average over all predators in the sys-
tem and over time and realizations. If individual diffusion is low, the spatial distribution of individuals deviates 
strongly from homogeneity, thereby leading to optimal perceptual ranges, R*, that are larger than in the 
well-mixed limit (see filled symbols in Fig. 2). Conversely, as diffusion increases, π→M R N R L( ) /v v

2 2 and the 
system approaches the well-mixed limit (see empty symbols in Fig. 2). In this high-diffusion limit, however, small 
differences with the analytical result remain because our simulations consider finite populations that always show 
some spatial heterogeneity.

Finally, once a prey is consumed by a predator with the individual-specific predation rates defined above, there 
is a probability b for the predator to reproduce. Hence, predator’s reproduction rates are determined by the inter-
play between their perceptual range and the spatial distribution of the prey population. Neglecting the 
phenotype-genotype distinction and the role of the environment in trait inheritance34, we assume that each new-
born predator receives the perceptual range from its parent (i.e. clonal reproduction) plus some mutation that 
adds to R a random perturbation sampled from a Gaussian of zero mean and variance σμ

2. R remains unchanged 
during predators’ lifetime. The intensity of mutations, σμ, determines both the speed of the evolutionary process 
and the level of variability in the evolving trait, R. The mathematical details of the model and its implementation 
are provided in the Methods section.

In the following sections, we investigate how the coupling between limited mobility and evolution in the per-
ceptual ranges influences the stability of the community. Hence, we keep constant all the model parameters (see 
Methods section) except the intensity of the mutations in R, σμ, that drives the evolutionary processes, and the 

Figure 2.  Predation rate is maximum for intermediate perceptual ranges. Solid line: predation rate per prey 
c/Nv as a function of the predator’s perceptual range, R, for the case in which prey individuals are 
homogeneously distributed in space (i.e. π= −c R N c R L R R( )/ ( / )exp( / )v c0

2 2 , see main text and Eq. (6)). The 
trade-off between prey detection and decaying attack efficiency leads to a value = ⁎R Rh  (indicated by a vertical 
dashed line) at which the predation rate per prey is maximum. Symbols (with dashed lines as guides to the eye) 
are, for each value of R, average predation rates per prey, 〈 〉c R N( )/ v p (average over all the predators in the system 
and over time and realizations), from simulations in which all predators have the same perceptual range R. 
There is no evolutionary process, and the mobilities are low ( = = .D D 0 1v p , filled circles) or high 
( = = .D D 1 0v p , empty circles). Other parameters = = = = =r d c b R 1c0 , =L 10.
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diffusion coefficients, Dv and Dp, which determine the degree of mixing in the population and thus the intensity 
of the prey-predator interaction. Therefore, for a given pair of diffusion coefficients and a mutation intensity, three 
linked population and community-level features emerge: the spatial distribution of both species, the distribution 
of predator perceptual ranges (i.e., the outcome of the evolutionary dynamics) and the coexistence time of the 
populations. In the following sections, we study each of them separately.

Species spatial distributions.  If prey birth and predator death rates are kept constant, the spatial distribu-
tion of prey and predators is determined by three characteristic spatial scales, defined by Dv, Dp and R. Figure 3 
shows typical spatial configurations obtained for low (panel A) and high (panel B) diffusion (see also Movies in 
the Supplementary Material). Clustering of individuals and species segregation occur at low diffusion. To quantify 
population clustering within each species, as well as interspecies mixing, we introduce the metrics v  and p  
for the former and  for the latter. The three of them are defined in terms of the Shannon index or entropy35–37, 
conveniently modified to correct for the effect of fluctuations in population sizes (see Methods for the mathemat-
ical definitions and further details). The interspecies mixing, , takes values between 0 and 1, with 0 indicating 
strong species segregation and 1 the well-mixed limit. p and v  also take values within the same range, but 
since they are applied to one single species,  =α 0 indicates a high level of clumping of species α (=v or p) and 
 =α 1 a uniform distribution of the corresponding species.

We analyze the spatial distribution of species in the long-time regime, that is, once the distribution of percep-
tual ranges in the predator population has reached a stationary shape. In Fig. 4, we show the mean value (the 
notation 〈…〉 indicates average over time and realizations) of these mixing measures as a function of individual 
mobility for constant mutation intensity σ = .μ 0 1. Our results reveal a complex interaction between mobility and 
species mixing. When both prey and predators have the same diffusion coefficient, =D Dv p, all the mixing 
indexes increase with species diffusion (Fig. 4A). However, when prey and predator have different diffusion coef-
ficients, ≠D Dv p, some of the mixing indexes may become non-monotonic functions of one of the diffusion 
coefficients. For instance, in the particular case shown in Fig. 4B, prey mixing still increases monotonically with 
Dv, but both interspecies and predator mixing show a maximum at intermediate Dv. The prey population can be 
seen as a dynamical resource landscape that drives the spatial distribution of predators. Increasing Dv always leads 
to a more uniform distribution of prey. However, the extent to which this also leads to a more uniform distribu-
tion of predators is limited by Dp (which in Fig. 4B is kept constant and at a low value = .D 0 1p ). For instance, 
when 

D Dv p predators cannot follow the dynamics of the prey and both  and p  decrease with increasing 
Dv.

Next, we explore the effect of the mutation intensity on the average interspecies mixing, 〈 〉. In Fig. 5, keep-
ing =D Dv p constant, we show how σμ changes the prey-predator mixing curve shown in Fig. 4A. To quantify 
such change, we define the relative change in 〈 〉  with respect to a no-mutation case (σ →μ 0) in which all pred-
ators have the optimal perceptual range ⁎R ,
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where brackets indicate an average performed over time and realizations in the long-time regime. We find that, 
at low diffusion, interspecies mixing decreases as mutation intensity σμ increases. This leads to more segregated 

Figure 3.  Species spatial distribution. Spatial distribution of predators (red) and prey (blue) in the long-time 
regime for (A) low and (B) high mobility, with = = .D D 0 1p v  and = =D D 1p v , respectively. Gray circles 
delimits the area of perception of the predators, which is subject to evolutionary dynamics (σ = .μ 0 1, see 
Methods section for details). The habitat is a square domain with size =L 20 and periodic boundary conditions 
(i.e. our habitat is actually the surface of a torus). See Movies in the Supplementary Material to visualize the 
model dynamics.
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prey-predator distributions for larger mutation intensities. At high diffusion, however, the trend is reversed and 
interspecies mixing increases with increasing mutation intensity. Finally, for a range of intermediate diffusion 
coefficients, the increase in interspecies mixing due to mutation is maximum. These results arise mainly from the 
mutation-induced variability in the values of R within the predator population, which will be discussed in the 
next section.

Distribution of predator perceptual ranges.  In our model, we assume that predator perceptual ranges 
(and thus predation rates and predator reproduction rates) are subject to natural selection. We assume that the 
value of the trait R of a predator is passed to its offspring, with some variation due to mutation. Then, the per-
ceptual range remains unchanged during the individual lifetime. Natural selection is at work since, depending 
on the spatial distribution of prey, some perceptual ranges are favored against the others and hence tend to be 
over-represented within the population.

Spatially homogeneous limit.  In the Dv, → ∞Dp  limit (which leads to    →, , 1v p ), the populations of 
prey and predators are randomly distributed in space and well-mixed with each other. In this homogeneous, 

Figure 4.  Characterization of the spatial distribution through Shannon-entropy mixing measures. Average 
prey-predator mixing 〈 〉  and prey and predator mixing, 〈 〉v  and 〈 〉p  respectively, for different individual’s 
mobility with (A) =D Dp v and (B) = .D 0 1p . Mutation intensity is σ = .μ 0 1 and habitat size =L 10. Averages 
are performed over time and 104 independent realizations in the long-time regime.

Figure 5.  Effect of mutation intensity and diffusion on population mixing. Change in the average prey-predator 
mixing relative to the no-mutation case, Δ〈 〉 (Eq. (2)), as a function of the diffusion coefficients =D Dv p. 
Different symbols represent different levels of mutation intensity. Habitat size =L 10. Symbols are the results 
from numerical simulations and dashed lines are smooth fits to simulation data for different mutation 
intensities. The horizontal continuous line Δ〈 〉 = 0 is the no-mutation case (σ =μ 0) and the vertical line 
indicates the maximum mixing for σ = .μ 1 0.
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mean-field limit, it is possible to derive an equation for the dynamics of the distribution of perceptual ranges in 
the population, ρ R( ) (see Supplementary Material for detailed calculations). In this limit, we can approximate the 
expected number of prey individuals within a radius R by π≈M R R v( )v

2 , where v is the (uniform) prey density. 
Thus, the predation rate is π= ≈ −c R E R M R c R ve( ) ( ) ( )v

R R
0

2 / c. As long as the number of individuals used in the 
simulations is large, this theoretical prediction (see Eqs. (S2) and (S3) in the Supplementary Material) agrees with 
direct simulations of the individual-based dynamics (see Fig. 6). The infinite-diffusion, well-mixed limit is imple-
mented in the simulations by randomly redistributing prey and predators in space at each time step. Starting from 
different initial distributions for R, the maximum of the time-dependent distribution ρ R( ), which defines the 
dominant perceptual range ⁎R , is driven close to ⁎Rh , that is, the perception range that gives the maximum preda-
tion rate in the homogeneous regime (Fig. 6A). This long-time dominant value corresponds exactly to the optimal 
one, ⁎Rh , when mutations are negligible. However, as the intensity of mutations, σμ, increases, the long-time dis-
tribution ρ R( ) becomes wider and its mode shifts towards larger values of R (Fig. 6B). This effect is due to the 
asymmetric form of the predation rate c R( ) (Fig. 2). Thus, the dominant R in the homogeneous regime has a main 
component set by the optimal value and a small positive shift due to the effect of mutations. Lastly, note that 
because the diffusion coefficients are very high, any perturbation of the homogeneous spatial distribution is rap-
idly smoothed out. Thus, selection for a specific ρ R( ) driven by the evolutionary dynamics has no effect on the 
spatial distribution of species. This is in contrast with the result for low mobility, which we discuss more in depth 
next.

Finite-mixing case.  For the general case of limited dispersal, far from the well-mixed scenario, some of the fea-
tures shown in Fig. 6 still persist, but modified due to the underlying spatial distribution of prey and predators. 
Since the analytical approximations derived for the infinite diffusion limit are not valid, we study this scenario via 
numerical simulations of the individual-based model. Starting from different initial distributions of R, the most 
frequent (probable) value of R, ⁎R , evolves in time towards a value that depends on the mobility of both species 
(Fig. 7A), with lower mobility favoring larger ( >⁎ ⁎R Rh ) perceptual ranges (Fig. 7B), while, in the well-mixed 
limit, it approaches the ⁎Rh  as a power-law (see inset of Fig. 7B). The change in the long-time ρ R( ), both with time 
and with diffusion coefficients, is shown in the Supplementary Fig. S1. We observe that the change in the domi-
nant perceptual range due to species diffusion is well captured by the prey mixing parameter v : Fig. 7C shows 
the dominant R in the long-time regime as a function of prey clumping generated varying Dv. We extract that


| − |

= − 〈 〉 γ
⁎ ⁎

⁎
R R

R
(1 ) ,

(3)
h

h
v

with γ . 1 5 (γ . 0 5) when fixing =D Dp v ( = .D 0 1p ) and mutation intensity σ = .μ 0 1. This relation is valid for 
low mutation intensity, such that in the well-mixed scenario, → 1v  (achieved for large diffusivities), we have 


⁎ ⁎R Rh . Prey mixing is thus the main quantity that determines the dominant perceptual range, because it cap-

Figure 6.  Evolutionary dynamics in the homogeneous limit. (A) Temporal evolution of the dominant 
perceptual range ⁎R  (the mode, i.e. the maximum of ρ R( )), relative to the one giving the maximum predator 
growth in the homogeneous case, ⁎Rh , for σ = .μ 0 1 and a system size =L 40. Solid line is obtained from the 
numerical solution of Eqs. (S2) and (S3) derived in the Supplementary Material. Dots correspond to numerical 
simulations of the individual-based model with → ∞D D,v p , obtained by averaging the distribution of 
perceptual ranges over 100 independent runs and then extracting its maximum ⁎R  at every time. In all cases, the 
initial distribution of perceptual ranges is sharply peaked at = ⁎R R2 h . (B) Probability density for finding a 
perceptual range value R in the population of predators, ρ ρ=R R N( ) ( )/ p, in the long-time regime, for low and 
high mutation intensity. Dots correspond to simulations of the individual-based model (with → ∞D D,v p , 
average over 100 runs) and solid lines to the theoretical prediction (see Supplementary Material for details). 
Dashed vertical lines show the position of the mode of each distribution.
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tures the major contribution of the spatial structure of the landscape of resources experienced by predators. As 
prey form clusters, < 1v , predators typically find prey at distances that are larger than in the homogeneous 
case (see Fig. 3), which drives the evolution of ⁎R  to larger values.

Coexistence times and extinction probabilities.  We have investigated in the previous sections the 
mutual influence between species mixing and the evolution of the perceptual ranges. Thus, since mixing controls 
the frequency of prey-predator interactions, we expect this interplay between ecological and evolutionary pro-
cesses to mediate the stability of the community. To quantify this, we measure the mean coexistence time between 
prey and predators,  , and the probability that prey get extinct before predators, β, as a function of prey diffusion, 
predator diffusion, and the intensity of the mutations. The mean coexistence time,  , is defined as the time until 
either prey or predators get extinct, averaged over independent model realizations. Prey extinction probability, β, 
is obtained as the fraction of model realizations in which predators persist longer than prey. Since prey are the 
only resource for predators, predators will shortly get extinct following prey extinctions. On the contrary, when 
predator extinctions occur first, prey will grow unboundedly because we do not account for interspecific compe-
tition. For each realization of the model, we use initial conditions that lead to a very short transient after which 
the spatial structure of the populations and the perceptual-range distribution achieve their long-time shape. In 
most cases, an initial condition consisting of spatially well-mixed populations and a uniform distribution of per-
ceptual ranges in L[0, /2] allows this to happen. Nevertheless, for small mutation rates (σ < .μ 0 1), the evolutionary 
time scales become comparable to the coexistence times and we need to speed up the evolutionary component of 
the transient dynamics by setting an initial condition for the perceptual-range distribution close to the one 
expected at long times.

In Fig. 8A we show the mean coexistence time   as a function of prey and predator diffusion coefficients, 
assuming =D Dv p, for different mutation intensities. This curve depends, in a complex manner, on the values of 
the dominant perceptual range, the associated predation rate, and the degree of mixing that arises from limited 
dispersal. Long coexistence occurs when there is a balanced mixing between prey and predators, which results in 
intermediate levels of predation that preserve prey longer. For weak mutation, the coexistence time, which is 
maximum at low diffusion, decreases as the diffusion coefficients increase until reaching a minimum at interme-
diate mobility. Then,   increases slowly, approaching asymptotically the well-mixed case. As mutation increases, 
there is a clear change in the dependence of   with the diffusion coefficients. Beyond a value of σμ, the maximum 
of   shifts to intermediate values of the diffusion coefficients. This is one of the central results of this paper, com-
ing from the effect that mutation intensity (when non-negligible) has in prey-predator mixing, as shown in Fig. 5: 
mixing decreases for low diffusion and increases until intermediate values of diffusion coefficients. Since mixing 
controls interspecies interaction, a key ingredient for coexistence, this is translated to the behavior of  . As seen 
in Fig. 8A, the level of mobility at which the increase in mixing is maximum (vertical dashed line, from Fig. 5) 
roughly matches the location of the maximum  .

Figure 7.  Dominant perceptual range: from the segregated to the well-mixed scenario. (A) Temporal evolution 
of the location ⁎R  of the maximum in the average perceptual-range distribution ρ R( ) (average over 104 runs), 
relative to the optimal perceptual range for homogeneous populations, ⁎Rh , for high ( = = .D D 1 0v p ) and low 
( = = .D D 0 1v p ) diffusion coefficients. Two different sharply-localized initial population distributions ρ R( ) are 
used in each case. Bars indicate the standard deviation of ρ R( ) around ⁎R . (B) Dominant perceptual range 
relative to the optimal perceptual range in the well-mixed limit, ⁎ ⁎R R/ h , as a function of prey and predator 
diffusion rates. Dashed lines are guides to the eye and display the discretization Δ = .R 0 1 used for the 
numerically obtained ρ. Inset shows the asymptotic approach of ⁎R  to ⁎Rh  as Dv increases with = .D 0 1p . (C) The 
relative difference between the dominant perceptual range in the simulations and the optimal one in the 
homogeneous case, | − |⁎ ⁎ ⁎R R R/h h  versus − 〈 〉M1 v , which measures prey clumping (averaged over time and 
realizations in the long-time regime). Each symbol correspond a prey diffusion Dv (ranging from 10−1 to 102), 
while keeping =D Dp v (circles) or = .D 0 1p  (squares). Bars indicate bin size of the computationally obtained 
ρ R( ). Dashed lines represent the power-law expressions set in Eq. (3), with γ . 1 5 for =D Dp v and γ . 0 5 for 

= .D 0 1p . Habitat lateral length =L 10 and mutation intensity σ = .μ 0 1 in all the panels.
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Finally, we calculate the probability that prey become extinct before predators, β, as a function of Dv (which is 
taken to be equal to Dp) for different values of σμ (Fig. 8B). Even though the most likely event is that predators 
disappear before prey (β < .0 5), as the diffusion coefficients increase from very small values, we observe an 
increase on β passing through a maximum at intermediate diffusion. Despite the nonlinear effects between pre-
dation rate and species spatial distributions, spatial mixing enhances predation and therefore β generally becomes 
larger as diffusion increases (see Fig. 8B). Note that, comparing Fig. 8A,B, the maximum β (high predation) is not 
related to longest coexistence, which indicates that species coexist longer when there is a balance between preda-
tion and prey reproduction. The influence of the intensity of mutations in the profiles shown in Fig. 8B, again, is 
due to the feedback in the interspecies mixing shown in Fig. 5, which regulates the level of predation. Hence, prey 
extinction is reduced at low mobility but increased at high mobility, shifting the profile.

Relationship with the non-evolutionary case.  In order to better understand the origin of the spatial 
eco-evolutionary feedback and its importance to our results, we have thoroughly explored also a non-evolutionary 
simulation scenario in which all predators have the same, fixed value of R. We have scanned the −R Dv parameter 
space (with =D Dv p) and measured the behavior of the different population and community-level properties 
studied in previous sections (spatial mixing, average predation rate, mean coexistence times, and prey extinction 
probability). The results, shown in Fig. S2, clarify the consequences of the eco-evolutionary process, specially at 
low mutation intensity. In this small-mutation regime, the evolutionary dynamics generates, when all the rest of 
system parameters remain constant, a narrow distribution of perceptual ranges that singles out a preferred ⁎R . 
Thus, as the individual mobility is varied, the optimal perceptual range (driven by evolution) follows a specific 
curve ⁎R D( )v  in the −R Dv plane (the black solid line in Fig. S2) and the values of the different community met-
rics for this case can be read from the corresponding non-evolving result indicated by the color map. Along this 
curve, in contrast to the cases in which R is independent of Dv, we can see, for instance, that the mean predation 
rate per prey is always close to its maximum value (Figs. S2B and 2) and, as a consequence, interspecific mixing is 
close to its minimum (see Figs. S2A and S4, which displays cuts of Fig. S2A at constant values of Dv and includes 
an additional panel in which ≠D Dv p). These constrains ultimately determine the behavior of the mean coexist-
ence time and prey extinction probability as a function of Dv (see Fig. S2D,E), which correspond to the σ =μ 0 
case in Fig. 8.

Of course the approach above does not explain features occurring at high mutation intensity, such as the 
dependence of mixing on mutation (Fig. 5) or the maximum in   at intermediate mobility (Fig. 8A). Nevertheless, 
additional insight for these results can still be extracted from the non-evolutionary simulations: a maximum in   
similar to the one present in the evolutionary case for high mutations is obtained by varying Dv at a sufficiently 
large, fixed value of R (see Supplementary Fig. S3). This suggests that the occurrence of this maximum is linked to 
the generation of large values of R when mutation is large enough (see e.g. Fig. 6B). To check this, we have per-
formed simulations in which there is a fixed distribution of perceptual ranges ρ R( ) that is not evolving. This is 
achieved by assigning to each newborn predator a value of R sampled from that distribution, instead of being 
inherited from the parent with some mutation. We use for the fixed distribution of perception ranges a Gaussian 
with given mean value and standard deviation. In situations in which the mean value or the standard deviation is 
sufficiently large, we recover the maximum in the coexistence time for intermediate values of the mobility 

Figure 8.  Community coexistence times and prey extinction probability. (A) Mean coexistence time   and (B) 
probability of prey extinction before predators, β, as function of the diffusion coefficients =D Dp v for different 
levels of mutation noise intensities with system size =L 10. Initial conditions are prey and predators uniformly 
distributed in space with perceptual range R uniformly distributed in L[0, /2], and results were extracted from 
5 × 103 realizations. Dashed lines are smooth fits to guide the eye. Vertical dashed lines indicate the diffusivity 
value at which the increase of mixing with respect the no-mutation case is maximum (from Fig. 5, σ = .μ 1 0).
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(Supplementary Fig. S3). This confirms that large values of R, being they imposed, produced by mutation or by 
non-evolving variability, are responsible for the enhanced coexistence times. We have also checked (not shown) 
that the dependence of β on mobility is qualitatively reproduced under this non-evolving scenario if large values 
of R are present.

The exploration of the −R Dv plane in the non-evolutionary case helps to understand how the outcome of the 
evolutionary dynamics (the selected value ⁎R  for each pair of diffusion coefficients) affects different population 
and community-level properties. A full understanding of the whole eco-evolutionary process (Fig. 1) requires 
also to address the other branch of the feedback loop, i.e. to understand how the ecological variables favor a par-
ticular perceptual range R. As we saw before (Fig. 7A), prey clumping and species segregation drive ⁎R  to values 
higher than in the homogeneous case, since this increases the number of prey individuals potentially detected by 
predators. At the same time, however, attacking efficiency decreases for larger perceptual ranges, so that a finite 
optimal perceptual range, ⁎R , results from this trade-off. The specific balancing value of R is determined by the 
spatial distribution of the individuals in a way that we now try to elucidate. A first observation to be taken into 
account is that the selected ⁎R  is always close to the one that minimizes interspecific mixing (Figs. S2A and S4). 
Thus, the selected perceptual range is the one producing the largest segregation between predator and prey. This 
increases ⁎R  from its value at large mobility, ⁎Rh , towards larger values as mobility is decreased (see also Fig. 7).

A mechanism behind the shift of ⁎R  with respect to ⁎Rh  can be identified by realizing that the predation rate per 
prey, 〈 〉c R N( )/ v p, closely follows the shape of 〈 〉  in the −R Dv plane. Indeed, the selected ⁎R D( )v  in the 
eco-evolutionary model closely follows the maximum of 〈 〉c R N( )/ v p for each Dv (Fig. S2B). The shift in the maxi-
mum of this function towards higher values of R for decreasing Dv was already seen in Fig. 2. Note that this shift 
is not present in the quantity 〈 〉c R( ) p (Fig. S2C). The ideas of adaptive dynamics38 may be used to investigate the 
role of the predation rate per prey in selecting the optimal ⁎R . ⁎R  will be an evolutionary stable strategy, and thus 
selected under weak mutation, if the expected fitness of a mutant with perceptual range R in a resident population 
with perceptual range ⁎R  has a local maximum when = ⁎R R . The fitness is defined here as the average net growth 
rate of the mutant predator in the fixed environment determined by ⁎R . This is 〈 − 〉c R d( ) p, where the predation 
rate is =c R M R E R( ) ( ) ( )v  with an exponential attacking-efficiency function E(R). The number of prey individuals 
available to the predator can be written as ∫ π=M R v g r rdr( ) ( )2v

R
pv0

, where gpv is the radial pair correlation func-
tion39 g r( )pv  that gives the expected number of prey individuals at distance a r from a predator, relative to a ran-
dom distribution with density =v N L/v

2. v and the functional form of gpv will depend, in general, on the value of 
the perceptual range. In determining the evolutionary stable value ⁎R , these quantities must be kept constant 
while maximizing 〈 − 〉c R d( ) p with respect to the remaining explicit dependence on R (which is a quantity exclu-
sive to the mutant).  One way to achieve that is to maximize the predation rate per prey, 

∫ π〈 〉 = 〈 〉−c R N E R L g r rdr( )/ ( ) ( )2v p
R

pv p
2

0
, so that the explicit dependence of the fitness on v or Nv disappears. 

There will be still a residual dependence of gpv on R but our numerical results indicate that it is weak and that 
maximization of the predation rate per prey (the maxima in the curves of Fig. 2 or of Fig. S2B as a function of R 
for fixed Dv) gives a good approximation for the evolutionarily-stable selected perceptual range ⁎R .

Summary and Discussion
Using an individual-based model, we have investigated whether the evolutionary dynamics of predator perceptual 
ranges influences the stability of spatially-structured prey-predator communities. First, we studied how different 
levels of interspecies mixing arise due to limited mobility and the variability in the perceptual range introduced 
by the intensity of mutations. Second, we evaluated the consequences of the interplay between species mixing and 
the predator perceptual range in community coexistence times and prey extinction probability. Our results reveal 
the existence of an eco-evolutionary feedback between interspecies mixing and predators perception: species 
mixing selects a certain distribution of perceptual ranges; in turn, the distribution of perceptual ranges reshapes 
species spatial distributions due to predation (predators eliminate prey from their surroundings). More specif-
ically, when species mobility is low, prey and predators form monospecific clusters due to reproductive correla-
tions31, but segregate from each other due to predation. Therefore, prey often inhabit regions of the environment 
that are not visited by predators, which drives the evolution of larger perceptual ranges. Conversely, as mobility 
becomes higher, species mixing increases and shorter-range predation is favored. At the community level, we 
show that this eco-evolutionary feedback strongly controls both community stability and diversity, characterized 
by the mean coexistence time and prey extinction probability. The average coexistence time is maximum when 
the interaction between species mixing and predator perceptual ranges yields a predation rate that is large enough 
to sustain the population of predators but low enough to avoid fast extinctions of prey. We have also connected 
these results with those obtained for a purely ecological model, in which perceptual ranges can either vary across 
the population or be a deterministic trait.

The mean coexistence time and species extinction probabilities provide important information about the 
diversity of the community at different scales40. Each realization of our stochastic model can be seen as an inde-
pendent dynamics taking place within a metapopulation or patch. In our setup, because model realizations are 
independent from each other, these patches are isolated (not coupled by dispersal events) and constitute a 
“non-equlibrium metapopulation”41. In this context, the mean coexistence time is a proxy for alpha (intra-patch) 
diversity, i.e. how long species coexist in each patch, whereas species extinction probabilities inform about the 
beta (inter-patch) diversity, i.e., how many patches are expected to be occupied by prey and how many by preda-
tors once one of the species has been eliminated. From a mathematical point of view, the fraction of patches in 
which prey and predators coexist at any time t is given by ∫ ∫= ′ ′ = − ′ ′

∞P t p t dt p t dt( ) ( ) 1 ( )
t

t

0
, where p t( ) is the 

distribution of coexistence times. Supported by our numerical simulations, we can approximate  − −
p t e( ) t1 /  
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(except for coexistence times that are much smaller than the mean, see Supplementary Fig. S5). Therefore, 
− −

P t e( ) 1 t/ . The fraction of patches occupied only by prey is given by β− − P t(1 )(1 ( )), and the fraction 
of patches in which overexploitation has caused prey extinction is given by β − P t(1 ( )). Hence, the mean coexist-
ence time,  , and the prey extinction probability, β, quantify the diversity of the community at different spatio-
temporal scales35,40,42, and might serve as important guides for the design of ecosystem management 
protocols42,43.

Since we were interested in studying whether the spatial coupling between movement and perception could 
lead to an eco-evolutionary feedback when both processes occur at comparable time scales14,15, we kept all the 
characteristic time scales of the system fixed except those related to individual movement and the evolutionary 
dynamics of perceptual ranges. We used parameter values such that evolution is fast enough so that both the 
spatial distribution of individuals and the distribution of perceptual ranges relax to their stationary values in 
timescales much shorter than the characteristic time scales at which community-level processes occur, defined by 
the mean coexistence time. Under this condition, the long-time regime is well-defined and can be characterized 
by constant quantities. A sensitivity analysis on reproduction probabilities (Supplementary Fig. S6) reveals that, as 
far as this relationship between time scales is maintained, both the existence of the eco-evolutionary feedback and 
its impact on community stability and diversity remain unaffected. This condition can be broken, for instance, 
if prey and predator birth-death rates are small, or too unbalanced, producing very short coexistence times 
(Fig. S6). Our results for the mean coexistence time are robust against changes in the source of individual-level 
trait variability, as individual-level trait variability affects mixing in a similar way. This work was motivated by and 
focused on the case in which variability is produced by mutation in the transmission of the trait. However, our 
results could also be relevant to cases in which variability arises from non-inheritable properties, such as body 
size, or individual internal state (level of hunger, attention…)26, and therefore do not introduce spatial correla-
tions between trait values after reproduction. When sampling the perceptual range of newborn predators from 
an appropriated fixed distribution (being independent on the parents’ trait), the results in Fig. 8 are qualitatively 
reproduced (Fig. S3). This implies that different processes that promote trait variability can control community 
coexistence.

Finally, although we have concentrated our investigation on a prey-predator dynamics, our results will more 
generally illuminate whether, and to which extent, the interplay between species spatial distributions and the 
range of ecological interactions may determine community-level properties. Therefore, our study opens a broad 
range of questions and directions for future research. First, we have limited to the case in which only one pred-
ator trait can evolve, whereas evolution of prey traits has been also shown to impact profoundly the population 
dynamics of both species in well-mixed settings22. A natural extension of our study would be to explore such 
scenario in a spatially-explicit framework as the one introduced here. More complex possibilities, such as the 
co-evolution of traits in both species, including the possibility of evolving mobility rates, could also lead to new 
population dynamics20,44,45. More general evolutionary processes, such as arms race in phenotype space (red 
queen-like dynamics) instead of trait distributions reaching a stationary configuration46 also deserve further 
investigation. Our model considers that individuals undergo clonal reproduction. Extending it to the case of 
sexual reproduction can have important consequences for the evolutionary dynamics. On the one hand, sexual 
reproduction can speed-up evolution by increasing genetic diversity. On the other hand, sexual reproduction 
introduces a new range of additional processes, such as the cost of finding a mate and exposure to sexually trans-
mitted diseases, that could change our results17,45,47,48. Finally, different movement models, such as Lévy flights 
instead of Brownian motion, can modify both the optimal range of the interactions28 and the emergence of clus-
ters of interacting individuals49, possibly leading to new community-level results. The existence of environmental 
features that could also affect the degree of mixing and its coupling with the range of interactions, such as the 
presence of external flows, would extend our results to a wider range of ecosystems in which the importance of 
rapid evolutionary processes has been already reported50,51.

Methods
Model details.  We propose an individual-based model for a prey-predator community in which each indi-
vidual is represented by a point particle within a square environment of lateral length L and periodic boundary 
conditions. In addition, each predator has an individual-specific perceptual range R. In this context, we propose 
an eco-evolutionary framework whose updating rules can be grouped into three different types of dynamical pro-
cesses: individual movement (spatial dynamics), population dynamics and evolution with mutation (dynamics 
in trait space).

	 1.	 Individual movement. We assume that both prey and predators follow independent two-dimensional 
Brownian motions with diffusion constants Dv and Dp respectively. We sample a turning angle for 
individual i, θi, from a uniform distribution between π[0, 2 ), and a displacement, i, defined as the absolute 
value of a normal random variable with zero mean and variance proportional to the individual diffusion 
coefficient. Mathematically, this updating in the position vector tx ( )i  of each individual can be written as

θ+ Δ = + ∀ ∈ … +

ˆt t t i N Nx x( ) ( ) {1, 2, , }, (4)i i i i p v

where θ θ θ=ˆ (cos , sin )i i i  is the unitary random-direction vector and i is the length of the displacement, 
sampled from the positive half of a normal distribution with second moment = Δα D t2i

2 . The subscript 
α = v p{ , } refers either to prey or predators, and Δt is the simulation time step defined below.

	 2.	 Population dynamics. The number of prey individuals and predators, Nv and Np respectively, can change 
at every time step due to prey reproduction, predator death or predation. Predator death and prey 
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reproduction occur with constant rates d and r respectively. Predation involves the encounter between one 
predator and one prey and therefore predation rates depend on predator-specific perceptual ranges, R, and 
the number of available prey individuals within it. A predator with perceptual range R may thus success-
fully catch one of the accessible prey individuals and eliminate it (prey death) with rate c(R). After prey 
elimination, the predator reproduces with probability b, which leads to a new individual at its position. The 
newborn individual inherits the parental perceptual range, R, plus a random contribution due to mutation. 
These three events can be written in the form of a set of biological reactions for prey, V, and predators, P,

→ +

→ ∅

+ →
+

−

~

{

V V V

P

P V P P b
P b

,

,
with probability
with probability 1 , (5)

r

d

c R( )

where we have added the notation P  to indicate the variability in perceptual range inheritance due to 
mutations (see Eq. (8) below).
A key step in our model is the definition of the predation rate, since it determines the interaction between 
species and links predator perceptual ranges and their reproductive success. The total predation rate of a 
predator of perceptual range R, c R( ), is equal to the number of prey individuals available within the 
predator perceptual range, M R( )v , multiplied by the attacking efficiency, E(R):

= .c R E R M R( ) ( ) ( ) (6)v

Since M R( )v  is a monotonically increasing function of R, E must decrease sufficiently fast with R in order to 
bound the evolutionary dynamics in the perceptual range and prevent the evolution of unrealistic infinite 
perception. We write the attacking efficiency as

=E R c f R( ) ( ), (7)0

where c0 is the maximum efficiency and f(R) is the dimensionless predator efficiency function. f(R) is 
considered to be a monotonically decreasing function of R such that =f (0) 1 and → ∞ →f R( ) 0. More 
specifically, since M R( )v  grows as R2 if prey is homogeneously distributed, we use = −f R R R( ) exp( / )c  so its 
decay attenuates the growth of M R( )v  and →c R( ) 0 when → ∞R . Rc fixes the characteristic spatial scale 
for the decay of the predation efficiency with the perceptual range. This simple form incorporates the essen-
tial ingredients to model the trade-off, but in general, to account for effects that might arise in the vanishing 
and large perceptual range limits (for example a plateau with constant value of efficiency for small R), forms 
beyond the exponential can be implemented52.
Given our particular choices, in the limit in which prey is homogeneously distributed in space, the 
predation rate is maximum at an intermediate perceptual range ≡⁎R R2h c. This optimal value ⁎Rh  will be 
used as a reference in our results. In addition, its existence agrees with previous studies showing that, when 
information can be gathered over long distance, foraging performance is optimal for intermediate 
perceptual ranges26–28,32. The trade-off between perception and predation efficiency can also be motivated 
by the case of flying predators. The area where prey can be detected is generally increased by a higher flight 
altitude. However, efficiency in the attack may simultaneously be reduced if initiated from such a large 
height. We remark that our predator mobility model only describes the searching-for-prey phase. The 
attack process is assumed to be instantaneous.

	 3.	 Predator reproduction with mutation. Each predation event is followed by the possible reproduction of the 
predator, occurring with probability b. Besides inheriting the parental position, the newborn individual 
also receives the parental perceptual range, R, but with an added random perturbation, ξμ

, that accounts for 
mutations. Therefore,

ξ= + .μ
R R (8)

ξμ
 is a zero-mean Gaussian variable whose variance, σμ

2, regulates the intensity of the mutations. In order to 
avoid perceptual ranges that exceed system size or are negative, mutations leading to <R 0 or >R L/2 are 
rejected.

Model implementation: the Gillespie algorithm.  We implement the model stochastic birth-death 
dynamics (processes 2 and 3 above) following the Gillespie algorithm53–55. First, we compute the total event rate 

= + ∑ +=g rN c R d[ ( ) ]v i
N

i1
p , summing each prey reproduction rate and each predator catching and death rates. 

Then, the simulation time-step is set to ζτΔ =t , where ζ  is an exponentially distributed random variable with 
unit mean and τ ≡ g1/  is the average time to the next demographic event. At each iteration, a population dynam-
ics event will occur chosen from all ( +N N2v p) possible events (i.e. choosing one of the Nv prey individuals for 
reproduction, or one of the Np predators for death, or one of them for a catching event). The probability of choos-
ing a particular event is proportional to its relative contribution to the total rate g, i.e. each prey has probability r/g 
of generating a new prey, and each predator has probability d/g of dying and a probability c R g( )/i  to catch a prey. 
If predator death or prey reproduction occur, we simply remove or generate a new individual at parents’ position, 
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respectively. And finally, if predation occurs, a prey randomly chosen within the perceptual range of the selected 
predator i (which was chosen proportionally to its rate c R( )i ) dies and, with probability b, a new predator is gen-
erated at the same location as the initial predator, with value of the perceptual range obtained from Eq. (8).

For simplicity, we fix across this paper the parameter values = = = = =r d c b R 1c0  and focus our study on 
the role of the diffusion coefficients Dp and Dp, and the mutation intensity, σμ

2, on determining the dynamics of the 
community (for computational convenience we use also different values of system size L). The impact of changing 
some parameter to other values is briefly addressed in the Summary and Discussion section.

Mixing measures.  In order to quantify the spatial arrangement of the species, we define measures of mixing. 
A possible way to proceed is to use the Shannon index or entropy, which has been applied to measure species 
diversity, racial, social or economic segregation on human population and as a clustering measure35–37. Based on 
these previous approaches, we propose a modification described below.

As usual, we start regularly partitioning the system in m square boxes with size δ =x L m/  and obtaining for 
each box i the entropy index si

36, given by

= − −s f f f fln ln , (9)i p
i

p
i

v
i

v
i( ) ( ) ( ) ( )

where f p
i( ) ( fv

i( )) is the fraction of predators (prey) inside box i, i.e. = +f N N N/[ ]q
i

q
i

p
i

v
i( ) ( ) ( ) ( )  with =q p n,  and 

N p
i( ), Nv

i( ) the numbers of predators and prey individuals in that box, respectively. In terms of Eq. (9), prey-predator 
mixing is maximum when there is half of each type in the box, yielding = − =s ln1/2 ln2i . Unbalancing the 
proportions of the two types in the box reduces si. If a box contains only predators or prey, =s 0i , indicating per-
fect segregation. Finally, we define a whole-system prey-predator mixing measure by averaging the values si in the 
different boxes, each one weighted by its local population36,

∑〈 〉 ≡
=

N
N

s ,
(10)m

i

m i

i
1

( )


being = +N N Ni
p
i

v
i( ) ( ) ( ) the total box population and = +N N Nv p the total population. To really characterize 

the lack of inhomogeneity arising from interactions and mobility, one should compare the value of 〈 〉m with the 
value  that would be obtained by randomly locating the same numbers of predators and prey individuals, Np 
and Nv among the different boxes. At this point, approximations for  which are only appropriate if the number 
of individuals is large have been typically used. In our case, since predator and prey populations have large fluctu-
ations, it is necessary to give a more precise estimation. In a brute force manner, one can obtain computationally 
the mixing measure for the random distribution simply by distributing randomly in the m spatial boxes the Nv 
prey individuals and Np predators and averaging the corresponding results of Eq. (10) over many runs. On the 
other hand, this can be done analytically since we known that, for random spatial distribution, the number of 
individuals nq of type q (=p, v) in each box would obey a binomial distribution B n N( , )q q , where Nq is the total 

particle number in the system. We have that =










−
−( ) ( )B n N

N
n( , ) 1q q

q

q m

n

m

N n1 1q q q . Then, Eq. (10) for randomly 

mixed individuals becomes

 ∑ ∑≡
+

+= =
B n N B n N

n n
N N

s n n( , ) ( , ) ( , ),
(11)n

N

n

N

v v p p
v p

v p
v p

0 0v

v

p

p

with s the entropy index in a box containing nv prey individuals and np predators, as defined in Eq. (9).
Finally, a suitable measure of prey-predator mixing that characterizes spatial structure from the well-mixed 

case (=1) to full segregation ( = 0 ) is given by

≡
〈 〉

.
(12)

m



Also, we can define an analogous measure for each species’ spatial distribution separately, which can be inter-
preted as a degree of clustering37,


 ∑= −

N N N N
m

1 ( / ) ln( / ) ,
(13)v

v i

m
v

i
v v

i
v

( ) ( )

and


 ∑= −

N N N N
m

1 ( / ) ln( / )
,

(14)
p

p i

m
p
i

p p
i

p
( ) ( )

for prey and predators respectively, where
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For v  or  = 1p , the corresponding species is well spread around the domain. Smaller values indicate 
clustering of the individuals.

The mixing measures are certainly affected by the size of the box δx used, which should be tuned to obtain 
maximum sensibility to the spatial distribution. For very large as well as for very small box size, we see that differ-
ent spatial distributions become indistinguishable. For instance, for the prey-predator mixing, if the box size is 
very large (of the order of system size), we will find that the predators and prey are well-mixed independently of 
the values of the diffusion coefficients. On the other hand, if box size is very small it will be either occupied by a 
single predator or prey, if not empty, indicating segregation independently on the individual mobility. In 
Supplementary Fig. S7, we show how the mixing measure changes with box size δx and system size L for low 
mobility ( = = .D D 0 1v p ), which produces a highly heterogeneous spatial distribution. We identify that for 
δ x 2 the maximum sensitivity with respect to the diffusion coefficients is attained (for =L 10). We used δ =x 2 
in our results, being a suitable scale since it is also of the order of the typical values of the perceptual range 
attained under evolution. Regarding the system size, we found only weak variations in the mixing measures, 
which are shown in the inset of Fig. S7.
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