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Factorial versus multi-arm multi-stage
designs for clinical trials with
multiple treatments
Thomas Jaki*† and Despina Vasileiou

When several treatments are available for evaluation in a clinical trial, different design options are available.
We compare multi-arm multi-stage with factorial designs, and in particular, we will consider a 2 × 2 factorial
design, where groups of patients will either take treatments A, B, both or neither. We investigate the performance
and characteristics of both types of designs under different scenarios and compare them using both theory and
simulations. For the factorial designs, we construct appropriate test statistics to test the hypothesis of no treatment
effect against the control group with overall control of the type I error. We study the effect of the choice of
the allocation ratios on the critical value and sample size requirements for a target power. We also study how
the possibility of an interaction between the two treatments A and B affects type I and type II errors when
testing for significance of each of the treatment effects. We present both simulation results and a case study on an
osteoarthritis clinical trial. We discover that in an optimal factorial design in terms of minimising the associated
critical value, the corresponding allocation ratios differ substantially to those of a balanced design. We also find
evidence of potentially big losses in power in factorial designs for moderate deviations from the study design
assumptions and little gain compared with multi-arm multi-stage designs when the assumptions hold. © 2016
The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd.
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1. Introduction

Despite the increased understanding of many diseases unfolding in recent years and the increased spend-
ing in research and development, the US Food and Drug Administration identified a slowdown in the
approval of innovative medical therapies [1] and called for methods that achieved reliable results more
quickly. It is well known that clinical trials are expensive [2, 3], and that only a small proportion (about
10%) of new drugs in phase I trials reaches the market [4]. Moreover, phase II clinical trials designed to
assess the treatment’s therapeutic capacity and safety to warrant further testing in a phase III trial do not
necessarily succeed in identifying potentially effective treatments, because on average only about 50% of
the large phase III confirmatory trials are successful [5]. Studying two or more treatments simultaneously
within one trial is more efficient compared with the traditional separate treatment evaluation, as both the
sample size and the duration of the trial will be smaller. Combination therapies are also of interest espe-
cially when monotherapies fail to prove their effectiveness or when agents are known to have different
mechanisms of efficacy. Examples of such therapies include medications for the treatment of hyperc-
holesterolemia where there is a class of cholesterol-lowering agents that inhibit the intestinal absorption
of cholesterol and another class (statins) which inhibit cholesterol biosynthesis [6].

Couper et al. [7] explicitly discuss the use of factorial designs in order to investigate interactions in
combination treatment studies. A factorial experiment is one that two or more experimental factors are
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studied simultaneously [8]. Specifically a 2× 2 factorial model is one that has two factors and two levels
for each factor. The core assumption for the accurate estimation of the main treatment effects is the
absence of an interaction between the two treatments which directly implies that the combination of both
treatments has a truly additive effect.

As an alternative to factorial designs a multi-arm multi-stage (MAMS) trial design (e.g. [9,10]) could
be used for testing a number of new agents and their combinations at the same time. A multi-arm (MA)
design is a clinical trial design that allows the simultaneous assessment of a number of experimental
treatments, which can be either different treatments or combinations of treatments, against a single control
arm [11, Chapter 16]. MAMS designs are a class of the MA designs which utilise the group sequential
methods [12–14] thus allowing multiple looks on the data.

The objective of this paper is to compare 2 × 2 factorial designs, where groups of patients will either
take treatment A, B, both treatments or none, to MA designs where the three arms (A, B and A with B)
are tested against control. The issues that need to be considered when planning a factorial trial have for
example been discussed in the literature by Montgomery et al. [15] and those arising when applying
MAMS methodology have been addressed in [16, 17]. Our aim is to find the situations when the use of
one design is preferable to the other in terms of the power or the sample size requirement.

2. Example

To illustrate the difference between a 2×2 factorial design and an MA design, we use a study on the clinical
effectiveness of manual or exercise physiotherapy or both, in addition to usual care for patients with
osteoarthritis (OA) of the hip or knee [18]. Manual therapy is intended to modify the quality and range
of the target joint and improve musculoskeletal function and pain. Exercise therapy is used for muscle
strengthening, stretching and neuromuscular control and has been shown to be effective in the increase
of physical function and pain reduction. However, there is little evidence regarding the effectiveness of
manual treatment and the long-term effectiveness of exercise therapy. The study has been designed as
a 2 × 2 factorial randomised controlled trial, where 206 people are equally allocated to receive one of
the following interventions: usual care, manual physiotherapy, exercise physiotherapy or manual and
exercise physiotherapy, with each of the physiotherapies administered in nine treatment sessions each
lasting 50 min. The primary outcome was change in the Western Ontario and McMaster osteoarthritis
index (WOMAC) at 1-year follow-up. The primary endpoint was assumed to be normally distributed,
and the trial sample size was chosen to detect a difference in WOMAC points of Δ = 28 for each main
effect assuming a standard deviation, 𝜎 = 50. Using a two-sided type I error of 5% (𝛼 = 0.05) – it was
found that a total of 180 participants are necessary to detect a main effects difference of a comparison
in the margins with 95% power, that is comparing the presence against the absence of manual therapy
or exercise therapy, a within the table comparison of all of the active interventions versus control with
75% – that is when comparing manual, exercise or the combination therapy to control and an interaction
between the interventions manual therapy and exercise therapy with 46% power. The study sample size
allowed for 20% attrition and the study protocol planned for a total of 224 participants, but 11 months into
the trial due to higher than anticipated retention rates sample size recalculation was performed allowing
for 10% attrition, which reduced the required sample size to 200 and recruitment stopped at 206 patients.
General linear regression adjusted for baseline WOMAC score, stratification variable of knee or hip OA
and some pre-specified potential confounding factors at baseline was used for the primary analysis. The
results showed a significant difference in manual therapy versus no manual therapy and a non-significant
difference in exercise versus no exercise. However, a significant strong antagonistic interaction was found
in this study questioning the appropriateness of a 2 × 2 factorial design.

3. Methods

In this section, we describe the methods used to compare factorial and MA designs in clinical trials with
normally distributed endpoints in terms of sample size and power. We focus on superiority clinical trials
where the question of interest lies in determining the efficacy of treatments A, B and their combination A
and B together, denoted AB. Let Y be the variable that measures the endpoint of interest, and let n denote
the sample size. Subscripts A,B,AB and 0 correspond to patient on treatment A, B, AB and control,
respectively. Assuming that the response variables are normally distributed, we model Yj ∼ N(𝜇j, 𝜎

2)
with j = A,B,AB, 0, where 𝜇j is the mean effect of the response to treatment or control. Correspondingly
nj is the number of patients allocated to a treatment or control. The one sided global null hypothesis
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family (H0) to be tested is

H0 = {H0A ∶ 𝜇A ⩽ 𝜇0, H0B ∶ 𝜇B ⩽ 𝜇0, H0AB ∶ 𝜇AB ⩽ 𝜇0} (1)

We want to control the probability of rejecting at least one true null hypothesis (the familywise error
rate) at level 𝛼 for both designs. Therefore, we are interested in finding a critical value k such that

PH0
(ZA ⩽ k ∩ ZB ⩽ k ∩ ZAB ⩽ k) = 1 − 𝛼. (2)

We also intent to compare the number of participants that need to be included in a study so that a pre-
specified power level is achieved. The probability of correctly rejecting the global null hypothesis when
the alternative is true should be large as this ensures a high powered test. Thus, the probability of type II
error when the alternative hypothesis is true is defined by 𝛽 = PH1

(ZA ⩽ k ∩ ZB ⩽ k ∩ ZAB ⩽ k), with
the design family of alternatives being H1 ∶ {H1A ∶ 𝜇A > 𝜇0, or H1B ∶ 𝜇B > 𝜇0, or H1AB ∶ 𝜇AB > 𝜇0}.
This formula either helps define the relevant sample size that ensures control over the type I and type II
errors with the use of numerical integration or gives the power 1− 𝛽 for a given sample size. Finally, this
design alternative is specifying the union of the events 𝜇1j > 𝜇0, for j = A,B,AB occurs, that is that any
of the treatments A,B,AB have a bigger effect compared with control.

In the subsequent sections, we give the estimates of the treatment effects in a factorial design and
describe our method of finding the distribution of the statistics relevant to the hypothesis testing which
relate to the power of the test. Equivalently, the estimates of treatment effects in an MAMS design, as
well as the statistics and distributions for the hypothesis tests and the resulting power of the tests are also
provided.

3.1. Factorial design treatment effect estimation

By introducing indicator variables IA and IB, specifying whether treatment A or B, respectively has been
administered, we can express the response variable, Y as the following linear model Yi = 𝛽0 + 𝛽1IAi +
𝛽2IBi + 𝛽3IAiIBi + 𝜀i, with the total number of participants being n0 + nA + nB + nAB, where and i =
1, 2,… , n0 + nA + nB + nAB. Subscript i corresponds to patient i, and Y, 𝐈A, IB denote the vectors of the
random variable values for all study participants. Additionally, 𝜀i ∼ N(0, 𝜎2) and Cov(𝜀i, 𝜀

∗
i ) = 0 for

i ≠ i∗.
The underlying true effect of a 2 × 2 factorial model in terms of the linear model parametrisation

is illustrated by Table I. Therefore, the hypothesis testing regarding the treatment effects 𝜇j described
previously may be conducted through testing linear combinations of the coefficients 𝜷 = (𝛽0, 𝛽1, 𝛽2, 𝛽3)
of the linear model.

Most factorial designs, despite the possibility that there may be an interaction between the two single
treatments, make the assumption that there is no interaction present between the treatments, that is 𝛽3 = 0.
Thus, in effect, the nested linear model in Equation (3) is used.

Yi = 𝛽0 + 𝛽1IAi + 𝛽2IBi + 𝜀i (3)

Denoting the design matrix of the linear model in Equation (3) by X = (1, 𝐈A, 𝐈B), then the maximum
likelihood estimator for the vector of parameters can be found as 𝜷̂ = (X⊤X)−1X⊤Y; and the variance
covariance matrix of the estimates is Cov(𝜷̂) = 𝜎2(X⊤X)−1 [19] so that 𝜷̂ ∼ N

(
𝜷, 𝜎2(X⊤X)−1

)
. The

treatment effects of interest are a linear combination of these parameters (as shown in Table I). The
distribution of a linear combination c of the coefficients 𝜷 is c⊤𝜷̂ ∼ N

(
c⊤𝜷, 𝜎2c⊤(X⊤X)−1)c

)
, with

(X⊤X)−1 given by Equation (A.1) in the Appendix.

Table I. The mean response for all treatment
combinations in a 2×2 factorial experiment.

B

Treatments Presence Absence

A
Presence 𝛽0 + 𝛽1 + 𝛽2 + 𝛽3 𝛽0 + 𝛽1

Absence 𝛽0 + 𝛽2 𝛽0
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Assuming that 𝛽3 = 0 then yields that the treatment effects for A, B and AB are 𝛽1, 𝛽2 and 𝛽1 + 𝛽2,
respectively and correspondingly c⊤A = (0, 1, 0), c⊤B = (0, 0, 1) and c⊤AB = (0, 1, 1).

3.1.1. Joint comparison for both sole treatments and their combination to placebo. The relevant statistics
for the hypothesis tests in Equation (1) are based on the formula of Equation (4).

Z𝐜⊤j 𝜷
=

𝐜⊤j 𝜷̂

𝜎

√
𝐜⊤j (X

⊤X)−1𝐜j

(4)

The statistic to test for an effect of treatment A for j = A, j∗ = B and vice versa is given by ZA =
n0nA

n0+nA
(ȲA−Ȳ0)+

nABnB
nB+nAB

(ȲAB−ȲB)

𝜎
√

n0nA
n0+nA

+ nBnAB
nB+nAB

and ZB =
n0nB

n0+nB
(ȲB−Ȳ0)+

nABnA
nA+nAB

(ȲAB−ȲA)

𝜎
√

n0nB
n0+nB

+ nAnAB
nA+nAB

with Ȳj, j = A,B,AB or 0 denoting the

sample means of all observations in the jth treatment group. These are the statistics typically used in
factorial experiments (e.g. [8]). Notice that the aforementioned statistics include information from the
sole treatment arms and also from the combination arm as, under the assumption of additivity, one can
extract the information about each individual arm.

To test the effect of the combination treatment, the standard test statistic ZAB = ȲAB−Ȳ0

𝜎
√

n0+nAB
n0nAB

is used, instead

of that derived using Equation (4) and cAB which relies heavily on the additivity of the sole treatment
effects and the absence of any interaction between them. Information about the combination treatment in
the full model comes only from patients on that arm.

To simplify notation and recognising that at the planning stage unequal numbers in the single treatment
group are unlikely, we assume that the allocation ratios for the single treatment groups relative to the
control group is r and the allocation ratio in the combination treatment group relative to control is q.
Under these assumptions, nA = nB = rn0 and nAB = qn0, which result to the simplified z-statistics shown
by Equation (5).

ZA =
√

n0

r(r + q)(ȲA − Ȳ0) + qr(1 + r)(ȲAB − ȲB)

𝜎
√
(1 + r)(r + q)(r2 + 2rq + r2q)

ZB =
√

n0

r(r + q)(ȲB − Ȳ0) + qr(1 + r)(ȲAB − ȲA)

𝜎
√
(1 + r)(r + q)(r2 + 2rq + r2q)

ZAB =
√

n0

ȲAB − Ȳ0

𝜎

√
1+q

q

(5)

3.1.2. Designing a factorial study with familywise error rate control. In a 2× 2 factorial design, usually
three different hypothesis are tested, and hence, it is of interest to avoid an inflation of the overall type-
I error. More specifically, we wish to ensure that the familywise error rate (FWER) defined as P(reject
at least one H0j incorrectly) is controlled at a pre-specified level 𝛼. To determine the FWER, the joint
distribution of the test statistics is necessary. Because the test statistics are marginally normal, it can be
shown that they jointly follow a trivariate normal distribution (Appendix B). We can use this result to
find the parameters of this normal distribution under the null hypothesis and determine an overall critical
value for all comparisons that controls the FWER at a pre-specified level alpha.

In particular, because Cov(ȲA, ȲB) = 0, Cov(ȲA, ȲAB) = 0 and Cov(ȲB, ȲAB) = 0, then Var(ZA) =
Var(ZB) = Var(ZAB) = 1. Further, because of the symmetry of the statistics ZA,ZB, it is easily shown that
Cov(ZA,ZAB) = Cov(ZB,ZAB). Under the null hypothesis, the joint distribution of the statistics is a trivari-
ate normal density with mean zero and variance covariance matrix V , which is shown in Equation (6),
and the special case of a balanced design (r = q = 1) is given in Appendix B, Equation (B.4).

V =

⎛⎜⎜⎜⎜⎜⎝
1 r(r+q)2+qr(1+r)2−2q(1+r)(r+q)

(1+r)(r+q)(r+2q+rq)

√
rq(1+2r+q)√

(1+r)(1+q)(r+q)(r+2q+rq)
r(r+q)2+qr(1+r)2−2q(1+r)(r+q)

(1+r)(r+q)(r+2q+rq)
1

√
rq(1+2r+q)√

(1+r)(1+q)(r+q)(r+2q+rq)√
rq(1+2r+q)√

(1+r)(1+q)(r+q)(r+2q+rq)

√
rq(1+2r+q)√

(1+r)(1+q)(r+q)(r+2q+rq)
1

⎞⎟⎟⎟⎟⎟⎠
(6)
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To determine the critical value k to ensure FWER control, one can therefore numerically search for the
value of k that satisfies Equation (2) using the distributional results given here.

Under the alternative hypothesis, the joint distribution of the statistics changes, and the trivariate nor-
mal is no longer centred at 0; however, the variance-covariance matrix of the distribution remains the
same. The mean of the distribution under the alternative is given by Equation (7).

E
⎛⎜⎜⎝

ZA
ZB
ZAB

⎞⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎝

√
rn0

(
(r+q)(𝜇A−𝜇0)+q(1+r)(𝜇AB−𝜇B)

)
𝜎
√
(1+r)(r+q)(r+2q+qr)√

rn0

(
(r+q)(𝜇B−𝜇0)+q(1+r)(𝜇AB−𝜇A)

)
𝜎
√
(1+r)(r+q)(r+2q+qr)√

qn0(𝜇AB−𝜇0)

𝜎
√

1+q

⎞⎟⎟⎟⎟⎟⎠
(7)

3.2. Multi-arm multi-stage designs

Multi-arm multi-stage designs evaluate the effect of several treatments in one trial by testing more than
one hypothesis simultaneously for times up to the maximum number of stages. The special case of such
a trial with three active treatments and the additional restriction of the third arm being assigned to the
combination treatment is the closest equivalent to a 2× 2 factorial design, where the null hypothesis is in
the form of Equation (1). In essence MA trials treat each arm independently when estimating treatment
effects rather than learning something about the individual treatments through the combination arm as in
a factorial design. It still remains possible to make observations on the relationship between the individual
treatments by reviewing their joint effect on the combination arm. Further to that, to enable a comparison
between them, it is necessary to control the FWER at the same level, 𝛼, which is used for the factorial
design hypothesis testing.

3.2.1. Single stage multi-arm design. Effectively the test statistics in an MA design with one stage can
be viewed as the result of using formula (4) for the complete model which includes an interaction term.
Specifically, the statistic for the comparison of the jth active treatment to control in one-stage design is
defined as in Equation (8).

Z
′

j =
Ȳj − Ȳ0

𝜎

√
n0+nj

n0nj

, with j = A,B,AB. (8)

The joint distribution of the statistics under the null hypothesis is a trivariate normal density with 0

mean and variance covariance matrix W =

⎛⎜⎜⎜⎜⎜⎝
1 r

1+r

√
rq√

(1+r)(1+q)
r

1+r
1

√
rq√

(1+r)(1+q)√
rq√

(1+r)(1+q)

√
rq√

(1+r)(1+q)
1

⎞⎟⎟⎟⎟⎟⎠
, where nA = nB = rn0

and nAB = qn0.
Using this distribution, the critical value k can be obtained in the same manner as for the factorial

design. Note that this test is a Dunnett test [20].

3.2.2. Two-stage multi-arm design. Finally, we also compare the factorial design with an MA design
with two stages, where we assume that r = q, that is the allocation ratio is the same between all active
treatments and control. Extensions to more stages and other allocation ratios are possible [21,22], but for
simplicity, we focus on two-stage designs only. A two-stage design is a sequential design where by one
is allowed to examine the data at a specific time point or after a defined number of patients have been
followed up, based on a stopping rule derived from repeated significance tests. Group sequential designs
allow for early stopping of the trial, either because of efficacy or futility, whilst still fully controlling
the pre-specified type I error [11]. At the interim analysis, the test statistics are compared against pre-
determined boundaries. If at least one test statistic exceeds the upper boundary (u), the null hypothesis can
be rejected and the study stopped. If the study can not be stopped for efficacy, any treatment whose test
statistic falls below the lower bound (l) will be dropped from the remainder of the study. If all treatments
are dropped, the study is stopped. Note that, although a similar strategy could be conceived for a factorial

© 2016 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. Statist. Med. 2017, 36 563–580

567



T. JAKI AND D. VASILEIOU

design, we do not consider such a design as dropping an arm in a factorial design impacts on the arms
one is still interested in.

In this multi-stage design, the set of previously stated null hypotheses in Equation (1) is potentially
tested twice. Because of making multiple comparisons, we need to control the familywise error rate, 𝛼,
and we use the multiple testing procedure for multiple stages described by [21] which is the multi-stage
extension of the Dunnett test used for the single stage design [20]. In this type of multi-stage clinical trial
designs fixing the type I error and power, is not sufficient for their full specification. The probability of
rejecting the null hypothesis depends on the stopping boundaries at each stage which need to be specified.
Lower boundaries are used to stop a treatment whose test statistic falls below the threshold, and upper
boundaries are used to stop the trial when any test statistic exceeds this boundary, as a treatment that is
superior to control is found. In our two-stage design, we use the O’Brien–Fleming boundary shape [23]
for u1, u2 and a fixed lower boundary at 0, that is l1 = 0. The actual type I error equation in this two-stage
design is specified as

𝛼 = 1 − ∫
∞

−∞ ∫
∞

−∞

[
Φ
(
t2
)
+ Φ2

(
u1

√
2 + t2, u2

√
2 +

t1 + t2√
2

,

(√
2
)−1

)

−Φ2

(
t2, u2

√
2 +

t1 + t2√
2

,

(√
2
)−1

)]3

dΦ(t1)dΦ(t2)

where Φ denotes the standard normal distribution function and Φ2(a, b, (
√

2)−1) denotes the result of the
integration of a bivariate standard normal density with covariance (

√
2)−1 over region [a, b]. To ensure

control of the type II error, we need to be able to reject the null hypothesis if the mean treatment response
is large, and for that purpose, we employ the least favourable configuration (LFC) to specify the power of
the design, which is defined as the following probability P(Reject H0AB|𝜇AB = Δ, 𝜇A = 𝛿0, 𝜇B = 𝛿0). The
specific equation for our implemented two-stage design given the effect sizes Δ, 𝛿0 once more involves
two-dimensional integration and is shown here.

1 − 𝛽 = ∫
∞

−∞
Φ

(
u1

√
2 + t +

√
n0

𝜎
Δ

)[
Φ

(
t +

√
n0

𝜎
(Δ − 𝛿0)

)]2

dΦ(t)

+ ∫
∞

−∞ ∫
∞

−∞

[
Φ
(

t2 −
n0

𝜎
𝛿0

)
+ Φ2

(
u1

√
2 + t2 −

n0

𝜎
𝛿0, t1 + (Δ − 𝛿0)

√
2n0

𝜎
, (
√

2)−1

)

−Φ2

(
t2 −

√
n0

𝜎
𝛿0, t1 + (Δ − 𝛿0)

√
2n0

𝜎
, (
√

2)−1

)]2

[
Φ

(
2u1 + t2

√
2−t1−

√
2n0

𝜎
Δ

)
− Φ

(
t2
√

2 − t1−
√

2n0

𝜎
Δ

)]
Φ
(
t1
√

2 − t2−2u2

)
dΦ(t1)dΦ(t2)

The aformentioned equations are provided here for reproducibility of our results. Detailed derivations
of these equations for a general number of treatments and stages can be found in [21]. We have used the
R package MAMS [24] to obtain the full specification of the design.

4. Results

In this section, we firstly explore some of the design features of factorial designs and subsequently com-
pare these designs to MA and MAMS designs. We begin by looking into how different allocation ratios
affect properties of the factorial design. Similar evaluations of MAMS designs can be found in [17]. All
results in this section are based on the analytic formulae in the previous section and have been verified
with 10 000 fold simulations.

A study of covariances between the test statistics of Equations (5) presented in matrix (6) demonstrates
that the correlation between ZA,ZAB is always positive and that ZA,ZB are uncorrelated when q = r2. We
can show that by studying the correlation as a function of the allocation ratio r, specifically when q = r2,

we have Cov(ZA,ZAB) = f (r) =
√

r
1+r2

, with r > 0. The first derivative of this is df (r)
dr

= 1−r2

2
√

r(1+r2)3∕2
and
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is used to find the extremes of f (r). Setting the first derivative to 0, we find that r = 1 which maximises
the function f (r) and f (1) = 1∕

√
2. Therefore, the information obtained about the treatment effects by

statistics ZA,ZB is maximised, and the additional information from statistic ZAB is minimised as they are
correlated to the highest level, making this setup very appealing when the design assumptions are met.

4.1. The different treatment allocations combination effect on the critical value

The joint distribution of the test statistics in Equations (5) under the null hypothesis can be used to find
the critical value that corresponds to the probability of committing a type I error, which we set to 5%
here. In the case of a balanced design, the critical value is found to be k = 2.028. We investigated further
how differences in the allocation ratios r, q affect the choice of the critical value. Figure 1 and Table II
show the critical values for the different allocation ratio combinations of the sole experimental treatments
and combination treatment. We find that the critical value varies substantially for the different allocation
ratio combinations and reveals the extent to which changes in the patient recruitment ratios for each of
the treatments will make it easier or more difficult to reject the global null hypothesis compared with the
standard set by the balanced design.

Whilst retaining the type I error rate fixed, we can use the information in Figure 1 to find the optimal
choice of q for a given r in terms of minimising the critical value, which by implication ensures that
the required sample size will be small. It is worth noting that whilst r ranges, the optimal value for q
is largely unaffected. It seems that for any value of the allocation ratio r to the single treatments, the
optimal choice for the allocation ratio of the combination treatment is less than 1. More specifically for
the most interesting range of r ∈ [0.5, 2.5], the optimal choice for q is 0.8, when r = 2.5 yielding the

Figure 1. The critical values of a factorial design with varying allocation ratio when 𝛼 = 0.05. A r, q grid size of
0.01∕0.1, respectively is used.

Table II. Critical value demonstration for
specific allocation combination ratios r, q.

q
r 0.1 0.5 1 1.5 2

0.1 2.09 2.10 2.11 2.11 2.11
0.5 2.07 2.05 2.07 2.08 2.08
1 2.06 2.02 2.03 2.04 2.05
2 2.04 1.97 1.98 2.00 2.02
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optimum critical value of 1.954. In other words, two and a half times as many patients should be allocated
to treatments A and B compared with the control arm, whilst only 80% of the number on control should
be devoted to the combination arm. When (numerically) searching the optimal choice of an allocation
ratio when r = q, we find r = q = 1.7 to be optimal which corresponds to critical value 2.017. Note that
this optimal allocation ratio is in the opposite direction with the one determined for the Dunnett test for
which

√
K, with K being the number of active treatments, has been shown to be optimal [25].

4.2. Sample size when varying allocation ratio combinations

We now focus on the effect of varying allocation ratio combinations on the sample sizes when the alterna-
tive hypothesis scenarios are in the first instance consistent with the additivity assumptions of the factorial
design and in the second when they are inconsistent with it, with the sole treatments having either a syn-
ergistic or an antagonistic effect. Throughout, we wish to control the FWER at 5% and seek a power of
90% to detect at least one superior treatment.

4.2.1. Allocation ratio effect in alternative scenarios consistent with the factorial design assumptions.
We consider finding the optimal sample size for any design configuration in a specific range of possible
allocation rations r, q, and we denote an interesting effect by Δ whilst a positive yet uninteresting effect
is 𝛿0. We deliberately consider a wide range of allocation ratios to ensure that the optimal allocation
is contained in the display and also show that extreme allocation ratios do result in very large sample
sizes. Figure 2 and Table III show the total sample size for different allocation ratios when one of the
sole treatment arms has the interesting effect whilst the other sole treatment has an uninteresting effect
(𝜇A − 𝜇0 = Δ, 𝜇B − 𝜇0 = 𝛿0, 𝜇AB − 𝜇0 = Δ + 𝛿0, 𝜇0 = 0) in panel (a) whilst in panel (b) both sole
treatments have an uninteresting effect (𝜇A − 𝜇0 = 𝜇B − 𝜇0 = 𝛿0, 𝜇AB − 𝜇0 = 2𝛿0). Under the first
configuration, the optimal total sample size when we assume that Δ = 0.5 and 𝛿0 = 0.1 in the case of
a balanced design is that 160 patients need to be included in the study to achieve power of at least 0.9,

Figure 2. Plots (a) and (b) show the optimal total sample size that ensures power at least 0.9 for each combination
of r, q when the alternative hypothesis scenarios are consistent with the factorial design assumptions. Specifically,
in plot (a), any of the sole experimental treatment groups may have an interesting effect, with either 𝜇A − 𝜇0 = Δ
and 𝜇B − 𝜇0 = 𝛿0 or correspondingly 𝜇A − 𝜇0 = 𝛿0 and 𝜇B − 𝜇0 = Δ whilst finally 𝜇AB − 𝜇0 = Δ + 𝛿0, and in (b)
both of the sole experimental treatment groups have an uninteresting effect, with 𝜇A − 𝜇0 = 𝜇B − 𝜇0 = 𝛿0 whilst

𝜇AB − 𝜇0 = 2𝛿0.

Table III. Total sample size for specific allocation
combination ratios r, q as per Figure 2(a).

q
r 0.1 0.5 1 1.5 2

0.01 380 145 130 135 145
0.1 308 149 132 139 148
0.5 219 160 144 147 156
1 233 175 160 157 160
2 294 218 190 179 175
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that is P((ZA,ZB,ZAB) ⩾ (k, k, k)|(ZA,ZB,ZAB) ∼ MVN((Δ, 𝛿0,Δ + 𝛿0),V) ⩾ 0.9 . The smallest total
sample size of 129 patients is achieved when r = 0.01 and q = 0.9. Clearly, such a small allocation ratio
would not be useful in practice, but it does show that, under the assumptions of a factorial design, one
might as well allocate no patients to the single arms as their treatment effect can be estimated from the
combination arm anyway. We see that in this scenario changes in the allocation ratios do not have a big
effect on the required sample size to achieve a target power. We only see notable increases in the sample
size when either both q and r are very small or q is small whilst r is big and vice versa. Additionally, if
we look at the sample size requirements when 𝛿0 decreases, or is set to 0, we notice that the sample size
requirements are a bit higher. For example, the number of patients to be recruited for the control group
in the case of a balanced design is n0 = 43 which means that a total sample size of 172 patients need to
be included in the study to achieve power of at least 0.9. In general, the range where the required sample
size is big when both q, r and q alone are small whilst r increased is a bit broader.

Looking into the alternative hypothesis when both single experimental treatments have a weak effect
and the combination treatment has the addition of both of those effects (Figure 2(b) and Table IV), we find
that the optimal sample size when we assumed that 𝛿0 = 0.1 in the case of a balanced design is n0 = 502
which means that a total sample size of 2008 patients need to be included in the study to achieve power
of at least 0.9. We also find the configurations which result to the smallest sample size. The minimum
occurs when r = 0.01 and q = 1, which gives a total sample size of 1150 patients to be included in the
study, which is about half of that required by a balanced design. In fact, the smallest sample size occurs
when r is at the border of the grid we are considering. In general, we notice that the smallest sample
sizes occur when r, q are moderately small and that the differences between the allocation combinations
in terms of sample size are substantial.

Table IV. Total sample size for specific allocation
combination ratios r, q as per Figure 2(b).

q
r 0.1 0.5 1 1.5 2

0.01 3455 1295 1150 1198 1291
0.1 3492 1404 1224 1254 1341
0.5 3297 1894 1572 1544 1589
1 3866 2475 2008 1898 1894
2 5404 3603 2872 2591 2475

Figure 3. Plots (a) and (b) show the optimal total sample size that ensures power at least 0.9 for each combination
of r, q in consistent with the alternative hypothesis scenarios where in (a) any sole treatment group may have an
interesting effect, either 𝜇A = Δ or 𝜇B = Δ and (b) the combination treatment 𝜇AB = Δ has the interesting effect,
in a least favourable configuration set up where the remaining treatment groups have an uninteresting effect 𝛿0

and for the controls 𝜇0 = 0.
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4.2.2. Allocation ratio effect when alternative hypotheses are inconsistent with the factorial design
assumptions. The minimum total trial sample size requirement for the most interesting range of different
combinations of allocation ratios r, q, when any of the three treatments have an interesting effect ensur-
ing that P(Reject H0|H1j is true) ⩾ 1 − 𝛽 and H(LFC)

1j ∶ 𝜇j = Δ & 𝜇j∗ = 𝛿0 & 𝜇0 = 0 for j, j∗ ∈ (A,B,AB),
an LFC scenario is shown in Figure 3. Specifically, Figure 3 presents two scenarios for the different com-
binations of allocation ratios r, q and the optimal choice of sample size necessary to detect an interesting
effect Δ = 0.5, whilst assuming an uninteresting effect 𝛿0 = 0.1 and standard deviation 𝜎 = 1, for a
pre-specified target power 1 − 𝛽 = 0.9 when the assumption of additivity of the sole treatments effects
to produce the combination treatment effect is not satisfied. The two alternative hypothesis scenarios are
(a) H1A ∶ 𝜇A − 𝜇0 = Δ & 𝜇B − 𝜇0 = 𝜇AB − 𝜇0 = 𝛿0 when the sole treatments interact antagonistically
and (b) H1AB ∶ 𝜇AB −𝜇0 = Δ, 𝜇A −𝜇0 = 𝜇B −𝜇0 = 𝛿0, when the sole treatments interact synergistically.

In Figure 3(a) and Table V, we notice that the smallest trial sizes with 90% power occur when r is
around one and q is small. The optimal sample size in the case of a balanced design is when n0 = 176
which means that a total sample size of 704 patients need to be included in the study to achieve at least
90% power. We also find what is the configuration which results in the smallest sample size. The minimum
occurs when r = 0.81 and q = 0.1, which gives a total sample size of 326 patients to be included in
the study which strikingly is less than half of the patients that need to be included when the design is
balanced. Once again, a very extreme allocation ratio of q = 0.1 is found to be best. Because the additivity
is violated, information on the combination arm can no longer readily be used to extract information
on the single arms, and hence, fewer patients are allocated to this arm. We have found that the highest
sample sizes correspond to the cases when the allocation ratios r, q result to a high negative correlation
between the sole treatment statistics and a low correlation between the one of the sole treatment statistics
and the combination treatment statistic. Conversely, the smallest sample sizes occur when the correlation
between the z-statistics is high. Finally, it seems that even when the assumptions of the factorial design
are not satisfied, and it becomes necessary to increase the sample size compared with when they are
satisfied, the allocation ratio choices have an important bearing to the choice of sample size through their
control of the correlation between the statistics.

In Figure 3(b) and Table VI, we find that in the case of a balanced factorial design, the required sam-
ple size for the control group which achieves this power is n0 = 81, with a total sample size of 324,
where as under the previously discussed alternative where only the sole experimental treatment had an
interesting effect, the required sample size was n0 = 176. The configuration that gives, in this setting,
the total minimum sample size of 199 occurs when r = 0.1 and q = 1. We also notice when studying
the effect of the different allocation ratios on the sample size that only when q is very small, the sample
size requirement is big and indeed bigger than that of the aforementioned LFC scenario. This becomes
more prominent as r increases. In all other allocation ratio combinations, the sample size requirement to

Table V. Total sample size for specific allocation
combination ratios r, q as per Figure 3(a).

q
r 0.1 0.5 1 1.5 2

0.1 1000 1547 1944 2299 2650
0.5 353 585 804 1000 1180
1 329 508 704 877 1035
2 388 561 766 962 1145

Table VI. Total sample size for specific allocation
combination ratios r, q as per Figure 3(b).

q
r 0.1 0.5 1 1.5 2

0.1 606 228 196 203 215
0.5 890 315 252 245 253
1 1256 431 324 297 290
2 1993 664 462 387 347
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achieve the target power is small and in fact quite a lot smaller when compared with the requirement dis-
cussed in the aforementioned paragraph. Lastly, we note that in a factorial design where the main focus is
on the sole treatments and testing if those have a significant effect, such an alternative hypothesis scenario
would result to a high probability of rejecting the null hypothesis for both sole treatments and simulation
study results have shown that is the case for the vast majority of allocation combinations r, q, apart from
the cases when r and q are very small.

In conclusion, we found that for the majority of allocation ratio combinations, the power under the first
type of hypothesis when the single experimental treatments have the interesting effect is less than under
the second hypothesis where the combination treatment has the interesting effect. There are some alloca-
tion ratio combinations when q is small that give equal power under both types of alternative hypotheses
scenarios. A setup where one experimental treatment has a strong effect whilst the combination of that
treatment with another having no effect implies an antagonistic effect between the treatments so that the
combination has a dissimilar effect to that of the working single treatment. It therefore makes it very dif-
ficult for the other experimental treatment to demonstrate its true effect, because of the way the effect is
evaluated. Additionally, we note that in the case of the combination treatment having a strong effect in
the LFC that amplifies the effect of the single experimental treatments further compared with the case
that 𝛿0 = 0 thus necessitating the inclusion of more people in the study when that is the case.

4.3. Effect of interaction

One of the fundamental assumptions used in factorial designs to find the critical value and required sample
size is the additivity of the treatment effects. To explore the impact of deviating from this assumption,
we investigate a scenario where the data for each of the single experimental treatments is consistent with
the null hypothesis, but the data for the combination of the treatments are drawn from a distribution
which includes varying degrees of interaction between the treatments implying either an antagonist or
synergistic effect or no relation between them. The strength of the interaction, 𝛽3, ranges from −1 (strong
antagonistic effect) to 1 (strong synergistic effect).

Figure 4 shows the empirical probability of rejecting the four null hypotheses (global null hypothesis
and the three single treatment to control comparison) based on 10 000 simulations for a balanced factorial
design with 𝛽0 = 𝛽1 = 𝛽2 = 0 and different levels of interaction 𝛽3. An overall type I error of 𝛼 = 0.05
is used and n0 = nA = nB = nAB = 50 is chosen to give power of 1 − 𝛽 = 0.9 for Δ = 0.5, 𝛿0 = 0.1
and standard deviation 𝜎 = 1. The four plots relate to the global null hypothesis given in Equation (1)
(top left) as well as the three individual null hypotheses comparing one arm against control. We can
clearly observe a notable inflation of the type I error of the single treatment arm comparison in the cases
when the treatment interact in a synergistic manner (𝛽3 > 0). It is also worth pointing out that despite
the observations on the single arms being consistent with the null hypothesis, the chance to reject the
hypothesis related to the single treatment arms is also increasing. This is because the observations on the
combination arm are also contributing to the test statistics for the single treatment arms.

We, moreover, investigated the effect on the power of the hypothesis testing when the experimental
treatments have an effect when individually administered but interact antagonistically when combined
in a balanced design. We assumed that treatment A has a strong effect Δ = 0.5 and treatment B has a
weaker one 𝛿0 = 0.25, and by using a similar simulation set-up where the rest of the design parameters
are common, we find a similar pattern to Figure 4 with the curves shifted further to the left regarding the
rejection probability. We found a loss of power when the treatments have in combination an antagonistic
effect and a level of power close to the nominal value otherwise. Further results on the effect of the power
of hypothesis testing for a broader variety of alternative scenarios are presented forwards in Section 4.4
in relation to a case study.

Finally, we have looked into what happens to the power and type one error if say two of the treatments
have an interesting effect. Using simulation, we devised two scenarios were in the first one both of the
experimental treatments have the interesting effect, Δ, but the combination treatment does not, having
an uninteresting effect 𝛿0, thus suggesting that the treatments interact antagonistically with one another,
and a second one where only one of the experimental treatments as well as the combination of treatments
exhibit the interesting effect, thus implying no interference between the treatments. In the first case where
the effect between the experimental treatments is strongly antagonistic, the reduction in power is apparent.
Specifically, we notice that the power in the hypothesis testing decreases rapidly as the allocation ratio
q in the combination treatment group increases. In the second case where only one of the experimental
treatments as well as the combination of treatments exhibit an interesting effect, we see that the estimated
power is increased.
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Figure 4. The Monte Carlo estimate of the probability of rejecting the null hypothesis based on 10 000 simulated
samples when the sole experimental treatments are assumed not to have an effect (solid line) and the type I error
reference line at 0.05 (dashed line). The top left graph shows the probability to reject the global null hypothesis

whilst the remaining graphs provide the probabilities for the individual null hypotheses.

4.4. Case study

For our case study, we use the clinical trial described in Section 2 where we show that in a balanced
factorial design, recruiting 45 people per treatment group ensures power of 95%. In this section, we
investigate the properties of a factorial, an MA and an MAMS design, for different alternative hypothesis
scenarios for this design. Using the protocol information on the clinically relevant treatment effect (Δ =
28) and the effect standard deviation 𝜎 = 50 of the designed clinical trail on the use of physiotherapy
on OA [26], we have also assumed that the threshold of a small uninteresting effect is one quarter of
the interesting effect (𝛿0 = 7). The power for all hypothetical alternative scenarios is calculated by the
trivariate normal with the corresponding mean and variance-covariance matrix for both the factorial and
MA design. The Monte Carlo estimate of the expected value based on 10 000-fold simulations is used
for a two-stage MA design with an O’Brien–Fleming efficacy boundary and a futility bound of 0. The
required boundaries are specified such that the pre-specified power level 1 − 𝛽 = 0.95 is ensured under
the alternative hypothesis, by the computation of the probability to reject the null hypothesis given that
the alternative is true, and that the FWER is set to 𝛼 = 0.05.

4.4.1. Direct power comparison between a factorial, a multi-arm and a multi-arm multi-stage design.
We investigate the probability of rejecting the null hypotheses for a factorial, an MA and an MAMS
design under five different types of alternatives in Figure 5. Scenario (0) 𝜇0 = 𝜇A = 𝜇B = 𝜇AB = 0
is investigating the global null hypothesis where none of the treatments has an effect. Scenario (i) uses
𝜇A − 𝜇0 = Δ, 𝜇B − 𝜇0 = 𝜇AB − 𝜇0 = 𝛿0 which is consistent with a LFC setting where one of the single
experimental treatments has an interesting effect, whereas the other and the combination treatment have
an uninteresting effect. Scenario (ii) investigates another case that is consistent with the LFC (𝜇A − 𝜇0 =
𝜇B − 𝜇0 = 𝛿0, 𝜇AB − 𝜇0 = Δ) whilst scenario (iii) 𝜇A − 𝜇0 = Δ, 𝜇B − 𝜇0 = 𝛿0, 𝜇AB − 𝜇0 = Δ + 𝛿0 is
consistent with the factorial design assumptions. In the final scenario, we are considering (iv)𝜇A−𝜇0 = 𝛿0,
𝜇B − 𝜇0 = 𝛿0, 𝜇AB − 𝜇0 = 2𝛿0 both single experimental treatments have an uninteresting effect, and the
strongest effect is in the combination treatment which may still be uninteresting and is consistent with
the factorial design assumptions.

Figure 5 demonstrates that under the factorial design the probability of rejecting a hypothesis where
the treatment does not have an interesting effect is unreasonably high. We notice that plot (a) of Figure
5 demonstrates how all designs perform the same way under the global null hypothesis (0) and in the
case where the treatments have uninteresting effects (iv). At the same time, we can see that the factorial
design is highly powered under scenario (iii) which is consistent with the factorial design assumptions,
but we can see that it is greatly underpowered in scenario (i), which is a LFC setup. Specifically in this
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scenario, we observe an antagonistic effect between the experimental treatments and an interaction effect
which would imply that 𝛽3 = −Δ in the full linear model setting described in Section 3.1. Finally, we
notice that in general, the MA design is more empowered compared with the MAMS design throughout,
without however noticing big differences in general. The biggest difference occurs when the factorial
assumptions are met, and we assume a strong treatment effect alternative, scenario (iii). One can also
observe that under scenario (ii), the factorial design has the largest overall power. This is, however, due
to a large chance of rejecting the individual treatment hypothesis despite them not having an interesting

Figure 5. In each of the four plots the probability of rejecting the null hypothesis is depicted for multi-arm,
factorial and multi-arm multi-stage designs for all five alternative hypothesis scenarios when (a) the global null
hypothesis is rejected (b) the hypothesis for experimental treatment A is rejected (c) the hypothesis for experi-
mental treatment B is rejected (d) the hypothesis for the combination treatment is rejected. We depict with the

dashed line the type I error reference level at 0.05.

Figure 6. The probability of rejecting the global null hypothesis is depicted for a multi-arm, a factorial and an
multi-arm multi-stage design with a black, a red and a green line respectively, for a varying degree of interaction
between the treatments in each of the plots, for a different sole treatment level effect pair. We have assumed in (a)

𝜇A − 𝜇0 = 𝜇B − 𝜇0 = 0, (b) 𝜇A − 𝜇0 = 𝜇B − 𝜇0 = 7 and (c) 𝜇A − 𝜇0 = 0 & 𝜇B − 𝜇0 = 28.
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effect. Their effect has been increased by borrowing information from the combination arm that truly has
an interesting effect in this setting.

To investigate the impact of the interaction further, Figure 6 considers different combinations for the
mean effect on the single treatment arms ((a) where the sole experimental treatment effects are assumed
to be 0, that is 𝜇A − 𝜇0 = 𝜇B − 𝜇0 = 0, (b) where 𝜇A − 𝜇0 = 𝜇B − 𝜇0 = 7 and (c) where 𝜇A − 𝜇0 =
0 & 𝜇B − 𝜇0 = 28, whilst the interaction ranges from −2 to 2. We find that in the case of no effect in
the single treatments, the MA and MAMS design maintain the type I error level for antagonistic effects
whilst the factorial design is conservative whereas for a synergistic effect the factorial design has a slightly
increased power over both the MA and MAMS design. For all other scenarios, the power of both the
MA and MAMS designs is larger (sometimes by a large margin) than for the factorial design when there
is an antagonistic effect. For values of 𝛽3 close to zero a slightly larger power for the factorial design
is observed, whilst large synergistic effects lead to no difference between the methods. Moreover, we
notice a small persistent difference in power between the MA and MAMS design for most values of 𝛽3,
especially for strong antagonistic effects, with the exception of large synergistic effects, where there is
no difference.

4.4.2. Design differences between an MAMS, a multi-arm and a factorial trial. Multi-arm multi-stage
designs will in general be leading to a larger maximum sample size but smaller expected sample size
compared with MA ones. The expected sample size is the expected number of patients required to detect
a pre-specified treatment effect and accounts for early stopping at the first stage of the analysis. Because
an optimal design has the lowest expected sample size for a given treatment effect, the expected sample
size can be used as a measure of the efficiency of the design. In practice, it has been obtained through the
evaluation of the expectation of 100 000-fold simulations of such designs. We do not consider a multi-
stage for a factorial design as it is not possible to stop any treatment early either for efficacy or futility,
because all treatments contribute to the computation of the sole treatments’ effect. Our previous analysis
in Section 4.4.1 revealed a similarity in terms of the relative merits between an MAMS versus factorial
and MA versus factorial designs regarding the type I error and power, despite the small deficiency in
power of the MAMS design when compared with the MA one. Therefore, the only remaining feature of
the MAMS design that is of interest is the expected sample size.

We use the protocol information of our case study trial to see the differences in the total sample size
that different choices of clinical trial designs result to, for varying degrees of interaction between the
sole experimental treatments. We compare a balanced factorial design, an MA design and an MAMS
design with two stages, assuming parameters 𝜎 = 50, interesting treatment effect Δ = 28, uninteresting
treatment effect 𝛿0 = 7 and 𝛼 = 0.05, 1 − 𝛽 = 0.9 for all of them. We have chosen an MA two-stage

Figure 7. The total trial expected sample size estimate for a two-stage multi-arm design (green dotted line) as
well as its maximum sample size (solid green line), the sample size of a balanced factorial design (red solid line)
and the sample size of a multi-arm design (solid black line) for varying levels of interaction between the sole

experimental treatments when 𝛽3 ∈ [−2, 2] for target power 1 − 𝛽 = 0.9.
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design with a 0 futility boundary, an O’Brien–Fleming efficacy boundary [23] and equal sample sizes for
all treatments and control for each stage. Thus by implication, the interim analysis is conducted at the
half-way point of the process, and a treatment is dropped if it performs worse than the control, whereas
the trial stops early if any treatment’s performance exceeds the efficacy boundary, and the null hypothesis
is rejected with the conclusion that this treatment is superior to control. The resulting sample size per
treatment at the first stage is 38 and cumulatively at the second is 76. The critical value for the upper
bound in the first stage is 2.932 and 2.073 for the second. The critical value for the lower bound in the
first stage was set to 0 and for the second it is 2.073.

Figure 7 interestingly shows that there is no difference in the expected sample size of an MAMS trial
and a factorial one when there is no interaction between the treatments. The sample size requirement of
an MAMS study increases when the treatments interact antagonistically and decreases when they interact
synergistically compared with that of a factorial design. Finally, the maximum sample size of an MAMS
study is larger than the sample size required by a simpler MA trial.

5. Discussion

The apparent need for efficient clinical trial designs that quickly identify potentially effective treatments
has led to the use of designs that simultaneously study many treatments. In this paper, we compared
MAMS designs to a factorial with FWER control, and investigated their properties, in terms of their
effectiveness in finding good working treatments through their power characteristics under different hypo-
thetical scenarios. We found that the adoption of a factorial design which simply assumes no interaction
between the sole treatments may even for modest antagonistic interaction between the sole treatments
reduce the power of a hypothesis testing substantially when compared with an MA design. At the same
time, we noticed an increase in the type one error rate in the cases of a moderate synergistic interaction
between the sole treatments. Furthermore, we have become aware of the role that the choices of alloca-
tion ratios to each treatment have on the choice of critical value and the sample size required to achieve
a certain target power in the cases both when the factorial assumptions are met or not. The level to which
the necessary sample size changes for different allocation ratio combinations is greatly increased in alter-
native hypothesis scenarios with some degree of interaction between the sole treatments. Finally, through
our case study analysis, we discovered that in the scenarios when the factorial assumptions hold, the
gain of using this design over an MA in terms of power is small, whereas the losses in power when the
assumptions are not satisfied are substantial. In addition, when we include a two-stage MA design in a
comparison of the necessary sample size for a nominal level of target power amongst factorial and MA
designs, we find that even in the absence of any interaction the expected trial sample size is the same as
that of the factorial, a design that according to previous results in the presence of antagonistic interaction
is greatly underpowered.

Based on these results, it is apparent that factorial designs should only really be considered instead of
an MA design when the researchers are very sure that the assumption of additivity is met. As soon as
there is some doubt, MAMS designs provide a robust alternative that looses little power compared with
a factorial design but can gain drastically in other situations. MAMS designs also seem to be preferable
to MA designs in such situations as despite their small deficiency in power, they are expected to require
a much smaller sample size.

Appendix A: Nested and full linear model design matrix relevant quantities

Equation (A.1) shows the inverse of X⊤X, where det(X⊤X) is its determinant and det(X⊤X) = n0nA(nB
+nAB) + nBnAB(n0 + nA) of the nested model in Equation (3).

(X⊤X)−1 = 1

det(X⊤X)

⎛⎜⎜⎝
nAnB + nAnAB + nBnAB −nA(nB + nAB) −nB(nA + nAB)

−nA(nB + nAB) (n0 + nA)(nB + nAB) nBnA − n0nAB

−nB(nA + nAB) nBnA − n0nAB (nA + nAB)(n0 + nB)

⎞⎟⎟⎠ (A.1)
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Furthermore, using the information on the number of people in each treatment group, we calculate the
inverse of X⊤X (Equation (A.2)) of the full model presented first in Section 3.1.

(X⊤X)−1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1
n0

− 1
n0

− 1
n0

1
n0

− 1
n0

n0+nA

n0nA

1
n0

− n0+nA

n0nA

− 1
n0

1
n0

n0+nB

n0nB
− n0+nB

n0nB

1
n0

− n0+nA

n0nA
− n0+nB

n0nB

nBnAB(nA+nAB)+nAnAB(n0+nB)
n0nAnBnAB

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(A.2)

Appendix B: Derivation of joint distribution of test statistics

We show that the joint distribution of Z = (ZA,ZB,ZAB) is a trivariate normal by expressing these depen-
dent random variables in terms of linear combinations of the independent variables Ȳj ∼ N(𝜇j,

𝜎2

nj
) for

j = A,B,AB, 0, with nA = nB = rn0 and nAB = qn0, which precisely due to their independence property,
are known to be jointly distributed as a multivariate normal. Specifically, for Ȳ = (Ȳ0, ȲA, ȲB, ȲAB) we

have, Ȳ ∼ N4(𝝁,𝚺), where 𝝁 = (𝜇0, 𝜇A, 𝜇B, 𝜇AB) and 𝚺 =

⎛⎜⎜⎜⎜⎜⎝

𝜎2

n0
0 0 0

0 𝜎2

nA
0 0

0 0 𝜎2

nB
0

0 0 0 𝜎2

nAB

⎞⎟⎟⎟⎟⎟⎠
. Thus,

ZA = d1ȲA − d2ȲB + d2ȲAB − d1Ȳ0

ZB = −d2ȲA + d1ȲB + d2ȲAB − d1Ȳ0

ZAB = d3ȲAB − d3Ȳ0

where d1 = (r+q)
√

rn0

𝜎
√
(1+r)(r+q)(r+2q+rq)

, d2 = q(1+r)
√

rn0

𝜎
√
(1+r)(r+q)(r+2q+rq)

and d3 = q
√

n0

𝜎
√

1+q
. We can express Z = DȲ, using

matrix D =
⎛⎜⎜⎝
−d1 d1 −d2 d2
−d1 −d2 d1 d2
−d3 0 0 d3

⎞⎟⎟⎠ which defines the linear combination of vector Ȳ. Utilising the basic

property of the multivariate normal distribution (MVN) whereby any linear combination of Ȳ is also
MVN, we see that Z ∼ N3(D𝝁,D𝚺D⊤). Let𝝁Z = D𝝁, therefore for each element of𝝁Z = (𝜇ZA

, 𝜇ZB
, 𝜇ZAB

),
we have:

𝜇ZA
=

√
rn0

(
(r + q)(𝜇A − mu0) + q(1 + r)(𝜇AB − 𝜇B)

𝜎
√
(1 + r)(r + q)(r + 2q + rq)

𝜇ZB
=

√
rn0

(
(r + q)(𝜇B − mu0) + q(1 + r)(𝜇AB − 𝜇A)

𝜎
√
(1 + r)(r + q)(r + 2q + rq)

𝜇ZAB
=

√
qn0(𝜇AB − 𝜇0)

𝜎
√
(1 + q)

Equation (B.1) shows the general form of a variance–covariance matrix D𝚺D⊤ = V . We find that
Var(ZA) = Var(ZB) = Var(ZAB) = 1 and Cov(ZA,ZAB) = Cov(ZB,ZAB), and in the following equations,
we present some of the work in deriving Cov(ZA,ZB),Cov(ZA,ZAB) under the null hypothesis where
Cov(ZA,ZB) = E(ZAZB)−E(ZA)E(ZB) = E(ZAZB) and Cov(ZA,ZAB) = E(ZAZB)−E(ZA)E(ZB) = E(ZAZB).

V =
⎛⎜⎜⎝

Var(ZA) Cov(ZA,ZB) Cov(ZA,ZAB)
Cov(ZB,ZA) Var(ZB) Cov(ZB,ZAB)
Cov(ZAB,ZA) Cov(ZB,ZAB) Var(ZAB)

⎞⎟⎟⎠ (B.1)578
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Equations (B.2) and (B.3) explicitly show the computations. We also find, using that V = D𝚺D⊤, the
formulae remain the same under any alternative hypothesis scenario.

Cov(ZA,ZB)=E
(rn0[(r + q)(ȲA − Ȳ0) + q(1 + r)(ȲAB − ȲB)][(r + q)(ȲB − Ȳ0) + q(1 + r)(ȲAB − ȲA]

𝜎2(1 + r)(r + q)(r2 + 2rq + r2q)

)
=n0

( r(r + q)2E[(ȲA − Ȳ0)(ȲB − Ȳ0)]
𝜎2(1 + r)(r + q)(r + 2q + rq)

+
q2r(1 + r)2E[(ȲAB − ȲB)(ȲAB − ȲA)]

𝜎2(1 + r)(r + q)(r + 2q + rq)

+
qr(r + q)(1 + r){E[(ȲA − Ȳ0)(ȲAB − ȲA)] + E[(ȲAB − ȲB)(ȲB − Ȳ0)]}

𝜎2(1 + r)(r + q)(r + 2q + rq)

)
=

n0

[
r(r+q)2

(
E(Ȳ2

0 )−𝜇
2
)
+q2r(1+r)2

(
E(Ȳ2

AB)−𝜇
2
)
+qr(r+q)(1+r)

(
2𝜇2−E(Ȳ2

A)−E(Ȳ2
B)
)]

𝜎2(1 + r)(r + q)(r + 2q + rq)

=
r(r + q)2 + qr(1 + r)2 − 2q(1 + r)(r + q)

(1 + r)(r + q)(r + 2q + rq) (B.2)

Cov(ZA, ZAB) =

√
qn0E

[(
r(r + q)(ȲA − Ȳ0) + qr(1 + r)(ȲAB − ȲB)

)(
ȲAB − Ȳ0

)]
𝜎2
√
(1 + r)(1 + q)(r + q)(r2 + 2rq + r2q)

=

√
qn0

(
E[r(r + q)(ȲA − Ȳ0)(ȲAB − Ȳ0)] + E[qr(1 + r)(ȲAB − ȲB)(ȲAB − Ȳ0)]

)
𝜎2
√
(1 + r)(1 + q)(r + q)(r2 + 2rq + r2q)

=

√
qn0

(
r(r + q)Var(Ȳ0) + qr(1 + r)Var(ȲAB)

)
𝜎2
√
(1 + r)(1 + q)(r + q)(r2 + 2rq + r2q)

=

√
qn0

(
r(r + q) 𝜎

2

n0
+ qr(1 + r) 𝜎2

qn0

)
𝜎2
√
(1 + r)(1 + q)(r + q)(r2 + 2rq + r2q)

=
√

rq(1 + 2r + q)√
(1 + r)(1 + q)(r + q)(r + 2q + rq)

(B.3)

Equation (B.4) shows the variance–covariance matrix, a balanced factorial design.

V =

⎛⎜⎜⎜⎜⎝
1 0 1√

2

0 1 1√
2

1√
2

1√
2

1

⎞⎟⎟⎟⎟⎠
(B.4)
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