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Abstract
Current bee population declines and colony failures are well documented yet poorly understood and no sin-

gle factor has been identified as a leading cause. The evidence is equivocal and puzzling: for instance, many

pathogens and parasites can be found in both failing and surviving colonies and field pesticide exposure is

typically sublethal. Here, we investigate how these results can be due to sublethal stress impairing colony

function. We mathematically modelled stress on individual bees which impairs colony function and found

how positive density dependence can cause multiple dynamic outcomes: some colonies fail while others

thrive. We then exposed bumblebee colonies to sublethal levels of a neonicotinoid pesticide. The dynamics

of colony failure, which we observed, were most accurately described by our model. We argue that our

model can explain the enigmatic aspects of bee colony failures, highlighting an important role for sublethal

stress in colony declines.
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INTRODUCTION

The social bees (honeybees, bumblebees and stingless bees) provide

an important ecosystem service, pollinating both wildflowers and

agricultural crops (Klein et al. 2007; Winfree et al. 2008; Potts et al.

2010). Reports of social bee colony losses (Oldroyd 2007; Ratnieks

& Carreck 2010) and global bee population declines (Biesmeijer

et al. 2006; Goulson et al. 2008; Brown & Paxton 2009; Cameron

et al. 2011) are therefore of major concern. Several stressors have

been implicated in bee declines (Vanbergen & The Insect Pollina-

tors Initiative 2013), including pesticides (Desneux et al. 2007), dis-

ease and parasites (Brown & Paxton 2009) and habitat change and

loss (Kremen et al. 2007; Potts et al. 2010). While there is still

debate over which stressors are most detrimental, no single factor

has emerged as an overall primary cause (Ratnieks & Carreck 2010;

Vanbergen & The Insect Pollinators Initiative 2013).

Recent evidence has indicated that many environmental stressors

can affect bees even when they do not cause direct mortality (so

called sublethal impact). For instance, exposure to field level pesti-

cides can affect worker mobility, memory, orientation and foraging

performance (Desneux et al. 2007; Gill et al. 2012; Schneider et al.

2012; Williamson & Wright 2013), and parasites can impose ener-

getic stress (Moret & Schmid-Hempel 2000; Mayack & Naug 2009)

as well as impair both learning (Iqbal & Mueller 2007) and thermo-

regulation (Schafer et al. 2011). While these sublethal effects need

not kill individual bees, they may have profound effects on the

dynamics and functioning of the whole colony. Despite this, we

currently have little understanding of how chronic sublethal stress,

experienced by individual bees, can cause colonies to fail.

There is an important difference between the effects of lethal and

sublethal stress when considering the functioning of social bee colo-

nies. Redundancy in bee colonies allows them to lose a significant

proportion of their worker force without any apparent significant

impact on colony function and productivity (Schmid-Hempel &

Heeb 1991; M€uller & Schmid-Hempel 1992; Rueppell et al. 2009).

However, if bees become impaired rather than die, the impairment

may impose a load on the colony and lead to a cumulative effect on

normal colony function. Indeed, there is evidence that pesticide

induced behavioural impairment can detrimentally feedback to col-

ony eclosion (birth) and death rates (Gill et al. 2012), the production

of sexuals (Whitehorn et al. 2012) and increase the prevalence of dis-

ease (Brown et al. 2000). This feedback onto birth and death rates

generates Allee effects which lead to colony dynamics that are uncer-

tain, such as those with multiple outcomes and breakpoints (May

1977). We show here that effects of sublethal stress on colony func-

tion are important to explain colony dynamics. We did this by for-

mulating a mathematical model for colony dynamics that includes

colony function. We subsequently fitted this model to novel empiri-

cal data from bumblebee colonies that were sublethally exposed to a

pesticide and show that the description of this model is superior to

models which do not account for impairment to colony function.

MATERIALS AND METHODS

Modelling

Our model accounts for SubLethal Stress (henceforth, the SLS

Model) and describes healthy bees (S ) and impaired bees (I ) to

represent behavioural impairment by a sublethal stressor. Healthy

bees become impaired at rate b, and the level of behavioural

impairment is expressed by the parameter c ≤ 1 which reflects the

reduced contribution of the impaired bees to colony function, so

that the effective operational size of the colony is N = S + cI. The

model describes a growing colony, where the eclosion rate of new

bees in the colony is bN, with b as a rate constant. To capture

individual effects of stress, known to increase the mortality rate of

bees (Cartar & Dill 1991; Brown et al. 2000; Dainat et al. 2012), we

introduced mortality of impaired bees at a constant rate m to our
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model. We assume that the per capita death rate is inversely propor-

tional to the effective size of the colony, l/(N + φ), where decreas-
ing φ sets how sharply the death rate increases at low effective

colony sizes and l adjusts the overall rate. This reflects that colo-

nies containing more impaired bees are less good at maintaining

essential colony functions (e.g. foraging, thermoregulation, defence

and hygienic behaviour). This gives the following equations:

dS

dt
¼ bN � l

N þ /
S � bS ð1Þ

dI

dt
¼ bS � l

N þ /
I � mI ; ð2Þ

To visualise the dynamics of the SLS Model, phase plots were

generated by numerically integrating the model over time and

recording the trajectories of the variables. Many numerical runs

were done, iterating over different initial values of S and I while

keeping all other parameters the same. Each run was over a fixed

time period (20 days).

The feedback of stressed bees onto colony function in the SLS

Model distinguishes it from other mathematical models that model

disease and increased mortality in bee colonies (Schmid-Hempel

1998; Sumpter & Martin 2004; Khoury et al. 2011, 2013; Becher

et al. 2013). To assess the validity of the SLS Model, we compared

it with three other alternative models (their equations are listed in

Table 1) summarised as follows:

(1) A model described by Khoury et al. (2011), that we therefore

dub the Khoury model, describes how colony dwelling bees can

transition between hive and forager roles. The model also describes

the rate at which hive bees eclose and the rate at which forager

bees experience mortality, see Khoury et al. (2011) for a full descrip-

tion. It has been used previously to describe colonies treated with

pesticides (Henry et al. 2012).

(2) The SLS Variant Model is similar to the SLS Model, but has a

linear per capita death rate which is fixed at l rather than

l/(N + φ). It will be used as a comparison to test the importance

of the nonlinear death rate term which introduces positive density

dependence in the SLS Model.

(3) The final model is the Larvae Adult Model (henceforth the LA

Model) which considers that the pesticide could have a toxic effect

on larvae, increasing its death rate. It models larva (number L) and

adult bees (of number A). Larvae hatch at rate g, die at rate k,
eclose into adult bees at rate c and adult bees die at rate ξ.

Colony experiments

We provided bumblebee (Bombus terrestris) colonies a specified

amount of sucrose solution (every 2 days and 3 days over the week-

end) containing a sublethal concentration of a systemic neonicoti-

noid pesticide (10 ppb imidacloprid, see Supporting Information for

further details). Neonicotinoids are used extensively on horticultural

plants and flowering agricultural crops throughout the world. Imida-

cloprid is applied to crops such as oilseed rape (canola), sunflower,

maize, linseed, peas and beans, cucurbits and orchards which are

key food sources for bees (Cresswell 1999; Thompson 2001;

Holzschuh et al. 2011). The concentration of imidacloprid that we

used in this experiment was 10 ppb, which falls near the upper end

of the field realistic range reported for nectar and pollen in agricul-

tural crop species (Bonmatin et al. 2003, 2005; Chauzat et al. 2006,

2009; Krischik et al. 2007; Cresswell 2011; Blacquiere et al. 2012).

We also provided colonies with a specified amount of untreated

pollen every 2 days (3 days over the weekend). All colonies were

provided with increasing levels of pollen and sucrose throughout

the experiment to account for increasing demand as the colonies

grew (see Supporting Information Section 1.2 for more details on

pesticide treatment and feeding regime).

Colonies were housed in wooden nest boxes isolated from one

another, and the outside world, in laboratory conditions throughout

the experiment. We recorded the growth and development of 16

early-stage queen-right colonies (eight control colonies and eight

pesticide-exposed colonies). To eliminate any bias, colonies were

sorted by size at the start so that there was no significant difference

in the number of workers (mean � SEM: control = 6.5 � 0.8;

neonicotinoid = 8.25 � 1.64; t-test: t = �0.96, P = 0.36) or pupae

(mean � SEM: control = 6.4 � 1.8; neonicotinoid = 6.8 � 1.53;

t-test: t = 0.16, P = 0.88) per colony between control and neonicoti-

noid assigned colonies (see Supporting Information Section 1.1 for

more details on the colony set-up). B. terrestris has relatively small

colonies, compared to honeybees, making it possible to track all

individual eclosions and deaths. Throughout the 42-day experiment,

all colonies were inspected on a day-to-day basis to record the num-

bers of new eclosions and dead bees (see Supporting Information

Section 1.3 for more details on experimental measurements).

Model fitting

Our data collected from the experimental colonies consisted of day-

to-day observations of the numbers of bees that had newly eclosed

and died in each colony. We assessed four models against these data

(see Table 1). To fit a colony’s data to solutions of the models, we

used discrete stochastic versions of the models with a time interval

of one day. The numbers of bees that eclose, die or transition

between the two states of each model (the SLS Model and SLS

Variant Model each have two variables being Susceptible and

Impaired; the Khoury Model has two variables being Hive and For-

ager; the LA Model has two variables being Larva and Adult) were

drawn from a Poisson distribution with means according to the cor-

responding rates in the deterministic models.

We used the Numerically Integrated State Space (NISS) algorithm

to calculate a likelihood for a model and a solution given the data

Table 1 The four models we fitted against the empirical data from the experi-

mental bumblebee colonies

Model Equations

SLS Model
dS

dt
¼ bðS þ cI Þ � l

S þ cI þ /
S � bS

dI

dt
¼ bS � l

S þ cI þ /
I � mIS

Khoury Model
dH

dt
¼ L

H þ F

w þH þ F

� �
�H a� r

F

H þ F

� �

dF

dt
¼ H a� r

F

H þ F

� �
� mF

LA Model
dL

dt
¼ gA� cL � kL

dA

dt
¼ cL � nA

SLS Variant Model
dS

dt
¼ bðS þ cI Þ � lS � bS

dI

dt
¼ bS � lI � mI
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for eclosion and death rates for each colony algorithm (De Valpine

& Hastings 2002). The NISS algorithm calculates the probability of

observations for each time step P(Ot), given the observations at the

previous time step P(Ot-1), a model and a solution. This is done by

using the model to generate probabilities of all possible states at

time step t, given all possible states at the previous time step t − 1.

Given states of the model, probabilities of observations were calcu-

lated by summing the Poisson mass functions for the death and

eclosion rates from the model for each state.

The log likelihood for a set of parameters was calculated by add-

ing the logarithms of the probabilities of observations at every time

step and for each colony. The maximum likelihood was then esti-

mated using the adaptive Differential Evolution optimisation algo-

rithm (Brest et al. 2006) with 80 solutions per generation.

Optimisation stopped when 25 generations passed with no new best

solution. The initial state of the model is given by the initial state of

each experimental colony (number of workers) as follows: SLS

Model, all initial bees were healthy so S = number of workers, I = 0;

Khoury Model, colony split in half with equal numbers of hive and

forager bees, H = 0.5 9 number of workers, F = 0.5 9 number of

workers; LA Model, A = number of workers, the initial number of lar-

vae per adult was set by a parameter optimised by the Differential

Evolution algorithm giving L = A 9 initial_larvae_per_adult.

RESULTS

The SLS Model (Eqns 1 and 2) has fundamentally different dynam-

ics for different values of the parameters. After an initial phase of

growth the dynamics will show either: (1) growth for all colonies;

(2) multiple outcomes with some colonies growing and others fail-

ing dependent on the initial conditions; or (3) all colonies decline

and fail (see Fig. 1; Supporting Information Section 2.1). The pres-

ence of multiple outcomes relies on the l/(N + φ) term (Support-

ing Information Section 2.2) which introduces positive density

dependence in the model. With a simpler term (see SLS Variant

Model) there is still a sharp boundary between growth (Fig. 1a) and

failure (Fig. 1c).

The pesticide treated colonies in our empirical experiment fol-

lowed a similar growth pattern to that observed for SLS Model runs

ending in colony failure. By the end of the 42-day experiment, we

found a significant difference in colony size between control and

treatment colonies (Fig. 2 and data in Tables S1–S6). While all colo-

nies grew at a similar rate during the first 3 weeks, only control col-

onies continued growing throughout the 42-day study, whereas

treatment colonies began to shrink (at 33 days the average colony

size of the neonicotinoid treated colonies was and continued to be

significantly lower than control colonies; t-test for all comparisons:

P < 0.05). Fig. 2 also indicates that there is impaired colony

function in the pesticide treated colonies because the birth rates

decreased (relative to control colonies) while colonies were still

growing, and the death rates also increased during the period in

which treated colonies were in decline. This analysis of the data

from our experiment thus directly shows that sublethal pesticide

exposure decreases colony size after a lagged growth period, and

also indicates that this may be due to effects of impairment on col-

ony function rather than direct mortality.

To assess whether colony function is important for explaining

colony dynamics, we used a model fitting approach to investigate

the patterns of colony sizes, birth rates and death rates found in the

treatment colonies. We did this by comparing the fit of the SLS

Model with two alternative models. The Khoury Model incorporates

lethal stress, but not the impairment and feedback caused by suble-

thal stress (Khoury et al. 2011). The LA Model incorporates toxic

effects from pesticides upon larvae, which could introduce delayed

effects on colony size by killing larvae. We fitted the three models

to the empirical data using the NISS algorithm (De Valpine & Has-

tings 2002), which calculates a likelihood value for a model based

on all possible trajectories. Parameters were optimised using Differ-

ential Evolution (Brest et al. 2006). The best fits found for the SLS

Model and the Khoury Model are shown in Fig. 3 (see Fig. S2 for

a comparison of the LA Model and SLS Model). Using Akaike

weights we selected the best model, and found that the SLS Model

describes the data overwhelmingly better with essentially no support

for the Khoury Model or the LA Model compared with the SLS

Model (Table 2). Of the three models tested, only the SLS model

(that incorporates feedback of colony function on birth and death

rates) matched the pattern of birth rates decreasing and death rates

increasing in the treatment colonies.

This leads us to conclude that colony function is a key element

to explain the dynamics of our treatment colonies, and suggests an

explanation for the mechanism by which sublethal effects lead to

colony failure. Social bee colonies depend on the efficient coopera-

tive performance of multiple individual workers so that essential

tasks such as foraging, thermoregulation and brood care, sustain

and enhance overall colony function. They have many workers and

are able to buffer some effects of stress. However, if too many bees

become behaviourally impaired, irrespective of the reason, the col-

ony reaches a tipping point and is set on a path to failure through

moderate, but chronic, levels of stress. If the stress level is below

this tipping point, the colony can continue growing. There is, con-

(a) (b) (c)

Figure 1 A schematic diagram showing the changing types of dynamics in the SLS Model due to an increasing rate of healthy bees becoming impaired (b increases over

the three panels from left to right). Colonies with black trajectories grow whereas red trajectories lead to failure. (a) All colonies grow. (b) There is a breaking point

(dashed line) between two basins of attraction depending on the numbers of bees present in the colony and the level of impaired bees in the colony; depending on initial

conditions colonies will either grow or fail. (c) All colonies can grow at first but will eventually fail.

© 2013 The Authors. Ecology Letters published by John Wiley & Sons Ltd and CNRS.

Letter Chronic stress causes bee colony failure 1465



sequently, a critical stress level, where a small change in the amount

of stress can mean the difference between colony growth or failure.

Next, we investigated whether there is evidence for positive density

dependence in the dynamics of our colonies. To do so, we also fitted

the data to a variant of the SLS Model in which we replaced the posi-

tive density dependence term l/(N + φ) with a linear death rate l.
The variant model does not allow for multiple outcomes (see Sup-

porting Information Section 2.2), but there is still a critical stress level

for colony failure when impairment is too high (Fig. 1a and c).

Because the best fit of the variant model was much worse than the

full SLS Model (Fig. S3), with Akaike weights showing essentially no

support for the variant model (see Table 2), we can decisively infer

that social bee colony dynamics are subject to positive density depen-

dence and thus capable of showing multiple outcomes.

The SLS Model predicts that the level of pesticide is a crucial fac-

tor in setting the dynamics of colonies. In our empirical experiment

bees received an imidacloprid concentration, in their isolated colo-

nies, near the upper range of that typically found in field realistic

conditions (Cresswell 2011; Blacquiere et al. 2012). In a previous

experiment (Gill et al. 2012), bumblebees were treated with the

same concentration of imidacloprid, but we would expect them to

have received a lower level of exposure as they were free to forage

for both pollen and nectar in the field. The imidacloprid treated col-

onies continued to grow throughout the Gill et al. (2012) study, a

dynamic consistent with lower exposure in the SLS Model (Fig. 1a).

In this study, treated colonies showed a dynamic consistent with

higher pesticide exposure in the SLS Model (Fig. 1c), as all

treatment colonies failed. Our model predicts that multiple out-

comes are possible at a mid-range of imidacloprid exposure. To

simulate lower exposure in our model we can reduce parameter b
from that found in the fit against the treatment colonies, keeping all

other parameters the same, and we observe multiple outcomes in

the model’s dynamics (see Fig. 4).

DISCUSSION

We have shown here that bumblebee colonies fail when exposed to

sustained sublethal levels of pesticide, and that this can be explained
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Figure 2 Comparison of neonicotinoid treated colonies (blue filled circles) with control colonies (black open circles). (a) Both treatment and control (plot shows mean

numbers of workers � 95% CI) have similar growth at first, but trajectories begin to diverge after approximately 3 weeks. (b, c) Worker birth and death rates (mean

number of births and deaths per colony are shown) for treatment and control colonies illustrate the impact of the pesticide on colony health. In the treatment colonies,

the birth rate decreases while colony size increases during the first 21 days, and after 21 days the death rate increases while colony size decreases.
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by a decrease in colony function. By testing a suite of models

against data collected from failing colonies, we are able to make

several inferences. We infer that social bee colonies have positive

density dependence, they are subject to an Allee effect, and also

that there is a critical stress level for the success of a colony such

that a small increase in the level of stress can make the difference

between failure or success.

Our results provide two explanations as to why it has been so

difficult to explain colony losses. First, although we imposed a

specific (pesticide) stress in our experiment, the argument about

reduced colony function applies to any stressor that reduces the

contribution made by individual bees to colony function. This sug-

gests that multifactorial stress can cause colony failure (Vanbergen

& The Insect Pollinators Initiative 2013), but that failure is the

result of a critical stress level from the accumulation of multiple

sublethal factors (e.g. disease, weather and anthropogenic influences)

without the need for synergy between these effects. This can

explain why finding the link between colony failures and a single

specific stress factor has so far proved elusive.

Second, it appears that a number of potential causes for the fail-

ure of bee colonies have been dismissed because the presence of

the stressor is not a good predictor of colony failure (Cox-Foster
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Figure 3 Pesticide treated colonies grew before going into decline. (a) The SLS Model (blue line), fits this dynamic well, while the Khoury Model (green dashed line)

simply tends to equilibrium. (b, c) The fitting was done against birth and death rates. Data points show the mean (� SEM) across the eight colonies. Model curves show

the mean of eight model runs, each starting as a healthy colony at the size of a corresponding empirical colony. Extensive tests varying starting conditions showed that

all SLS Model runs have the same outcome of colony failure. SLS parameters: b = 0.126, c = 0.00332, b = 0.202, m = 0.00625, l = 0.0209, / = 0.402. Khoury

parameters: L = 0.690, a = 0.103, d = 1.96 9 10�7, m = 0.0297, w = 13.9.

Table 2 Summary of the models tested against the treated bumblebee colonies

Model Log likelihood AIC Akaike Weight

SLS �418 852 1

Khoury �510 1034 0

LA Model �446 904 0

SLS variant �437 888 0

The table shows, for each model, the maximum log likelihood found together

with calculated Akaike Information Criteria (AIC) values and Akaike weights.

There is essentially no support (Burnham & Anderson 2002) for the Khoury

Model, SLS Variant or LA Model compared with the SLS Model.
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et al. 2007). On the basis of our model, we predict that two colo-

nies, with similar stress levels can have divergent fates through the

Allee effect caused by the feedback through colony function. If the

effect is strong, one colony may be growing, while the other is set

on a path to failure. Even if the effect is weak, random events

(such as other stresses or demographic noise) can put similar colo-

nies on divergent trajectories. This will weaken the correlation

between the level of a stressor and colony failure. For example, the

parasite Nosema ceranae can cause colonies to fail (Higes et al. 2008).

However, while N. ceranae was detected in 100% of failing colonies,

it was also present in 47% of non-failing colonies (Cox-Foster et al.

2007). Our results therefore suggest that correlation statistics should

be used with caution for inferring causality.

Our study found that the best fitting model to our empirical data

was capable of showing multiple outcomes where the fate of the

colony can depend on its initial size; however, our experimental

results did not directly display these multiple outcomes. It is known

to be highly challenging to empirically demonstrate such multiple

outcomes (Ives et al. 2008; Mumby et al. 2013). In our case, the dif-

ficulty could arise from there being a very precise level of stress at

which multiple outcomes exist and since bee colony populations are

subject to random occurrences, the level of colony replication

required would make such experiments difficult to perform. Even

in the event that such experiments could be successfully conducted,

the results would still require model fitting (such as that done in

this paper) to verify these colonies did not fail due to random

chance (process error). The results of such an experiment would in

essence simply reconfirm what we have already shown here. The

evidence for multiple outcomes that we find here comes from the

fact that the SLS Model incorporates feedback from the population

density onto the death rate (the Allee effect). By showing that this

nonlinear response is important, we expect that any other models

that have as strong a fit to our data as the SLS Model, will also

show critical stress levels and multiple outcomes.

This study demonstrates two key aspects of how stress on indi-

vidual bees can disrupt colony function and lead to colony failure.

First, a stressor must have a chronic impact (over a period of sev-

eral weeks) before we see any noticeable effect: meaning that risk

assessments of a stressor’s impacts must be over a similar time

scale. Second, we show how a stressor that impairs colony function

can cause an Allee effect which makes colonies especially suscepti-

ble to failure from stress at earlier points in their life cycles. This

has important implications for the number of colonies that need to

be tested to assess the impacts of stressors to adequately measure

the proportion of colonies that fail.

The dominance of social bees as crucial pollinators stems primar-

ily from their social organisation: large colony sizes are supported

by the efficient coordination of tasks across group members, such

that colony performance is better than a collection of uncoordi-

nated individuals. It is intriguing that the social organisation that

leads to the success of social bees may also be a key factor in their

declines and colony failures.
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