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Abstract A novel RNA virus, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2),

is responsible for the ongoing outbreak of coronavirus disease 2019 (COVID-19). Population

genetic analysis could be useful for investigating the origin and evolutionary dynamics of

COVID-19. However, due to extensive sampling bias and existence of infection clusters during the

epidemic spread, direct applications of existing approaches can lead to biased parameter estima-

tions and data misinterpretation. In this study, we first present robust estimator for the time to

the most recent common ancestor (TMRCA) and the mutation rate, and then apply the approach

to analyze 12,909 genomic sequences of SARS-CoV-2. The mutation rate is inferred to be

8.69 � 10�4 per site per year with a 95% confidence interval (CI) of [8.61 � 10�4, 8.77 � 10�4],

and the TMRCA of the samples inferred to be Nov 28, 2019 with a 95% CI of [Oct 20, 2019,

Dec 9, 2019]. The results indicate that COVID-19 might originate earlier than and outside of

Wuhan Seafood Market. We further demonstrate that genetic polymorphism patterns, including

the enrichment of specific haplotypes and the temporal allele frequency trajectories generated from

infection clusters, are similar to those caused by evolutionary forces such as natural selection. Our

results show that population genetic methods need to be developed to efficiently detangle the effects

of sampling bias and infection clusters to gain insights into the evolutionary mechanism of
nces and
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SARS-CoV-2. Software for implementing VirusMuT can be downloaded at https://bigd.big.ac.cn/

biocode/tools/BT007081.
Introduction

The severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2), a novel RNA virus of the Coronaviridae family,
caused an outbreak of coronavirus disease 2019 (COVID-19)

in China in late December 2019, and has been rapidly spread-
ing to more than 214 countries and areas since then [1,2].
COVID-19 is the third pandemic caused by coronavirus in
the last 20 years; and it has resulted in more than 4,993,470

infections and claimed nearly 327,738 lives as of May 22,
2020, exceeding any other epidemic caused by betacoron-
aviruses in the human history, for example, SARS in

2002–2003 and the Middle East respiratory syndrome (MERS)
in 2012 (https://www.ecdc.europa.eu/en/2019-ncov-back-
ground-disease). Among the extensive studies conducted on

COVID-19, one essential question is to trace the origin and
transmission between humans, shedding light on the molecular
mechanism underlying epidemiological and pathological char-

acteristics of the virus.
Population genetic methods are often used to reconstruct

evolutionary history of viral infectious diseases, which supple-
ments our knowledge of epidemic or pandemic dynamics [3–6].

High evolutionary rates, which are typical of RNA viruses
(10�4–10�3 nucleotide substitutions per year) [7], and large
genome size of betacoronaviruses (~ 30 kb) leave sufficient

amount of genomic polymorphisms within the time frame of
epidemic outbreaks [8]. By interrogating the genomic data
sampled at different time points of outbreaks, it is possible

to estimate fundamental parameters of the evolutionary pro-
cess, including evolutionary rate, population expansion rate,
and the time when all sampled virus strains shared the most
recent common ancestor (MRCA), and to test the different

hypotheses of evolutionary mechanism. There are limitations
on directly applying existing population genetic approaches
to estimate the viral evolutionary history. First, virus samples

are often collected by different agencies during the process of
infectious outbreak, which may incur spatial and temporal
sampling biases. Second, transmission of infectious diseases

is commonly seen to happen in infection clusters or outbreak
clusters, i.e., a sudden burst of infected cases in the same place
around the same time. One example of an infection cluster is

the COVID-19 outbreak in the Diamond Princess cruise [9].
Both sampling bias and presence of infection clusters cause
genomic polymorphism patterns similar to those generated
by evolutionary effects, such as natural selection [10,11]. Most

population genetic methods are under the assumption that
samples are collected uniformly and randomly from one or
multiple populations. A direct application of existing popula-

tion genetic approaches without taking into account of sam-
pling bias and presence of infection clusters could lead to
biased parameter estimations and data misinterpretations.

In this study, we illustrate extensive sampling biases in the
SARS-CoV-2 genomic sequence data. We further investigate
two other prominent polymorphism patterns found in the

genomic data: a highly homozygous haplotype group or an
over-sized node in the haplotype network graph, and a sub-
stantial allele frequency difference between two spatial and
temporal samples (e.g., the Wuhan and the non-Wuhan sam-
ples). Such data patterns are widely considered in population

genetic studies as evidence of natural selection [10,11]. Never-
theless, we propose that such patterns in the SARS-CoV-2
genomic data should result from sampling bias and presence

of infection clusters during epidemic and pandemic spreads.
To reduce the estimation bias, we present a robust estimator
of the mutation rate and the time to MRCA (TMRCA), which
disentangles the effect of sampling bias and presence of infec-

tion clusters. The performance of our proposed estimator is
compared with the results from a Bayesian evolutionary anal-
ysis package, BEAST [12], via simulation studies. We subse-

quently apply the method to analyze 12,909 genomic
sequences collected before May 4, 2020.
Results

Polymorphic pattern of genomic sequences

The dataset used for this study includes 12,909 genomic
sequences as of May 4, 2020, of which 487 genomes are from

China (15 provinces and regions) and 12,422 genomes are from
72 other countries of the world. The sampling dates range from
December 24, 2019 to May 4, 2020 with a time interval of

132 days. For illustration purpose, in most of the following
analysis, we focus on the subset of 756 sequences collected
before March 1, 2020. After trimming off un-sequenced

regions at both ends, the final alignment contains 29,599
nucleotides. There are 919 variable sites including gaps and
424 unique haplotypes among the 756 sequences. The nucleo-
tide diversity (p) of SARS-CoV-2 is 2.36 � 10�4. Both Taji-

ma’s D and Fu’s Fs values are negative (Table S1), due to
highly enriched proportion of single nucleotide polymorphisms
(SNPs) in singletons and rare variants. This indicates a rapid

population growth or expansion of the virus population.
Although p, D, and Fs are summary statistics developed for
a random sample collected from a contemporary population,

they do provide an informative summary of the genetic poly-
morphisms of the temporally collected SARS-CoV-2
sequences.

A phylogeny of the 756 SARS-CoV-2 sequences is con-
structed using neighbor-joining approach (Figure 1). Two lin-
eage clades, named S and L lineages, were identified in
previous studies [13]. The two lineage clades are defined by

one synonymous mutation occurring in open reading frame
1a (ORF1a) (T8782C, referring to genome position of WH-
Hu-1) and one nonsynonymous mutation occurring in ORF8

(C28144T), which leads to a replacement of serine with leucine.
Among the 756 sequences, S lineage includes 110 unique hap-
lotypes (out of 235 genomes/strains, 31.08% of total; colored

in blue in Figure 1 and Figure 2), while L lineage includes
314 unique haplotypes (out of 521 genomes/strains, 68.92%
of total; colored in red in Figures 1 and 2). Except the branch
splitting the S and L lineages discussed above, many parts of

the SARS-CoV-2 genealogy are highly uncertain with low sup-
port due to lack of mutations.
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Figure 1 Neighbor-joining phylogeny of 756 SARS-CoV-2 sequences collected before Mar 1, 2020 and their sampling dates and locations

The 756 SARS-CoV-2 sequences were retrieved from 2019nCoVR and GISAID. A. Two lineages (L and S lineages). B. Six major

haplotypes with sequence count >10 (H1–H6). C. Sampling locations (China and other countries or regions). D. Sampling date (Dec 24,

2019 to Feb 29, 2020). Samples are color coded. 2019nCoVR, 2019 Novel Coronavirus Resource; GISAID, Global Initiative on Sharing

All Influenza Data.

642 Genomics Proteomics Bioinformatics 18 (2020) 640–647
Extensive spatial and temporal sampling bias

The genomic sequences of SARS-CoV-2 were collected by

multiple institutes or medical agencies at different time points
of the pandemic (Figure 1 and Figure 3). Such sampling is not
compliant with the population genetic assumptions on

sequence samples simultaneously and randomly collected from
the contemporary populations. There are at least three sources
of non-ignorable sampling biases in the samples collected
before March 1, 2020, which are detailed below.

First, from Dec 24, 2019 to Jan 10, 2020, 35 of the 38
sequences were collected from patients in Wuhan (Hubei Pro-
vince, China; locations are all from China unless otherwise

specified in the following text), 1 from Jingzhou (Hubei Pro-
vince), and the 2 remaining sequences from Thailand. Most
patients had direct contact with Wuhan Seafood Market

(WSM), but virus sequences from other areas of Wuhan, if
present, were absent from these samples. In addition, these
samples were collected in a short period. The first sample date

was Dec 24, 2019. On Dec 30, 2019, 21 samples were collected
on the same day, among which 8 were from patients with sev-
ere symptom of the same clinical site (Jinyintan Hospital), and

the rest with no information available on the collection site.
Eight additional samples were collected between Jan 1, 2020
and Jan 2, 2020. The sample collection might be spatially

biased toward WSM strains, since the early diagnosis protocol
of COVID-19 required a direct contact of the patient with
WSM. Virus samples of other areas of Wuhan might be absent

or underrepresented.
Second, from Jan 10, 2020 to Feb 29, 2020, only 11 out of

the 718 samples in the public databases, i.e., 2019 Novel
Coronavirus Resource (2019nCoVR) [14] and Global Initiative

on Sharing All Influenza Data (GISAID), were collected from
Wuhan. The rest of the samples were from various regions of
China or other countries (Figure 3). The sample sizes ranged

from 1 to 110, including 110 from USA, 91 from Guangdong
Province, and 42 from Zhejiang Province (Figures 3 and S1).



Figure 2 Haplotype network of 756 SARS-CoV-2 sequences

inferred with the median-joining method

The 756 SARS-CoV-2 sequences were retrieved from 2019nCoVR

and GISAID. The node sizes are proportional to the counts of the

sequences with the smallest node corresponding to 1 and the

largest node corresponding to 68. The branch lengths are

proportional to the number of mutations occurring between two

haplotypes, with the shortest branch corresponding to 1 mutation

and longest branch corresponding to 34 mutations. L and S

lineages are denoted in red and blue, respectively. Nodes with

other colors (H1–H6) represent the major haplotypes (sequence

count >10). 2019nCoVR, 2019 Novel Coronavirus Resource;

GISAID, Global Initiative on Sharing All Influenza Data.
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Third, before Dec 24, 2019, no sequence was collected in
the databases during this early stage. The first identified

patient as far as we know was reported on Dec 01, 2019 by
Huang and colleagues [15], without presenting the virus geno-
mic sequences.

Presence of multiple infection clusters during the spread of

COVID-19

The genealogical relationship of the 756 genomic sequences is
illustrated by a haplotype network (Figure 2). Notably, we
observe multiple large nodes in the haplotype network. This

pattern indicates a very common phenomenon in the spread
of an infectious disease, known as an infection cluster or out-
break cluster. Infection clusters occur at a specific location
with a sudden burst of infected cases during a short time inter-

val. Genomic sequences of virus samples collected from the
infected cases in an infection cluster are identical or highly sim-
ilar, creating an over-sized node in the network graph.

Six nodes with sequence count >10 are presented in the
zoomin (Figure 2). The H1 and H2 nodes are the major L
and S lineages. Fifteen of the 68 (22.06%) H1 haplotypes were

collected only from patients near WSM showing severe symp-
toms of COVID-19 in a short time interval (Dec 30, 2019–Jan
7, 2020), which was the initial period of COVID-19 outbreak.
Samples outside of WSM were underrepresented due to the
sampling bias. Similarly, another 22 of the 68 (32.35%) H1

haplotypes were also collected in a short time interval (Jan
21, 2020–Jan 25, 2020) from patients in Hangzhou (Zhejiang
Province). The H3 node includes 32 samples collected during

Jan 18, 2020–Feb 23, 2020, of which 26 genomic sequences
were sampled during Feb 15, 2020–Feb 17, 2020 from patients
on board the Diamond Princess cruise. All these sequences

belong to the L lineage and are highly similar. The H4 node
mostly includes samples from a nursing home and a school
in the King County of Seattle (Washington, USA) during
Feb 20, 2020–Feb 29, 2020. H5 consists of 16 samples with 8

collected during Jan 29, 2020–Feb 1, 2020 from the same hos-
pital in Guangzhou (Guangdong Province). H6 includes 14
samples, among which 7 are related to a church get-together

in South Korea. Apparently, the large nodes H1–H6 are nearly
all related to infection clusters. Sampling bias further enhanced
this pattern by over-representing them in the samples.
Estimating the mutation rate and TMRCA

To understand how quickly SARS-CoV-2 is evolving and

when the recent common ancestor of sequenced samples
emerged, we propose a simple maximum likelihood method,
VirusMuT, to jointly infer the mutation rate and TMRCA
by constructing the likelihood function on pairwise difference

between sequences. Since the virus genomes evolve and trans-
mit among hosts during a short time interval, we make no
assumptions on the virus population growth model. We

assume no recombination within genomic sequences and no
recurrent mutations (see ‘‘Maximum likelihood estimate of
mutation rate and TMRCA” of the Materials and methods

section for details).
We evaluate the performance of VirusMuT with simulated

data, by checking its robustness to the sampling bias and pres-

ence of infection clusters, and compare the performance of Vir-
usMuT with that of the commonly used method, BEAST [12].
In simulation 1 (Figure S2A and B), time-series samples com-
posed of 300 sequences were generated from a forward simula-

tion of virus population for 20 generations. In simulations 2
and 3, 200 additional sequences from an infection cluster were
sampled. Furthermore, in simulation 3, one filtering step prior

to analysis was adopted by removing identical sequences from
the infection cluster. As we can see from Figure S2, both
BEAST and VirusMuT show deviation from the true values

in the presence of infection clusters (Figure S2C and D).
However, the filtering step that down-weights sequences from
the infection clusters can correct the bias in some degree
(Figure S2E and F). VirusMuT overall performs better, and

provides nearly unbiased inference of TMRCA and mutation
rate for all three simulations, indicating its robustness to
sampling bias and presence of infection clusters.

We apply VirusMuT to 12,909 genomic sequences collected
before May 4, 2020 (Table 1). The mutation rate is inferred to
be 8.69 � 10�4 per site per year with a 95% confidence interval

(CI) of [8.61 � 10�4, 8.77 � 10�4]. The inferred mutation rate
of SARS-CoV-2 is lower than many other RNA viruses [16],
but consistent with our observation of identical genomic

sequences enriched in samples collected from different places
and dates. The TMRCA of the L lineage is inferred to be



Figure 3 Time-series counts of L and S lineages in samples collected from different locations before Mar 1, 2020

All sequences were retrieved from 2019nCoVR and GISAID. Only locations with >10 samples are presented. The dash line indicates Jan

10, 2020, before which almost all samples were collected from Wuhan (of Hubei Province). L and S lineages are denoted in red and blue,

respectively. 2019nCoVR, 2019 Novel Coronavirus Resource; GISAID, Global Initiative on Sharing All Influenza Data.

Table 1 Inferred TMRCA and mutation rate of 12,909 SARS-CoV-2 genomic sequences collected before May 4, 2020 using VirusMuT

Category Mutation rate (�10
�4

site
�1

year
�1
) TMRCA

All

8.69 [8.61, 8.77]

Nov 28, 2019 [Oct 20, 2019, Dec 9, 2019]

L lineage Dec 8, 2019 [Dec 7, 2019, Dec 9, 2019]

S lineage Dec 15, 2019 [Dec 12, 2019, Dec 18, 2019]

Note: Data are shown as mean [95% CI] TMRCA, the most recent common ancestor; CI, confidence interval.

644 Genomics Proteomics Bioinformatics 18 (2020) 640–647
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Dec 8, 2019 with a 95% CI of [Dec 7, 2019, Dec 9, 2019], and
that of the S lineage is Dec 15, 2019 with a 95% CI of [Dec 12,
2019, Dec 18, 2019]. The TMRCA of all samples is estimated

as Nov 28, 2019 with a 95% CI of [Oct 20, 2019, Dec 9, 2019].
WSM was widely considered as the source of the COVID-

19 outbreak since it was first identified around late December,

2019. However, some studies claimed COVID-19 might origi-
nate at an earlier time point and outside of WSM (e.g., [15]).
The estimated TMRCA and the associated 95% CIs are both

earlier than the outbreak time of COVID-19 in WSM. It is
likely that the L and S lineages have been existing for quite a
while before the outbreak.

Pitfalls in inferring adaptive evolution of virus lineages

Another important question on virus evolutionary dynamics is
to identify whether the virus genomes are under rapid adaptive

evolution with the accumulation of abundant mutantations
during its transmission. In population genetic analysis, a hap-
lotype group at a high frequency and relatively low heterozy-

gosity will exhibit an over-sized node in the network graph
of a uniformly collected sample, which is often considered as
a strong evidence of positive selection on the haplotype. The

prominent over-sized H1 node in the haplotype network graph
was identified as a signal of higher infectivity of the H1 haplo-
type by multiple studies [17,18]. However, as we discussed
above, over-sized nodes in the haplotype network are patterns

commonly observed during virus spread due to the presence of
infection clusters or severe sampling bias. Infection clusters
occur mostly in places like transport hubs, nursing facilities,

and schools, and usually unrelated to the infectivity or
pathogenicity differences among virus lineages [19].

The other informative statistic often used to detect selection

is the allele frequency difference between samples from differ-
ent places or stages. We observe remarkable changes in the
prevalence of L lineage during the COVID-19 pandemic (Fig-

ure S3A). For example, 35 out of 38 specimen collected before
Jan 10, 2020 were from Wuhan, and 33 (94.3%) among the 35
sequences classified as L lineage; while 707 of the 718
sequences collected after Jan 10, 2020 were sampled outside

of Wuhan, among which 478 (67.6%) fall into L lineage. Tang
et al. [13] noticed this allele frequency difference, and hypoth-
esized that it could be caused by different virulence of the two

virus lineages and purifying selection acting on the difference.
However, sampling bias in the existing data can fully explain
the data pattern. The L lineage is prominently dominant in

the samples collected from WSM. Since no samples from other
regions in Wuhan were collected at that time, the H1 haplo-
type was over represented, and therefore its sample frequency
did not reflect the ‘‘population” frequency in Wuhan at the

early stage of the pandemic. A recent clinical study has sug-
gested that the two lineages exhibit similar virulence and clin-
ical outcomes [18].

Although it is a widely adopted approach in population
genetics to compare the proportions of a specific allele or hap-
lotype in different samples or to trace the allele frequency tra-

jectories through time to evaluate the effect of natural
selection, we need to be cautious about employing this
approach in virus genomic analysis, because of the widespread

presence of infection clusters throughout the pandemic.
Indeed, most genetic polymorphism patterns, including the
allele frequency spectrum and haplotype structure [20], were
largely shaped by infection clusters. A direct application of
existing methods in virus evolutionary study without taking

into account the virus epidemiological dynamics can lead to
misinterpretation.

Discussion

Population genetic analysis of virus genomic sequences has

been demonstrated to be useful to investigate the evolutionary
dynamics of viruses. Tens of thousands of SARS-CoV-2 geno-
mic sequences are publicly available for study since the out-
break of COVID-19, attracting extensive investigation.

However, as we demonstrate in this paper, virus samples are
different from common population genetic samples in several
aspects: first, the data may be sampled massively at multiple

time points; second, presence of outbreak clusters and sam-
pling bias is common. The enrichment pattern of some subsets
of haplotypes or the trend of allele frequency trajectories

caused by the sampling bias are similar to that caused by evo-
lutionary forces such as natural selection. Direct applications
of existing population genetic methods may lead to biased
parameter estimation or misinterpretation of evolutionary

effects. Robust methods are expected to be developed by fully
considering the aforementioned virus epidemiological dynam-
ics, and improve our understanding of the evolutionary

dynamics of viruses and the underlying driving forces.
Materials and methods

Sequence alignment, quality control, and population genetics

summary

A total of 12,909 SARS-CoV-2 genomes available on May 4,
2020 were downloaded from GISAID (http://www.gisaid.

org) and National Genomics Data Center (https://bigd.big.
ac.cn/ncov/). The genomes were aligned using MUSCLE
[21]. For a better illustration, only samples collected before

March 1, 2020 were used for phylogenetic analysis. Here, a
372-bp block at the 50-end including gaps and a 2133-bp block
at the 30-end including gaps and the poly-A tails in the align-

ment were trimmed out. After a pilot examination of the align-
ments, 141 genomes were excluded from downstream analyses
due to the following sequencing quality issues: (1) presence of
unusual mutations that led to outlier branches (26 genomes),

(2) failure to be typed correctly to the L or S lineage (14 gen-
omes), and (3) failure to determine the detailed sampling time
(101 genomes). The final alignment includes 756 genomes com-

posed of 29,599 sites. Population genetic summary statistics,
including the number of haplotypes, gene diversity, nucleotide
diversity, Tajima’s D [22], and Fu’s Fs [23], were calculated

using Arlequin v3.5 [24].
Phylogenetic and network analyses

Neighbor-joining phylogenetic tree of the 756 genome
sequences was constructed using MEGA 10.1.8 with default
arguments [25]. Phylogenetic relationships and mutations
occurring among unique genomes were further inspected from

http://www.gisaid.org
http://www.gisaid.org
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https://bigd.big.ac.cn/ncov/
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756 genomes through median-joining networks [26] using the
Network 10 (http://www.fluxus-engineering.com/).

Maximum likelihood estimate of mutation rate and TMRCA

The number of mutations in comparison with MRCA is
assumed to follow a Poisson distribution, with the mean equal

to the product of time duration (fromMRCA to sampling time
point) and the mutation rate. Since the sequences are sampled
at different time points, TMRCA and mutation rate are iden-

tifiable. The maximum likelihood function is thus constructed
below with TMRCA and mutation rate as two parameters.

Let the time duration from MRCA to the latest sampling

date May 4, 2020 be T (in units of days), then the time dura-
tion from TMRCA to May 3, 2020 is T � 1 days, and so
on. By assuming independent evolution among the sequences,
the log likelihood function is written as

LL T; lð Þ ¼
Xm

i¼1

log poisspdfðni; lLðT� tiÞÞ½ � ð1Þ

where ni is the Hamming distance between the i-th SARS-CoV-

2 sequence and the MRCA sequence, l is mutation rate (unit: /
day/locus), L is the length of SARS-CoV-2 genome, ti is the
time duration from sampling date to May 4, 2020 (unit:
day), poisspdf is the Poisson probability mass distribution in

the form poisspdfðk; kÞ ¼ kk

k!
e�k. The two parameters are then

inferred by fitting the likelihood function to the data.

Simulation of virus genomic sequence data

We used forward simulations to test the performance of

BEAST v. 1.10.4 [12] and VirusMuT on estimating TMRCA
and mutation rate. The genomic length was chosen to be
30,000 bp. The generation time is five days. The mutation rate

is 0.001 per year per nucleotide, that is, a mean number of
0.4110 mutations occur on the genome per generation. The
reproductive number (R) is 1.7. We used the Wight–Fisher

model to simulate forward in time and assumed no recombina-
tion among virus strains. In each generation, the number of
decedents of every virus strain was generated from a Poisson

distribution with the mean R value of 1.7, and the number
of mutation was also generated from a Poisson distribution
with the mean value of 0.4110.

Three simulation datasets were generated for testing the

methods. In simulation 1, we simulated the transmissions of
the virus strains for 20 generations, and randomly collected
time-series samples with the total size of 300 from generations

13 to 20. The sub-sample sizes of generations 13–20 were set to
be 10, 10, 20, 20, 40, 40, 80, and 80, respectively. The sub-
sample sizes increasing with generations in the simulations is

to mimic the real datasets, of which more sequences were col-
lected over time. In simulation 2, in addition to the same pro-
cedures performed in simulation 1, we randomly chose one
strain during generation 10 as the founder genome, and simu-

lated an additional ‘‘infection cluster” population from gener-
ations 10 to 20 using the same parameter settings. We then
collected additional 200 sequences from the cluster (50 samples

from generations 18 and 19, and 100 samples from generation
20). The final dataset included 300 sequences from simulation
1 and 200 sequences from the ‘‘infection cluster” population.
The procedures of simulation 3 is identical to simulation 2,
except that we included an additional filtering step to remove

multiple sequences of the same sampling date in the samples
from ‘‘infection cluster” population.

All the three simulations were repeated for 100 times.

BEAST [12] and VirusMuT were applied to the simulated
sequences. The inferred TMRCA and mutation rates were pre-
sented as boxplots in Figure S2.
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