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Abstract: Metabolic alterations play a crucial role in glioma development and progression and can
be detected even before the appearance of the fatal phenotype. We have compared the circulating
metabolic fingerprints of glioma patients versus healthy controls, for the first time, in a quest to
identify a panel of small, dysregulated metabolites with potential to serve as a predictive and/or
diagnostic marker in the clinical settings. High-resolution magic angle spinning nuclear magnetic
resonance spectroscopy (HRMAS-NMR) was used for untargeted metabolomics and data acquisition
followed by a machine learning (ML) approach for the analyses of large metabolic datasets. Cross-
validation of ML predicted NMR spectral features was done by statistical methods (Wilcoxon-test)
using JMP-pro16 software. Alanine was identified as the most critical metabolite with potential to
detect glioma with precision of 1.0, recall of 0.96, and F1 measure of 0.98. The top 10 metabolites
identified for glioma detection included alanine, glutamine, valine, methionine, N-acetylaspartate
(NAA), γ-aminobutyric acid (GABA), serine, α-glucose, lactate, and arginine. We achieved 100%
accuracy for the detection of glioma using ML algorithms, extra tree classifier, and random forest,
and 98% accuracy with logistic regression. Classification of glioma in low and high grades was done
with 86% accuracy using logistic regression model, and with 83% and 79% accuracy using extra tree
classifier and random forest, respectively. The predictive accuracy of our ML model is superior to
any of the previously reported algorithms, used in tissue- or liquid biopsy-based metabolic studies.
The identified top metabolites can be targeted to develop early diagnostic methods as well as to plan
personalized treatment strategies.

Keywords: alanine; glioma; high-resolution magic angle spinning nuclear magnetic resonance
spectroscopy (HRMAS-NMRS); untargeted metabolomics; machine learning; liquid biopsy

1. Introduction

Malignant brain tumors such as glioma and glioblastoma multiforme (GBM), arising
from the glial cells of the central nervous system (CNS), are among the most lethal forms
of human cancers. Their aggressive nature, infiltrating growth, and a two-fold blood–brain
and blood–brain–tumor barrier (unlike most other cancers) make them both difficult to diag-
nose early and challenging to treat [1–3]. Therefore, despite surgical resection and advanced
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multimodal treatment modalities available currently such as biodegradable medicated
wafer implants, postoperative concomitant chemo-radiation therapy (Stupp regimens),
maintenance adjuvant chemotherapy, Optune®—tumor treating electric fields, immuno-
chemotherapy—and so on, the recurrence and mortality rates of malignant gliomas are
significantly higher than other solid and hematological malignancies; the median overall
survival of the patients is <1.2 years [3–8].

Although our understanding of the intricate molecular networks and/or their cross-
talks that initiate the successive, yet aggressive series of proliferative events in gliomas is
very limited, there is increasing evidence suggesting that a complex interplay of chromoso-
mal alterations (gene-gene fusions), genetic aberrations (point mutations), and epigenetic
modifications (methylations) contributes to the tumor biogenesis [3,9,10]. Besides this,
the underlying concealed perturbations in several finely tuned signaling (such as p53,
VEGF, ErbB, RTK, Akt) and metabolic pathways (for instance, choline, central-carbon, and
glutamine) also drive and accelerate the metastatic capabilities of gliomas [10–13]. Several
research groups have demonstrated that, in order to perform (i) harvesting of energy and
replenishing the ‘nutrient (glucose) sink’ for a continuous, unchecked cellular proliferation;
(ii) epithelial-to-mesenchymal transition (EMT); (iii) enhanced cell migration; and iv) in-
creased angiogenesis, the cancer cells establish a preference for glycolytic metabolism—a
so-called Warburg effect [13–15]. This metabolic reprogramming/shift from the oxidative
phosphorylation to glycolytic pathway coupled with concomitant upregulated expression
of the solute carrier 2 (SLC2) family of transporters (e.g., glucose transporter GLUT1,
GLUT3, GLUT4) is the central hallmark of malignant gliomas [13,15,16]. While on one
hand, it exerts a selective pressure for tumor survival in the tumor microenvironment, at the
same time, it drastically perturbs the metabolic influx of glucose within the cell cytoplasm
and in circulation (more importantly, blood plasma, which is supplying nutrients to the
entire body).

Given that the pronounced alterations in metabolic pathways and their corresponding
metabolites manifest during the course of ‘tumor initiation-to-progression’ and/or in re-
sponse to the treatment in different cancers, we have compared the metabolic fingerprints of
glioma patients versus healthy controls in a quest to identify a panel of small, dysregulated,
circulating metabolites with the potential to serve as a predictive- and/or diagnostic mark-
ers in the clinical settings. One of the most advanced and sophisticated techniques, high
resolution magic angle spinning nuclear magnetic resonance spectroscopy (HRMAS-NMR),
has been used for untargeted metabolomics and data acquisition in conjunction with the
machine learning (ML) approach to analyze the large metabolic datasets. HRMAS-NMR
is considered to be advantageous over the latest mass spectrometric methods thanks to
its high reproducibility without the need for any pre-measurement treatment, robustness,
non-destructive nature, minimum sample preparation time, and ability to provide the
qualitative as well as the quantitative fingerprints of all measurable metabolites in a single
experiment [17–20]. However, the data obtained from HRMAS-NMR are usually complex;
raw NMR signal processing and targeted analysis pipeline often require an expert to reveal
the biological insights. We have thus combined the HRMAS-NMR with ML-based data
mining algorithms to assist in the traditional chemo-metric analysis. This, to the best of our
best knowledge, is the first study that systematically, yet in less time and with minimized
human biasness/intervention, assesses the plethora of small circulating metabolites in
blood, both qualitatively and quantitatively, and presents a sensitive marker demonstrating
the highest glioma-predictive accuracy (precision 1.0; recall 0.96; F1 measure 0.98) ever
reported.

2. Results
2.1. Clinicopathological Characteristics of Study Group

Untargeted metabolic profiling was performed by HRMAS-NMR using plasma sam-
ples (n = 42) obtained from low-grade (LGG, n = 9) and high-grade glioma (HGG, n = 17)
patients along with healthy controls (n = 16). The primary demographics and clinical char-
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acteristics of enrolled patients are shown in Table 1. Briefly, 60% of the enrolled patients
were males, while 40% were females, with the average age of patients being 38 years. Out
of the 93 initially registered LGG and HGG cases, only those patients were included in the
study who were confirmed by histopathological analysis of tumor tissue and were graded
according to the World Health Organization (WHO) classification of brain tumors. The
glioma patients having any metabolic disorder (i.e., diabetes mellitus), hypertension, liver
(hepatitis/liver cirrhosis), and/or cardiovascular disease were excluded from the study.

Table 1. Demographics and clinical characteristics of study subjects.

Characteristics LGG
(grade I–II)

HGG
(grade III–IV) Healthy Control Total

No. of Subjects
(n) 4 + 5 = 9 1 + 16 = 17 16 42

Mean Age
(Years) 33 ± 17 43 ± 16 34 ± 13 38 ± 16

Gender
Male 07 11 07 25
Female 02 06 09 17

Headache
Yes 05 13 0 18
No 04 04 16 24

Epileptic
Seizures

Yes 03 07 0 10
No 06 10 16 32

Gait/Balance
Changes

Yes 05 13 0 18
No 04 04 16 24

Neurologic
Deficits

Yes 07 15 0 22
No 02 02 16 20

Reduced Vision
Yes 03 08 0 11
No 06 09 16 31

Cancer History
Yes 01 03 0 04
No 08 14 16 38

2.2. Correlating Circulating Metabolomic Profiles for Glioma Detection

The representative HRMAS-NMR spectra obtained from the plasma samples of LGG,
HGG, and the healthy control groups are shown as Figure 1 (peaks of important metabolites
are labelled). The curve fitting of spectra from 4.66 to 0.50 ppm identified the resonance
peaks in 251 regions out of the 417 spectral regions (the remaining 166 regions mostly con-
tained zeros), which were selected for further analysis after applying the feature selection
techniques.
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but the number of identified spectral regions was too high to be supportive in routine 
analyses; therefore, we used the third ML model, i.e., logistic regression (Figure 2A). In-
terestingly, the predictive accuracy of this model with single spectral region was 98% (F1-
measure: 0.98). The aggregate confusion matrix and fivefold cross-validations applied to 
estimate the prediction error/evaluate the performance of each fitted model revealed only 
one false negative prediction with logistic regression, whereas none were revealed by ex-
tra tree classifier and random forest. The performance of all ML models used for glioma 
detection and classification is summarized in Table 2. 

Table 2. Performance and confusion matrices of machine learning (ML) algorithms applied for the detection and classifi-
cation of glioma in the study subjects. 

Sample Type Algorithm  
Applied 

Confusion Matrices of 
ML Algorithms 1 

No. of Fea-
tures Identi-

fied 2 
Group Precision Recall F1-Measure 

Glioma vs. Control 
(n = 42) 

Extra Tree Clas-
sifier 
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104 

Control 1.00 1.00 1.00 
[0      26] Tumor 1.00 1.00 1.00 

Logistic Regres-
sion 
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01 

Control 0.94 1.00 0.97 
[1      25] Tumor 1.00 0.96 0.98 

Random 
Forest 

[16      0] 
158 

Control 1.00 1.00 1.00 
[0      26] Tumor 1.00 1.00 1.00 

Figure 1. Comparison of high-resolution magic angle spinning nuclear magnetic resonance spectroscopy (HRMAS-MRS)
spectra of healthy (red), low-grade glioma (LGG, blue), and high-grade glioma (HGG, green) study subjects. Important
peaks are labelled.

Analysis of glioma versus control groups (LGG + HGG = 26, healthy control = 16)
using the two ML algorithms, extra tree classifier and random forest, identified 104 and
158 spectral regions, respectively, that differentiated the glioma samples from the healthy
controls with 100% accuracy (F1-measure: 1.00). Both models gave maximum accuracy, but
the number of identified spectral regions was too high to be supportive in routine analyses;
therefore, we used the third ML model, i.e., logistic regression (Figure 2A). Interestingly,
the predictive accuracy of this model with single spectral region was 98% (F1-measure:
0.98). The aggregate confusion matrix and fivefold cross-validations applied to estimate
the prediction error/evaluate the performance of each fitted model revealed only one false
negative prediction with logistic regression, whereas none were revealed by extra tree
classifier and random forest. The performance of all ML models used for glioma detection
and classification is summarized in Table 2.
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Figure 2. A. Mean score plots displaying the number of features (x-axis) and the corresponding F1 measures (y-axis) 
obtained for each of the three ML algorithms applied (i.e., extra tree classifier, logistic regression & random forest) for 
glioma vs control (a–c) and LGG vs HGG analysis (d–f), respectively. B. Receiver operating curve (ROC) plots depicting 
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X-axis shows false positive rate while Y-axis indicates true positive rate on a scale of 0 to 1.0. 

Figure 2. (A). Mean score plots displaying the number of features (x-axis) and the corresponding F1 measures (y-axis)
obtained for each of the three ML algorithms applied (i.e., extra tree classifier, logistic regression & random forest) for
glioma vs control (a–c) and LGG vs HGG analysis (d–f), respectively. (B). Receiver operating curve (ROC) plots depicting
predictive accuracy of the three ML algorithms for glioma vs control (a–c) and LGG vs HGG (d–f) groups, respectively.
X-axis shows false positive rate while Y-axis indicates true positive rate on a scale of 0 to 1.0.

The logistic regression model was regarded as best as it could differentiate glioma
samples from the healthy controls with 98% accuracy using a minimum number of spectral
regions (n = 1). The spectral regions identified by other two ML models were arranged in
descending order of importance and the top 30 were selected for metabolite identification.
Major contributing metabolites (n = 24) corresponding to these 30 spectral regions were
searched from the available literature and databases and are summarized in Table 3. The
single spectral region identified by the logistic regression model (1.47) was unveiled to
be ‘alanine’ and it was also found to be significantly decreased in glioma cases. Other
top dysregulated metabolites for glioma versus control cases included methionine, N-
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acetylaspartate (NAA), valine, glutamine, γ-aminobutyric acid (GABA), serine, α-glucose,
lactate, and arginine.

Table 2. Performance and confusion matrices of machine learning (ML) algorithms applied for the detection and classifica-
tion of glioma in the study subjects.

Sample Type Algorithm
Applied

Confusion Matrices
of ML Algorithms 1

No. of
Features

Identified 2
Group Precision Recall F1-Measure

Glioma vs.
Control
(n = 42)

Extra Tree
Classifier

[16 0]
104

Control 1.00 1.00 1.00
[0 26] Tumor 1.00 1.00 1.00

Logistic
Regression

[16 0]
01

Control 0.94 1.00 0.97
[1 25] Tumor 1.00 0.96 0.98

Random
Forest

[16 0]
158

Control 1.00 1.00 1.00
[0 26] Tumor 1.00 1.00 1.00

LGG vs.
HGG (n = 25)

Extra Tree
Classifier

[4 5]
107

LGG 0.80 0.44 0.57
[1 15] HGG 0.75 0.94 0.83

Logistic
Regression

[4 5]
92

LGG 1.00 0.44 0.62
[0 16] HGG 0.76 1.00 0.86

Random
Forest

[2 7]
88

LGG 0.67 0.22 0.33
[1 15] HGG 0.68 0.94 0.79

1 Key used: [true negative false positive]; [false negative true positive]; 2 details of features/spectral regions identified in each case are
provided in the Supplementary Material as Table S1.

Table 3. Top 30 spectral regions and their contributing metabolites identified by both sets of ML
analysis given in descending order of importance along with their statistical analysis.

Group 1: Glioma vs Control

ML Analysis Statistical Validation

Feature Importance Corresponding
metabolite p-value log2(FC)

Model: Logistics Regression

1.47 1.0 Alanine <0.0001 –3.7744

Model: Extra Tree Classifier

2.55 0.0642 β-Alanine <0.0001 −2.5717

2.12 0.0524 Methionine <0.0001 −3.3458

3.1 0.0491 Phenylalanine <0.0001 −7.3967

3.07 0.0415 X <0.0001 −2.5445

2.69 0.0405 NAA <0.0001 −4.7668

1.47 0.0383 Alanine <0.0001 −3.7744

0.98 0.0299 Valine <0.0001 −2.7959

1.71 0.028 Leucine <0.0001 −3.5926

3.13 0.025 Glutathione 0.0013 −5.7592

2.45 0.0222 Glutamine <0.0001 −3.0169

1.88 0.022 GABA 0.0028 −1.1886

3.95 0.0204 Serine 0.0003 −2.4757
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Table 3. Cont.

3.16 0.0182 Alanine <0.0001 −5.5148

3.69 0.0179 α-glucose <0.0001 −1.3382

1.44 0.0175 Deoxycholic acid <0.0001 10.114

3.18 0.0168 Taurocholic acid <0.0001 −4.2704

4.11 0.0161 Lactate <0.0001 2.7555

1.72 0.0157 Arginine 0.0003 −2.6918

3.58 0.0149 Threonine <0.0001 −6.6301

2.35 0.0148 Glutamate 0.0022 −1.4198

3.94 0.0143 Serine <0.0001 −2.3249

3.14 0.014 Spermidine 0.0119 −4.8047

3.88 0.014 Aspartic acid <0.0001 1.5565

2.09 0.0133 Glutamate <0.0001 −1.859

3.21 0.0126 N-Acetylcholine 0.0004 −4.3221

1.04 0.0126 Valine <0.0001 −1.8092

1.01 0.0124 Isoleucine 0.0002 3.8182

1.89 0.0121 GABA 0.001 −2.2659

3.68 0.0118 α-glucose <0.0001 4.8319

1.99 0.0117 Isoleucine 0.0006 −1.2174

Model: Random Forest

2.12 0.0491 Methionine <0.0001 −3.3458

0.98 0.0488 Valine <0.0001 −2.7959

3.16 0.0438 Alanine <0.0001 −5.5148

4.11 0.0344 Lactate <0.0001 2.7555

1.47 0.0316 Alanine <0.0001 −3.7744

3.53 0.03 Myoinositol 0.0003 1.0134

1.45 0.025 Isoleucine 0.0002 2.9475

1.44 0.0209 Deoxycholic acid <0.0001 10.114

1.99 0.0195 Isoleucine 0.0006 −1.2174

2.69 0.019 NAA <0.0001 −4.7668

2.32 0.0172 Glutamate 0.0003 2.1726

2.13 0.0172 Glutamine <0.0001 −3.4879

2.45 0.0165 Glutamine <0.0001 −3.0169

3.66 0.0157 Isoleucine 0.0050 4.9598

3.72 0.015 β-glucose 0.3716 NA

1.3 0.0146 Fatty acids <0.0001 −1.3971

3.94 0.0144 Serine <0.0001 −2.3249

3.69 0.0142 α-glucose <0.0001 −1.3382

1.01 0.0142 Isoleucine 0.0002 3.8182

0.92 0.0139 Isoleucine 0.0002 2.3071
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Table 3. Cont.

2.09 0.0133 Glutamate <0.0001 −1.859

3.88 0.0117 Aspartate <0.0001 1.5565

3.59 0.0114 L-Valine 0.001‘ −6.9614

Age 0.0107 NA NA NA

1.17 0.0105 X 0.006 −2.41

1.88 0.0105 GABA 0.0028 −1.1886

3.46 0.0097 β-glucose 0.0178 NA

3.22 0.0093 Arginine 0.0191 NA

3.58 0.0091 Threonine <0.0001 −6.6301

3.47 0.0084 β-glucose 0.7007 NA

Group 2: LGG vs HGG

ML Analysis Statistical Validation

Feature Importance Corresponding
metabolite p-value log2(FC)

Model: Logistics Regression

3.51 0.2059 Choline 0.030 NA

2.01 0.1116 NAA 0.041 1.239

3.2 0.0719 P-Choline 0.127 NA

1.02 0.0531 Valine 0.040 NA

3.48 0.0523 β-Glucose 0.040 NA

2.39 0.0442 Succinate/Malate 0.040 −1.1293

1.68 0.0441 L-Arginine 0.227 1.678

1.82 0.0435 X 0.015 1.4804

2.4 0.0416 Succinate 0.092 NA

2.31 0.0386 X 0.207 −1.647

3.5 0.0324 NAA 0.133 −2.3824

2.3 0.0311 GABA 0.133 −3.0367

1.84 0.026 X 0.054 1.6947

3.53 0.026 Myoinositol 0.871 NA

1.26 0.0236 Isoleucine 0.064 −2.4499

1.99 0.0171 Isoleucine 0.039 NA

2.45 0.0156 L-Glutamine 0.195 NA

0.88 0.015 Fatty acid 0.239 −2.0748

3.91 0.0149 Creatine 0.054 1.2722

1.21 0.0125 X 0.054 3.6568

2.25 0.0122 Fatty acid 0.206 2.6199

0.9 0.012 Fatty acid 0.041 1.6497

3.26 0.0028 Taurine 0.009 1.1339

1.83 0 X 0.388 −1.791

1.63 0 X 0.195 NA
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Table 3. Cont.

1.86 0 GABA 0.206 1.9942

1.97 0 Isoleucine 0.182 1.679

1.47 0 Alanine 0.640 3.2255

1.87 0 GABA 0.195 NA

1.88 0 GABA 0.195 NA

Model: Extra Tree Classifier

3.6 0.0637 Valine 0.015 1.5337

1.82 0.0352 X 0.015 1.4804

2.5 0.0265 NAA 0.015 1.3842

1.4 0.0254 X 0.071 1.5535

2.4 0.0254 Succinate 0.092 1.1227

1.97 0.0247 Isoleucine 0.182 1.679

2.04 0.0244 Glutamate 0.030 1.4984

0.99 0.0237 Isoleucine 0.104 1.2242

2.53 0.0232 X 0.015 2.0478

3.26 0.0232 Taurine 0.009 1.1339

2.08 0.0211 Glutamate 0.036 NA

3.59 0.0207 Threonine 0.053 NA

0.91 0.0186 Fatty acids 0.011 1.6453

0.98 0.017 Valine 0.249 1.7767

1.99 0.0167 Isoleucine 0.039 1.429

0.9 0.0167 Fatty acids 0.041 1.6497

3.33 0.0164 Scyllo inositol 0.015 1.5207

2.43 0.0162 Glutamine 0.222 NA

1.22 0.016 X 0.103 NA

3.91 0.0159 Creatine 0.054 1.2722

2.72 0.0154 NAA 0.136 2.2715

2.84 0.0149 X 0.054 1.2673

3.51 0.0144 Choline 0.030

0.85 0.0143 Tauro-cholicacid 0.726 −1.0208

1.68 0.0137 Leucine 0.227 1.678

3.54 0.0131 Glycine 0.050 1.1865

1.36 0.0127 Fatty acids 0.519 NA

3.42 0.0124 Taurine/Proline 0.031 NA

1.05 0.0123 Valine 0.097 1.5722

2.32 0.0119 Glutamate 0.026 NA

Model: Random Forest

3.6 0.0637 Valine 0.015 1.5337

1.82 0.0352 X 0.015 1.4804

2.5 0.0265 NAA 0.015 1.3842

1.4 0.0254 X 0.071 1.5535

2.4 0.0254 Succinate 0.092 1.1227



Metabolites 2021, 11, 507 10 of 20

Table 3. Cont.

1.97 0.0247 Isoleucine 0.182 1.679

2.04 0.0244 Glutamate 0.030 1.4984

0.99 0.0237 Isoleucine 0.104 1.2242

2.53 0.0232 X 0.015 2.0478

3.26 0.0232 Taurine 0.009 1.1339

2.08 0.0211 Glutamate 0.036 NA

3.59 0.0207 Threonine 0.053 NA

0.91 0.0186 Fatty acids 0.011 1.6453

0.98 0.017 Valine 0.249 1.7767

1.99 0.0167 Isoleucine 0.039 1.429

0.9 0.0167 Fatty acids 0.041 NA

3.33 0.0164 scyllo inositol 0.015 1.5207

2.43 0.0162 Glutamine 0.222 NA

1.22 0.016 X 0.103 NA

3.91 0.0159 Creatine 0.054 1.2722

2.72 0.0154 NAAG 0.136 2.2715

2.84 0.0149 X 0.054 1.2673

3.51 0.0144 Choline 0.030 NA

0.85 0.0143 Tauro-cholicacid 0.726 −1.0208

1.68 0.0137 Leucine 0.227 1.678

3.54 0.0131 Glycine 0.050 1.1865

1.36 0.0127 Fatty acids 0.519 NA

3.42 0.0124 Taurine/Proline 0.031 NA

1.05 0.0123 Valine 0.097 1.5722

2.32 0.0119 Glutamate 0.026 NA
Key used: NAA = N-Acetylaspartate; X = Unknown metabolite; NA = Not available.

2.3. Correlating Circulating Metabolomic Profiles for Glioma Classification (LGG/HGG)

A second set of ML analyses was performed to identify the spectral regions that may
potentially differentiate and classify low- (grade I–II) and high-grade (grade III–IV) gliomas
((total 25 samples in two groups (LGG = 9, HGG = 16)). Logistic regression presented the
highest F1-measure (0.86) and identified 92 spectral regions, whereas extra tree classifier
and random forest presented 0.83 and 0.79 F1-measures, while identifying 107 and 88
spectral regions, respectively. The top 30 spectral regions contributing towards detection
and classification of glioma are listed in Table 3 in descending order of importance. Their
corresponding dysregulated metabolites’ search came up with 22 metabolites that included
choline, NAA, valine, succinate, GABA, creatine, isoleucine, glutamine, fatty acids, and
taurine, among others. The diagnostic ability of each predictive model used was further
checked by ROC plots (Figure 2B), which showed high sensitivity of all three models
for glioma versus control analyses, with the area under the curve (AUC) being 0.99. For
the second set of analyses (classification of glioma in low- and high-grades), the logistic
regression model proved to be more sensitive (AUC = 0.86) in comparison with extra tree
classifier (AUC = 0.76) and random forest (AUC = 0.78). Additional analysis performed
using a separate test dataset of oligodendroglioma patients revealed the usefulness of ML
models. Extra tree classifier and random forest detected the presence of tumor by high
accuracy (F1-measure = 0.91). Logistics regression detected the tumor by selecting only one
feature (i.e., alanine) and scored an F1-measure value of 0.75 (Supplementary Data: Table
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S2). The overall results point towards the usefulness of ML-assisted circulating metabolite
profiling for both the detection and classification of gliomas.

2.4. Identification of Statistically Significant Dysregulated Metabolites and Glioma-Associated
Pathways

The ML-predicted top 30 spectral regions and corresponding dysregulated metabolites
along with their statistical significance (p-value) and fold-change value (log2FC), in both
the ‘glioma versus control’ and ‘LGG versus HGG’ comparisons, are listed in Table 3.
Altogether, statistical analysis identified 98 spectral regions with a p-value < 0.05 for glioma
versus control groups. Interestingly, except 3.72 and 3.47 ppm regions (the contributing
metabolite for both spectral regions is β-glucose), all top 30 ML-predicted spectral regions
were found to be statistically significant, adding to the predictive accuracy of ML analyses
(Table 3 shaded boxes). For the LGG versus HGG group, however, only 19 ML-predicted
spectral regions were regarded as statistically significant (p < 0.05).

Dysregulated metabolites contributing to significant spectral regions for both groups of
analysis and common in two comparison sets are summarized in Figure 3. Alanine was the
only metabolite detected by all the three ML models for glioma detection. Other important
metabolites for glioma detection included methionine, phenylalanine, glutathione, serine,
glucose, lactate, aspartate, NAA, and tryptophan. For glioma classification in low and high
grades, choline, p-choline, succinate, creatine, taurine, glycine, proline, and scylloinositol
were regarded as the key metabolites. The fold-change and mean intensity values for
selected dysregulated metabolites, in all three study groups, are presented in Figure 4 in
the form of heatmaps, volcano, and box and whisker plots.
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Pathway analyses were performed by selecting the 24 metabolites identified for
glioma detection and 22 metabolites for glioma classification separately. Major path-
ways found to be dysregulated in both analysis groups are shown in Table 4. The high-
est impact generating pathways for glioma detection were found to be associated with
alanine/aspartate/glutamate metabolism (impact = 0.7) followed by D-glutamine/D-
glutamate metabolism (impact = 0.5) and phenylalanine/tyrosine/tryptophan anabolism
(impact = 0.5). Metabolic pathways that created a maximum impact for glioma classi-
fication were linked with glutamine/glutamate metabolism (impact = 0.5) and the ala-
nine/aspartate/glutamate metabolism (impact = 0.48), as shown in Figure 5.

Table 4. List of metabolic pathways dysregulated for two comparison sets.

Sr.# Pathway
Glioma vs. Control LGG vs. HGG

Hits RawP FDR Impact Hits RawP FDR Impact

1

Alanine,
aspartate, and

glutamate
metabolism

06//28 2.13 × 10−6 8.34 × 10−5 0.70754 06//28 4.57 × 10−7 1.92 × 10−5 0.48398

2
D-Glutamine and

D-glutamate
metabolism

2//6 0.00332 0.03984 0.5 2//6 0.00207 0.01937 0.5

3 Arginine
biosynthesis 4//14 4.00 × 10−5 0.00084 0.19289 3//14 0.00052 0.00739 0.19289

4 Glutathione
metabolism 3//28 0.00829 0.08708 0.28281 2//28 0.04453 1 0.12939

5 Aminoacyl-tRNA
biosynthesis 13//48 8.36 × 10−15 7.02 × 10−13 0.16667 10//48 2.30 × 10−11 1.93 × 10−9 0

6
Glycine, serine,
and threonine

metabolism
2//33 0.09068 0.40088 0.21707 4//33 0.00053 0.00739 0.24577

7
Arginine and

proline
metabolism

4//38 0.0023 0.0386 0.20172 5//38 6.13 × 10−5 0.00129 0.25763

8

Phenylalanine,
tyrosine, and
tryptophan
biosynthesis

1//4 0.06057 0.31497 0.5 NA

9 Tryptophan
metabolism 1//41 0.47705 1 0.14305 NA

10 Phenylalanine
metabolism 1//10 0.14488 0.55316 0.35714 NA
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3. Discussion

Tumor development in the glial cells (the cells that typically modulate the brain microen-
vironment, homeostasis, and neurochemical balance in the CNS) is a complex process, often
accompanied by reprogramming of key metabolic pathways and the rewiring of central carbon
metabolism. Several studies have shown that the survival and growth of tumor cells is depen-
dent on prompt availability of nutrients/metabolic fuels, which in turn is linked with activation
and/or deactivation of several pathways, especially those of carbohydrate (e.g., glucose) and
amino acids (e.g., glutamine, glutamate) metabolism [10,11,15,21,22]. As metabolic alterations
in tumor cells have a pronounced impact on the profile of circulating metabolites, these
may serve as an attractive target for non-invasive diagnosis of disease and prognosis of
therapeutic response, without essentially going through the conventional MRI, CT scans,
and invasive tissue biopsy/histopathology analyses. However, how these metabolic pertur-
bations manifest in the context of different malignancies like gliomas (in particular, GBMs)
is a formidable challenge for the oncologists and clinicians.

Previously, a targeted analysis of plasma metabolites using mass spectrometric meth-
ods identified 18 statistically significant metabolites that could differentiate LGG from the
HGG samples [23–25]. Another study reported three plasma metabolites that were found
to be associated with survival in GBM patients [26,27]. Yet, to the best of our knowledge, no
study has reported liquid biopsy-based detection of glioma-associated metabolic signatures
combining the untargeted HRMAS-NMR with ML. ML-based data mining algorithms,
often conducted in an unsupervised manner, can reduce the human biasness and mini-
mize analysis time, while processing the large datasets obtained from the metabolomics
experiments. ML models have strong potential to be used in biomarker research as they
can identify the best features contributing to a particular phenotype, classify diseases, and
predict possible outcomes while utilizing the prior experiences obtained from the training
datasets [28,29].

In the present study, using untargeted HRMAS-NMR spectroscopy and applying
the ML linear logistic regression model, we interestingly identified a single metabolic
marker “alanine” that could differentiate glioma from non-glioma samples with the highest
predictive accuracy ever reported (precision 1.0; recall 0.96; F1 measure 0.98). Alanine
is a glucogenic amino acid, which, following enzymatic conversion to pyruvate, enters
the metabolic mainstream to provide energy and replenish the nutrient sink for rapidly
proliferating tumor cells [30] Interestingly, alanine was the only top-scorer metabolite that
was identified as a potential metabolic marker by all three ML models for glioma detection
(Table 3; Figures 3 and 4A,C). Other potential candidate metabolites that we identified
for liquid biopsy-based detection and/or classification of gliomas include essential, non-
essential, and branched-chain amino acids (e.g., Glu, Gln, Met, Leu, Ile, Val, Arg, Thr);
neurotransmitters (NAA, GABA); fatty acids; and D-glucose (Figure 3).

Whereas the aggregate confusion matrix of all the ML algorithms (Table 2) classified
the 16 HGG cases with 95–100% accuracy, it misclassified over 50% of LGG cases. In
particular, logistic regression accurately predicted and classified all HGG samples, but,
out of 09 LGG cases, it misclassified 05 as HGG. Extra tree classifier and random forest
misclassified 05 and 07 LGG patients as HGG, respectively, and one HGG patient (the same
patient in both models) as an LGG case. This LGG misclassification could primarily be
the result of the small number of LGG cases (n = 9) used to train/test the ML algorithms.
However, a deeper appreciation of the clinical record of the LGG subjects revealed that all
misclassified LGGs were isocitrate dehydrogenase (IDH) wild-type cases. Studies have
shown that tumors with IDH wild-type genes (also called IDH-negative) tend to progress
far more aggressively to grade IV GBM and demonstrate poorer prognosis than their IDH
mutant counterparts [31]. We speculated that, by analyzing the spatial distribution of
metabolic changes, within the brain tissue and/or circulation using ML-assisted HRMAS-
NMRS, one may predict the probability of LGG transition to HGG; however, further studies
are warranted to validate the hypothesis.



Metabolites 2021, 11, 507 15 of 20

Altered glutamate/glutamine metabolism is the hallmark of several cancers and, here,
we report a significant decrease in plasma glutamine concentration in glioma samples.
Glutamate/glutamine cycle in the brain is highly regulated; glutamate is a central amino
acid required for neurotransmission, it acts as synaptic excitatory neurotransmitter, and
accounts for more than 80% synapses in the brain [15,32]. After neurotransmission, gluta-
mate in synaptic cleft is taken up by the astrocytes, metabolized to glutamine by an enzyme
glutamine synthetase, and transported to neurons where it converts back to glutamate,
thus completing the glutamine/glutamate cycle [32,33]. Compared with normal cells,
the cancer cells are known to metabolize glutamine at higher levels to meet the ATP de-
mands for biosynthesis of required proteins, lipids, and nucleic acids [15,34,35]. Glutamate
homeostasis is found to be dysregulated in brain tumors, especially gliomas, and there
are studies that report a higher concentration of glutamine in the tumor tissues [36,37]. In
particular, the glial cells with IDH mutations have been identified for taking up high levels
of glutamine to produce higher levels of 2-hydroxyglutarate [31,37,38]. This increased
uptake of glutamine by glial cells may be responsible for lowering its levels in plasma
(Figure 4A–C), hence its potential role as an attractive, non-invasive biomarker for detection
and/or classification of gliomas.

Branched-chain amino acids (leucine, isoleucine, and valine) are utilized by the tu-
mor cells for de novo synthesis of glutamate, which is important to fulfil the increased
demand for glutamate [39,40]. Arginine, a semi-essential amino acid, was also found to
be dysregulated in both comparisons, thus significantly contributing to glioma detection.
Methionine is a vital amino acid; many different cancer cells have been found to be depen-
dent on it for their growth. An increased requirement for exogenous methionine during
cancer development is analogous to the high demands of cancer cells for glucose [41]. A
study has reported it to be essential for colony formation and survival of glioma cells [42].
Methionine levels in the present study were found to be significantly decreased in the
plasma of glioma patients, which indicates increased expense of this amino acid in the
tumor microenvironment (Figure 4).

Lactate is another important metabolite detectable in brain tumors or areas of ischemic
injury because of anaerobic glycolysis. High-grade tumors of adults show more promi-
nent lactate peak as compared with low-grade tumors, while all pediatric brain tumors
exhibit high lactate levels. Creatine (Cr) along with phosphocreatine is used normally
in energy metabolism. Its decreased levels in tumor cells are likely to be the result of its
consumption to replenishing energy under conditions when oxidative phosphorylation
and anaerobic glycolysis fail to meet the high energy demands of progressive tumors. Lipids
are associated with necrosis and are present in higher amounts in glioblastoma, lymphoma,
abscess, or other areas of destruction of myelinated white matter and, subsequently, decrease in
circulation [43]. Our results substantiate the previous studies signifying the role of dysregulated
plasma metabolic profiling in detection and/or classification of gliomas [23,41–44].

4. Materials and Methods
4.1. Study Population and Sample Collection

The study population is comprised of 42 subjects that include both low-grade (LGG;
n = 9) and high-grade glioma patients (HGG; n = 17) along with 16 healthy controls. The
study design was duly approved by the Advanced Studies and Research Board (ASRB;
2402-3/2018), University of the Punjab, Lahore. LGG and HGG patients from Punjab Insti-
tute of Neurosciences (PINS) (diagnosed by expert oncologists using magnetic resonance
imaging (MRI) or computerized tomography (CT) scan, undergoing surgical resection of
the tumor) were recruited during March 2018–2019. Clinical and demographic data of the
enrolled patients were obtained from medical record of the hospital. Patients’ recruitment
and sample collection followed the principals of the Declaration of Helsinki for research in-
volving human beings. Written informed consent from all the study subjects was obtained
prior to drawing their blood sample.
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4.2. Ex Vivo HRMAS-NMR

Peripheral blood (3 cc) from each patient (fasting state) was collected in Li-heparin
tubes, centrifuged (300× g, 10 min) to prepare plasma within an hour of collection, and
preserved in sterile tubes at −80 ◦C, as 200 µL aliquots, until further analyses.

The HRMAS-NMR analyses were performed on Bruker AVANCE 600 MHz spec-
trometer (Billerica, MA, USA) equipped with a triple nucleus (1 H, 13 C, 31 P) HRMAS
probes. The spectra were acquired by adding 10 µL plasma sample in a 4 mm zirconia rotor
with 12 µL Kel-F inserts; 2 µL D2O (Sigma Aldrich, St. Louis, MO, USA) with reference
trimethylsilylpropanoic acid (TSP) was added for field locking. For all measurements, 4 ◦C
temperature, 3600 ± 2 Hz spin-rate (to keep the rotation sidebands out of the acquisition
window), and a rotor-synchronized Carr-Purcell Meibom-Gill (CPMG) pulse sequence (to
function as a T2-filter) were used. To reduce the metabolites’ variation, each spectrum was
recorded at 4 ◦C with and without continuous wave water suppression, with spectrometer
frequency centered on water resonance [45].

4.3. Pre-Processing of the Spectral Data

Acorn NMR-Nuts (Livermore, CA, USA) software was used to process the acquired
HRMAS-NMR spectra. Free induction decay (FID) file of each spectrum was subjected
to a successive chain of commands to perform baseline correction (bc), exponential multi-
plication (em, 0.5 Hz line broadening), zero filling (zf), rotation control (rc = 68), Fourier
transformation (ft), spectra reversing (sr), and automatic phasing (ap). All spectra were
processed and aligned against TSP at 0 ppm that placed creatine (Cre) methyl resonance
at 3.026 ppm. Peak intensities between the spectral regions 4.66 and 0.5 ppm were curve
fitted to the accuracy of 0.01 ppm, and normalized to the relative spectral intensity (Rel_Int)
according to the formula below.

(%Rel_Intm,s) = (Exp_Intm,s) ∗ 100/
251

∑
i=1

(Exp_Inti,s)

where (Exp_Intm,s) represents the experimental intensity value for spectral regions m (m = 1,

2, 3, . . . 251) and samples s (s = 1, 2, 3, . . . . . . 42), and
251
∑

i=1
(Exp_Inti,s) represents the sum of

intensity values measured for all selected 251 spectral regions, for each of the 42 samples.

4.4. ML-Assisted Data Analysis

Both linear (logistic regression) and non-linear (random forest, extra tree classifier)
ML classification methods were used for the accurate prediction of the ‘spectral regions’
essentially linked with the glioma and non-glioma groups. The dataset was normalized
by applying Z-score normalization followed by log scaling. Feature selection technique,
involving analysis of variance (ANOVA), feature importance, and recursive feature elimina-
tion methods, was implemented to reduce the dimensionality of large dataset and to select
the best spectral regions associated with the disease. The HRMAS data initially contained
417 spectral regions for analysis. However, after initial selection, only 251 regions were
found to have a comparable numeric value; features containing more zero and/or missing
values were all excluded from the dataset. Further ML analyses were performed with only
those spectral regions that have had the highest impact on the response variable.

To ‘train’ and ‘test’ the dataset for the best possible predictions of glioma versus non-
glioma controls, a comprehensive ML approach was followed wherein a wide choice of
hyper-parameters was used for each model using GridSearchCV. A fivefold cross-validation
was performed at each step to avoid overfitting problem in the dataset. In particular, the
data were divided into five equal parts, 80% of which was used to train the ML model,
while the remaining 20% was used to test the model function, reducing the chances of
overfitting thenceforth. Different evaluation metrics, such as accuracy, recall, precision,
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and F1-measure (chosen for its best presentations in cases of the multiclass problems of
imbalanced data), were computed for each model using the formulas:

Precision = True positive/True positive + False positive
Recall = True positive/True positive + False negative

F1-measure= 2 × Precision × Recall/Precision + Recall

The analyses were repeated for LGG versus HGG cases, and the highest value of F1
measure was recorded by looping through every model, feature, and hyper-parameters.
The diagnostic potential of each predictive model was determined by the receiver operating
characteristic curve (ROC) plots. A separate test dataset comprising six plasma samples
from oligodendroglioma patients was also included to evaluate the tumor versus non-
tumor predictive accuracy of ML models.

4.5. Statistical Analysis

Statistical analysis, performed using JMP-pro16 software, were used to further validate
the spectral regions identified by ML algorithms. Shapiro–Wilk non-parametric test was
applied to check the normality of the given dataset, while the Wilcoxon test to find out
the statistically significant spectral regions for glioma versus control and LGG versus
HGG groups, separately. A comprehensive platform MetaboAnalyst 5.0 (available at:
https://www.metaboanalyst.ca/MetaboAnalyst/home.xhtml) (accessed on 13 July 2021)
was used to calculate the spectral fold change (FC; mean value of change) between the two
groups.

4.6. Metabolite’s Identification and Pathway Analysis

Literature search and publicly available databases such as Human Metabolome
Database (HMDB), Biological Magnetic Resonance Databank (BMRB), and MetaboMiner
and MetaboHunter, were used for the identification/assignment of metabolites to the
corresponding top 30 spectral regions, predicted by the ML models. Further, the metabolic
pathways dysregulated during the tumor progression were identified using MetaboAna-
lyst 5.0.

Metabolites of interest, quantified by selected distinctive unbiased NMR signals and
identified to be important after ML-based analyses, were used as the input matrix. The
pathway impact was calculated as the sum of the important measures of the matched
metabolites normalized by the sum of the important measures of all metabolites in each
pathway.

5. Conclusions

In conclusion, the advanced HRMAS-NMR in conjunction with ML algorithms may
serve as a pathway to predict the glioma risk, occurrence, and/or grading easily, reliably,
and accurately. The dysregulated circulating metabolite, alanine, may be tested non-
invasively using routine spectrophotometric methods in the future, enabling real-time
monitoring or objective evaluation of tumor progression, treatment response, and more
individualized prognostication. The double-blind validation studies with a larger number
of plasma samples from patients at different stages and grades of glioma are, however,
necessary to cross-verify the reliability and accuracy of ML models and add support to our
findings.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/metabo11080507/s1, Table S1: List of important spectral regions identified by two sets of ML
analysis, Table S2: Results of test dataset (oligodedroglioma vs control) analysis using ML models.
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