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A metabolic reprogramming-
related prognostic risk model
for clear cell renal cell
carcinoma: From construction
to preliminary application

Qian Zhang †, Lei Ding †, Tianren Zhou †, Qidi Zhai , Chenbo Ni,
Chao Liang* and Jie Li*

Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
Metabolic reprogramming is one of the characteristics of clear cell renal cell

carcinoma (ccRCC). Although some treatments associated with the metabolic

reprogramming for ccRCC have been identified, remain still lacking. In this

study, we identified the differentially expressed genes (DEGs) associated with

clinical traits with a total of 965 samples via DEG analysis and weighted

correlation network analysis (WGCNA), screened the prognostic metabolism-

related genes, and constructed the risk score prognostic models. We took the

intersection of DEGs with significant difference coexpression modules and

received two groups of intersection genes that were connected with

metabolism via functional enrichment analysis. Then we respectively

screened prognostic metabolic-related genes from the genes of the two

intersection groups and constructed the risk score prognostic models.

Compared with the predicted effect of clinical grade and stage for ccRCC

patients, finally, we selected the model constructed with genes of ABAT,

ALDH6A1, CHDH, EPHX2, ETNK2, and FBP1. The risk scores of the prognostic

model were significantly related to overall survival (OS) and could serve as an

independent prognostic factor. The Kaplan-Meier analysis and ROC curves

revealed that the model efficiently predicts prognosis in the TCGA-KIRC cohort

and the validation cohort. Then we investigated the potential underlying

mechanism and sensitive drugs between high- and low-risk groups. The six

key genes were significantly linked with worse OS and were downregulated in

ccRCC, we confirmed the results in clinical samples. These results

demonstrated the efficacy and robustness of the risk score prognostic

model, based on the characteristics of metabolic reprogramming in ccRCC,

and the key genes used in constructing the model also could develop into

targets of molecular therapy for ccRCC.
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clear cell renal cell carcinoma, metabolic reprogramming, weighted correlation
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Introduction

Renal cell carcinoma (RCC) is universal cancer, which

accounts for 2.2% of the total cancer incidence and 1.8% of

the total cancer mortality (1). According to The Cancer Statistics

(2), at the end of 2021, about 76,080 new cases of RCC would be

diagnosed, and 13780 patients with RCC would die in the USA.

More than 40% of RCC patients will have metastasis after

surgical intervention (3). Clear cell renal cell carcinoma

(ccRCC), the prevailing and invasive histological subtype of

RCC, has become a worldwide issue. Clinicians mainly

employed the T, N, and M classification system and Fuhrman

nuclear grade to prognosticate patients’ prognosis of ccRCC and

guide clinical treatment decision-making. However, these

prognostic tools require improvements and novel, robust, and

specific prognostic models to acquire more accurate predictions.

A complex biological system cannot be changed by a single

part of its components but by the interaction of these

components. Bioinformatics, which introduces computational

methods and mathematical models, enlarges the magnitude of

data accumulated in the genomic, transcriptomic, and proteomic

studies, allowing us to simulate the complexity of the biological

system and understand these systems (4). Bioinformatics

technologies have become increasingly prevalent in finding

molecular mechanisms and specific biomarkers of diseases.

Weighted correlation network analysis (WGCNA) and

differently expressed gene (DEG) analysis are increasingly

being used as the analytical methods of bioinformatics.

WGCNA is a system biology method for discovering modules

of highly correlated genes and summarizing these modules by

using the intramodular hub gene (5). Then, selecting important

modules associated with clinical traits for further analysis. DEG

analysis can find quantitative changes in gene expression levels

and study molecular mechanisms of gene regulation. Using the

combination of DEG and WGCNA could improve the accuracy

of discriminating highly related candidate biomarker genes.

Analyzing the genes that have been screened out, we found

that these genes were primarily related to metabolism. Previous

studies have shown a strong link between RCC and changes in

metabolic pathways (6–8), and abnormally accumulated lipid

droplets have been found in the ccRCC cytoplasm (9).

Nevertheless, the prognostic effect of these metabolic genes on

patients remains unclear.

In this study, we usedWGCNA and DEG analyses to analyze

the mRNA expression data of ccRCC from The Cancer Genome

Atlas (TCGA) and Gene Expression Omnibus (GEO) databases,

which showed differential co-expression genes, and to explore

the relationship between these metabolic genes and prognosis of

patients with ccRCC. Screening by WGCNA, we obtained the

clinical traits of corelated genes, which may be considered as

biomarkers and targets for treatment. Using prognostic

metabolism-related genes, we constructed a prognostic

prediction model and validated it.
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Materials and methods

The workflow of this study is shown in Supplementary

Figure S1, and We will elaborate on each step in the following

sub-sections.
Acquisition datasets from TCGA and
GEO databases

The gene expression dataset of ccRCC was downloaded from

TCGA (https://portal.gdc.cancer.gov/) and GEO (https://www.

ncbi.nlm.nih.gov/gds) databases. Before analysis of the dataset,

patients with missing data of pathological diagnosis and

corresponding clinical information were excluded. Afterward,

the ccRCC dataset downloaded from the TCGA database

included 611 samples and corresponding clinical information.

The TCGA-KIRC dataset annotated using the Human hg38 gene

standard track contains 72 normal counts, 539 tumor counts,

and 19600 genes of RNAseq data.

Four datasets, including GSE36895, GSE46699, GSE53757,

and GSE66270, were downloaded from the GEO database. The

platform of such datasets is GPL570 [HG-U133_Plus_2]

Affymetrix Human Genome U133 Plus 2.0 Array, which was

used in gene probe annotation. We combined these four datasets

into a single dataset and then normalized and cleaned the

merged dataset using the R package affy (version 1.66.0),

impute (version 1.62.0), limma (version 3.44.3), and sva

(version 3.36.0) (10–12) (https://bioconductor.org/bioclite.R).

The merged GEO-ccRCC dataset included 172 normal samples

and 182 tumor samples. If one gene corresponded to duplicated

probes, then we used the mean value of these probes.
Identification of robust DEGs

TCGA-KIRC and GEO-ccRCC datasets were utilized for

analysis. The ccRCC samples of patients were divided into two

sets, normal and tumor samples. The R package limma (version

3.44.3) was used in analyzing the data and screening the DEGs

with |logFC|>1 and ad. just P<0.05. By using R software, the

DEGs of TCGA-KIRC and GEO-ccRCC datasets were visualized

as a volcano plot, the abscissa and ordinate of which were adj.P

and logFC, respectively. The upregulated genes were marked red,

and the downregulated genes were marked green. The top 100

DEGs were visualized by a heatmap plot.
WGCNA and Venn diagram

WGCNA was used to identify the key modules of highly

correlated genes and explore the relationship between network

genes and external sample traits, with the expression data
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obtained from TCGA and GEO databases. The R package limma

(version 3.44.3) was used in checking these expression data,

removing duplicate rows, and replenishing missing values. The R

package WGCNA (version 1.70.3) was used in analyzing the

data. The samples were clustered (cut line as 20,000), and all of

the samples were divided into two groups, namely, normal and

tumor. Then, the adjacency matrices were transformed into

topological overlap matrix (TOM), and the corresponding

dissimilarity was calculated (1-TOM). Here, we set the soft-

thresholding power as 2 (TCGA-KIRC) and 16 (CEO-ccRCC),

cut height as 0.25, and minimal module size as 50. Based on

the 1-TOM, the same gene expressions were grouped into a gene

co-expression module. Then, important modules were

selected, and the intersection with DEGs of TCGA-KIRC and

GEO-ccRCC datasets was used. Further analysis, such

as GO and KEGG analyses, was conducted on genes

that over lapped with those obta ined by the four

abovementioned datasets.
Functional annotation and functional
enrichment analyses

The R package clusterProfiler (version 3.16.1) (13),

org.Hs.eg.db (version 3.11.4), enrichplot (version 1.8.1), and

ggplot2 (version 3.3.3) were used in conducting Gene

Ontology (GO) enrichment and Kyoto Encyclopedia of Genes

and Genomes (KEGG) pathway analyses, with adjusted P< 0.05,

a cut-off criterion indicating statistical significance.
Screening of the prognostic metabolism-
related hub gene signature

We intersected the intersection genes with metabolic genes,

which were given by the metabolic pathway based on the KEGG

online database. Afterward, we obtained the key metabolic genes

and adopted univariate Cox regression analysis to screen hub

genes associated with prognosis. We regarded P< 0.05 as a

significant difference.
Construction and evaluation of the risk
score prognostic model

We obtained the prognostic metabolism-related gene and

then performed a Lasso-cox regression analysis to construct a

prognostic metabolic-related gene signature. In constructing the

risk score prognostic model, we computed the risk score for each

patient and divided all the patients into two parts, namely, high-

risk patients and low-risk patients, based on the median risk

value.
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Risk score = (Exprgene−1 � Coefgene−1) + (Exprgene−2 � Coefgene−2)

+… + (Exprgene−n � Coefgene−n)

where Expr is the expression of the gene in the signature, and

Coef is the Cox coefficient of the gene.

We investigated the time-dependent prognostic significance

of the risk score prognostic model using the R package

survivalROC (version 1.0.3) and compared it with the

predicted effect of age, T, N, M, grade, and stage.
Verification of the protein level and
prognostic values of key genes of the
prognostic model

The Human Protein Atlas database (HPA, https://www.

proteinatlas.org/), which provides a large amount of

transcriptomic and proteomic data in specific human tissues

and cells for research, is a valuable database (14). We confirmed

the protein level of each key gene between ccRCC and normal

tissue using the HPA database, in which immunohistochemistry

(IHC) was used to determine protein expression. In addition, we

used the UALCAN database (http://ualcan.path.uab.edu/index.

html) to confirm the protein level in different stages of ccRCC

and normal renal tissues, which provides protein expression

analysis option using the data obtained from the Clinical

Proteomic Tumor Analysis Consortium (CPTAC) dataset (11).

Based on the data obtained from the TCGA database, we used

the survival package in R software to explore the prognostic

values of key genes and performed Kaplan Meier survival

analysis as a box plot graph. Exploring the relationship

between disease-free survival (DFS) and the expression of key

genes in patients with ccRCC, we used the online tool gene

expression profiling interactive analysis (GEPIA, http://gepia.

cancer-pku.cn/).
Assessment of the forecast effect on the
risk prognostic model

In validating the association between the risk score and

patients’ survival time, we used the pheatmap (version 1.0.12) R

package to plot the risk plot and assessed the prognostic value

between low- and high-risk patients using the Kaplan-Meier

survival curve. We used univariate and multivariate Cox

regression analysis to assess the associations between the risk

score and various clinicopathological parameters in the TCGA-

KIRC Cohort using the Forrest plot. Moreover, exploring the

relationship between risk score and tumor grade and stage, we

plotted the violin figure using the online tool Sangerbox 3.0

(http://vip.sangerbox.com/). To validate the forecast effect, we

randomly sampled 70% of the TCGA-KIRC samples by using
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the caret (version 6.0.93) R package and formed the validation

cohort of this model.
Prediction of patient’s prognosis
and treatment

We used the R package rms (version 6.2.0) to build a

predictive nomogram, including clinicopathological

characteristics and risk score. Then we used foreign (version

0.8.80) and survival (version 3.3.1) R packages to calculate the

concordance index (C-index) and to plot the calibration curves

of the predictive nomogram. We also performed a GSEA

analysis to identify enriched terms and selected the top 13

significant pathways visualized as the multiple-GSEA plot.

pRRopjetic is an R package used for predicting Clinical

Chemotherapy (15). We used this R package to predict

sensitive drugs for high-risk patients.
Validation of clinical tissue samples by
RT-qPCR experiments

According to the manufacturer’s instructions, we isolated

the total RNA of ccRCC tissues and corresponding normal renal

tissues using TRIzol (Invitrogen), which was converted into

cDNA using PrimeScript™ RT Master Mix (Takara). After

cDNA was subjected to reverse transcription PCR using a

SYBR-Green master kit (Vazyme, Nanjing, China) on the

Applied Biosystems 7500 system, the following cycles were

performed: predenaturation at 95°C for 5 min; denaturation at

95°C for 10 s, annealing and extension at 60°C for 34 s; and

repeated denaturation, annealing, and extension for 40 cycles.

We used b-acting as the housekeeping gene to normalize the

relative expression of genes as an endogenous control using the

comparative Ct (threshold cycle) method (DDCt). The primers

of key genes for the quantitative polymerase chain reaction assay

were obtained from Primer Bank, which are shown in

Supplementary Table S1.
Results

Identification of DEG and WGCNA

We divided the samples of the TCGA-KIRC dataset into

two groups, namely, normal group and tumor group, and

identified the DEGs with |logFC|>1 and ad. just P<0.05. We

screened 3,747 DEGs (1,924 up-regulated and 1,823 down-

regulated genes, Figure 1D) from 14,684 genes (Supplementary

Table S2). Then, we selected the top 100 DEGs (50 upregulated

and 50 downregulated genes) for visualization by heatmap plot

(Figure 1A). We used the WGCNA R package to construct
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weighted gene co-expression modules where each module is

assigned with color; a total of 11 modules were included in the

TCGA-KIRC (Figure 1B). In visualizing the relationship

between each module and two clinical traits (normal and

tumor), we plotted the heatmap of the module-trait

relationship (Figure 1C). The genes of each module

membership are listed in Supplementary Table S3. We found

that the turquoise and purple modules were the top

two association with clinical traits (MEturquoise module:

r=0.82, P=7e-153; MEpurple module: r=0.61, P=3e-64), and

the genes of these two modules were downregulated in

ccRCC. The relationships between module membership and

gene significance are presented in Figures 1E, F (turquoise

module: cor=0.93, P<1e-200; purple module: cor=0.72,

P=1.8e-19).

The GEO-ccRCC dataset consisted of four datasets, and all

the samples of the database were divided into normal and tumor

groups. We identified 1,344 DEGs from 21,653 genes (650

upregulated and 694 downregulated genes, Figure 2B) with |

logFC|>1 and ad.just P<0.05 (Supplementary Table S4). We

plotted the heatmap plot for the top 50 upregulated and 50

downregulated genes (Figure 2A). Based on the GEO-ccRCC

database, we built a total of four weighted gene co-expression

modules used inWGCNA analysis (Figure 2C), and the heatmap

of the module-trait relationship visualized the correlation

between each module and clinical traits, namely, normal and

tumor (Figure 2D). The genes of each module membership are

listed in Supplementary Table S5. The blue module was the

highest relation with clinical traits (r=0.92, P=7e-144), and the

relationship between module membership and gene significance

for the tumor is visualized and shown in Figure 2E.
Acquisition of overlapping genes and
functional enrichment analysis

We obtained 3,747 DEGs in the TCGA-KIRC dataset, 1,344

DEGs in the GEO-ccRCC dataset, 10,601 and 114 co-expression

genes in the turquoise and purple modules of the TCGA dataset,

and 1,717 co-expression genes in the blue module of the GEO

dataset. We respectively recorded the intersection of the

turquoise and purple modules with DEGs in the TCGA-KIRC

dataset, DEGs in the GEO-ccRCC dataset, and the blue module

in the GEO dataset. Then, we obtained overlapping 1 (a total of

550 genes, Figure 3A) and overlapping 2 (a total of 77 genes,

Figure 3D) and performed enrichment GO analysis (Figures 3B,

E) and KEGG analysis (Figures 3C, F) on overlapping 1 and

overlapping 2. GO enrichment analysis of genes in overlapping 1

showed that the biological process (BP) was primarily enriched

in kidney epithelium development, kidney development, and

renal system development. In addition, the cellular component

(CC) was primarily enriched in the apical part of cell and

basolateral plasma membrane, and the molecular function
frontiersin.org
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(MF) was primarily gathered in the active ion transmembrane

transporter activity and active transmembrane transporter

activity (Supplementary Table S6). Based on GO analysis of

overlapping 2 genes, the BP showed that these genes were

primarily enriched in the small-molecule catabolic process,

organic acid catabolic process, and carboxylic acid catabolic
Frontiers in Oncology 05
process. The enrichment of the CC primarily occurred in the

peroxisomal matrix and microbody lumen. Moreover, coenzyme

binding and aldehyde-lyase activity were more related to these

genes in the MF (Supplementary Table S7). For KEGG pathway

analysis, carbon metabolism and the HIF-1 signaling pathway

were associated with overlapping 1 genes (Supplementary Table
B C

D E F

A

FIGURE 1

DEG and WGCNA analysis of TCGA-KIRC dataset. (A) Heatmap of top 100 DEGs between ccRCC and normal renal tissue from TCGA-KIRC
dataset. (B) Clustering dendrograms of all the genes of TCGA-KIRC, based on the difference in topological overlap, assigned modules with
different colors. (C) The eleven co-expression modules and the module trait between ccRCC and normal renal tissue. (D) Volcano Plot of
14,684 genes of TCGA-KIRC dataset. Green assigned downregulated genes and rad assigned up. (E) Module membership in the turquoise
module. (F) module membership in the purple module.
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S8). Meanwhile, carbon metabolism, glycolysis/gluconeogenesis,

and peroxisome were primarily related to overlapping 2 genes

(Supplementary Table S9).
Screening of prognostic metabolism-
related hub genes and construction of
the risk score prognostic model

As a result of functional enrichment analysis, metabolism

and genes in overlapping 1 and 2 have a strong connection. We
Frontiers in Oncology 06
used the intersection of overlapping 1 and 2 with metabolism-

related genes (Figures 4A, D) and adopted univariate Cox

regression analysis to screen prognostic metabolism-related

genes. In overlapping 1, we screened 13 prognostic

metabolism-related genes (ACADSB, ALAD, DEGS1, ECI2,

GPT2, GSTM3, HADH, HK2, LDHD, OAT, PFKP, PSAT1,

and UPP2; Figure 4B). Then we constructed the risk score

prognostic model 1 (AUC=0.694, Figure 4C) with Lasso-cox

regression analysis. Meanwhile, we screened six prognostic

metabolism-related genes (ABAT, ALDH6A1, CHDH, EPHX2,

ETNK2, and FBP1; Figure 4E) in overlapping 2 and performed
B

C

D

E

A

FIGURE 2

DEG and WGCNA analysis of GEO-ccRCC database. (A) Heatmap of top 100 DEGs between ccRCC and normal renal tissue from GEO-ccRCC
database. (B) Volcano Plot of 21,653 genes of ccRCC in GEO dataset. Green assigned downregulated genes and rad assigned up. (C) Clustering
dendrograms of all the genes of the GEO-ccRCC database, based on the difference in topological overlap, assigned modules with different
colors. (D) The four co-expression modules and the module trait between ccRCC and normal renal tissue. (E) Module membership in the
blue module.
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Lasso-cox regression analysis to construct the risk score

prognostic model 2 (AUC=0.795, Figure 4F). Therefore, we

selected the risk score prognostic model 2 and the genes used

to construct the model for follow-up analysis.
Verification of prognostic metabolism-
related hub genes

Based on the immunohistochemical results from the HPA

database (Supplementary Table S10), the protein level of the six

prognostic metabolism-related genes in tumors was generally
Frontiers in Oncology 07
lower than that in normal tissue (Figure 5A). We further verified

the protein level of each hub gene in every tumor stage based on

the CPTAC dataset (Figure 5B). The results of the boxplot

showed that the protein level of the six prognostic

metabolism-related genes was significantly downregulated in

different stages of ccRCC, compared with normal renal tissues.

Kaplan-Meier analyses (Figure 6A) indicated that the low

expression level of each of the six hub genes was significantly

associated with poor overall survival (OS) of patients with

ccRCC (P<0.05). Moreover, the low expression level of

ALDH6A1, CHDH, and ETNK2 was related to worse OS

(P<0.001). Meanwhile, based on the GEPIA2 database, we
B

C

D

E

F

A

FIGURE 3

Take the intersection and analysis with GO and KEGG. (A–C) The 550 genes given by the intersection of DEGs-TCGA, DEGs-GEO, the turquoise
module and the blue module. GO analysis of the 550 genes. KEGG analysis of 550 genes. (D–F) The 77 genes obtained from the intersection of
DEGs-TCGA, DEGs-GEO, the purple module and the blue module. GO analysis of the 77 genes. KEGG analysis of the 77 genes.
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observed that the expression level of ALDH6A1 and FBP1 had a

major relationship with worse DFS (P<0.05, Figure 6B), in

patients with ccRCC.
Assessment of the predicted effect on
the risk score prognostic model

In visualizing the correlation between the survival status and

risk score in ccRCC patients, we plotted a risk curve (Figure 7A),

on the basis of the TCGA-KIRC dataset. As shown in Figure 7A,

patients were divided into high-risk and low-risk groups. The

heatmap for the expression of the abovementioned six genes

showed that their expression level decreased gradually from the

high-risk group to the low-risk group. As the risk score

increased, more patients died. Using Kaplan-Meier analysis,

we found that the high-risk score was significantly connected

related to worse OS (P<0.001, Figure 7B). We used univariate

Cox regression and multivariate Cox regression analyses to

assess the independent role of the risk score prognostic model.

Univariate Cox regression analysis (Figure 7C) indicated that

age, grade, stage, T, M, N, and risk score were correlated with

OS, and multivariate Cox regression analysis showed that the

risk score could serve as an independent prognostic factor

(Figure 7D, P<0.001, hazard ratio: 2.033-9.787). Figures 7E, F

were violin plots for the risk score of different grades and stages

of ccRCC tumor. We observed significant differences in risk
Frontiers in Oncology 08
scores among different ccRCC tumor grades and stages

(P<0.001). The prognostic nomogram for the prediction of 1-,

3-, and 5-year survival in ccRCC is shown in Figure 8A. By using

foreign and survival R packages, we calculated the C-index of the

TCGA-KIRC dataset (C-index = 0.796) and the validation

cohort (C-index = 0.76). Figures 8B, C were calibration curves

of the nomogram for predicting patient survival at 3 years and 5

years. We validated the forecast effect using the Kaplan-Meier

analysis (P<0.001, Figure 8D), ROC curves (risk score AUC =

0.805, Figure 8E), and the 5-year survival prediction calibration

curve (Figure 8F) in the validation cohort.
GSEA analysis and drug sensitivity test

Based on the TCGA-KIRC dataset, we performed a GSEA

analysis to investigate the potential underlying mechanism

between the high-risk group and the low-risk group. We

enriched 178 upregulated pathways (51 in the high-risk group

and 127 in the low-risk group). Of the 127 upregulated pathways

in the low-risk group, 43 upregulated pathways were

significantly different. The top 13 enriched pathways (three in

the high-risk group and ten in the low-risk group) are shown in

Figure 8H. We used a drug sensitivity test to investigate the

sensitive drugs for high-risk patients. The top four major

sensitive drugs included Vinblastine sensitivity, ZM.447439,

AP.24534, and CGP.60474 (Figure 8I).
B C

D E F

A

FIGURE 4

Screen out genes associated with metabolism and prognosis and compare the prognostic model with TNM staging. (A–C) Screened prognostic
genes gave by turquoise module. (D–F) Screened prognostic genes gave by purple module.
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RT-qPCR validation of the expression
level of the six hub genes

RT-qPCR on 20 paired ccRCC and normal tissue samples

(Supplementary Table S11) showed that the expression level of

the six hub genes in tumor tissues was generally lower than that

of normal renal tissues (P<0.05, Figure 8G). The six hub genes

were significantly downregulated in tumor samples compared

with normal samples. This result was consistent with the

validated expression level of the six genes that constructed our

risk score prognostic model based on an online database.
Discussion

With the accumulation of cancer research, the link between

cancer and various metabolic changes has been revealed.

Goldblatt and Cameron obtained transplantable cancer cells

from heart fibroblasts through oxygen deficiency experiments

(16). Warburg described that the origin of cancer cells from

normal tissue cells has two phases: the first phase is an

irreversible injury of respiration, and in the second phase the

injured cells maintain their structure and energy supply by
Frontiers in Oncology 09
fermentation energy. Finally, the highly differentiated body

cells are converted into undifferentiated cells and grown wildly

(17). The fermentation energy that Warburg described in cancer

is the earliest mention of metabolic reprogramming, which is not

only the beginning but also the propelling of cancers. In

addition, he did not fully comprehend the discovery at that

time. Approximately 85% of RCC arise from tubular epithelial

cells (18). One of the characteristics of RCC is the mutation of

genes that are involved in metabolic pathways, including aerobic

glycolysis; fatty acid metabolism; and the metabolism of

tryptophan, glutamine, and arginine (19). Therefore, RCC is

generally regarded as a metabolic disease, and the major risk

factors include aerobic glycolysis and the mutation of metabolic

genes (20, 21). In this study, we characterized ccRCC to explore

the prognostic prediction model and treatment of ccRCC. We

performed bioinformatics analysis to screen out prognostic

metabolism-related key genes and construct the risk score

prognostic model using these key genes.

To avoid errors caused by insufficient sample size, the

ccRCC samples in this study were obtained from TCGA and

GEO databases, a total of 965 samples. we used DEG analysis

and WGCNA to screen the clinical traits related to DEGs. Based

on the correlation coefficient of genes, WGCNA, a network
BA

FIGURE 5

The protein level of the six key genes in kidney normal tissues and ccRCC tissues. (A) Immunohistochemical of the six key genes based on The
Human Protein Atlas database. (B) The protein expression of the six key genes in normal tissues and different stages of ccRCC tissues based on
the Clinical Proteomic Tumor Analysis Consortium database.
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analysis method, can identify biologically relevant modules and

key genes (5), which are correlated with clinical traits. Such

modules and key genes may serve as biomarkers for detection or

treatment (22). Therefore, WGCNA has unique advantages in

exploring the relationship of clinical traits related to modules.

We found that the coexpression modules closely related to

clinical traits were downregulated in ccRCC, and the

functional enrichment analysis showed that the genes in those

modules were related to metabolism. This result is in line with

our expected results. Finally, the genes of the risk score

prognostic model that we constructed included ABAT,

ALDH6A1, CHDH, EPHX2, ETNK2, and FBP1, which were

downregulated in ccRCC. Multivariate Cox regression analysis

showed that the risk score of the prognostic model could serve as

an independent prognostic factor. To compare the predicted

effect of the risk score prognostic model with that of age, T, N,

M, grade, and stage, we plotted ROC curves by the TCGA-KIRC

cohort and the validation cohort. The results of ROC curves

showed that the predicted effect of the risk score prognostic

model was similar to that of clinical grade and stage. The

prognostic nomogram combined abundant factors, including

age, T, N, M, grade, stage, and risk score. By using the

nomogram, we can make a more accurate prediction of 1-, 3-,

and 5-year survival of ccRCC patients.

The six key genes are involved in various metabolic

reactions, including amino acid metabolism, choline
Frontiers in Oncology 10
metabolism, and glucose metabolism. Most of the genes are

involved in cancers. The 4-aminobutyrate aminotransferase

(ABAT) encodes g-aminobutyric acid (GABA) transaminase,

which is a key enzyme for catabolism GABA, a major inhibitory

neurotransmitter, within the mitochondrial matrix. ABAT plays

an important role in neurometabolic disorders (23). The

deficiency of ABAT mediates the destruction of the

GABAergic system, and patients present corresponding clinical

manifestations of elevated GABA levels (24). For breast cancer,

the loss of ABAT expression could promote the potency of

tumorigenesis and metastasis (25), which could be a predictive

biomarker for endocrine therapy resistance (26). The results of

our study show that the expression of ABAT was downregulated

in ccRCC and related with poor DFS of patients. GSEA analysis

shows that the beta alanine metabolism pathway associated with

ABAT was upregulated in the low-risk group. A previous study

indicated that ABAT and aldehyde dehydrogenase 6 family

member A1 (ALDH6A1) worked as a tumor suppressor (27)

in ccRCC, thereby suppressing tumorigenic capability. In this

study, the downregulation of the expression of ALDH6A1, an

amino acid metabolism-related gene, was significantly linked

with worse OS and DFS in patients. Meanwhile, ALDH6A1 was

identified as a potential molecular signature for hepatocellular

carcinoma (28), prostate cancer (29), and muscle insulin

resistance in type 2 diabetes mellitus (30). Therefore,

ALDH6A1 may be a potential key target for regulating ccRCC
BA

FIGURE 6

Evaluation of survival. (A) Kaplan-Meier survival curves for the six key genes based on the TCGA-KIRC cohort. (B) Disease-free survival curves for
the six key genes based on Gene expression profiling interactive analysis database.
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metabolism. Based on the results of the GSEA analysis, ABAT

and ALDH6A1 function in the valine leucine and isoleucine

degradation pathways, which are upregulated in the low-risk

group. In addition, ABAT plays a role in the butanoate

metabolism and alanine aspartate and glutamate metabolism

pathways. The physiological role of Human choline

dehydrogenase (CHDH) is to regulate the concentration of

choline and glycine betaine, and CHDH is primarily located in

the liver and kidney (31). Moreover, CHDH plays a pivotal role

in mitophagy (32). Based on our results, genes of glycine serine

and threonine metabolism pathway, including CHDH, and the

downregulation of CDHD in ccRCC, were related to worse OS

and DFS in patients. Soluble epoxide hydrolase (EPHX2, sEH)

serves as a principal enzyme for the metabolism of

epoxyeicosatrienoic acids (33), and it is related to cell

apoptosis (34). For metabolic diseases, EPHX2 may be a

potential therapeutic target (35). In prostate cancer and

hepatocellular carcinoma, EPHX2 was downregulated, which

was significantly correlated with the progression of tumors (36,

37). Based on the enrichment results of GSEA, EPHX2 is

intimate with the peroxisome pathway. Furthermore, the
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mechanism of CHDH and EPHX2 in ccRCC was deficient.

Ethanolamine kinase 2 (ETNK2) was also reported in tumors.

The upregulation of ETNK2 enhances hepatic metastasis such as

gastric cancer (38). However, ETNK2 was downregulated in our

research for ccRCC with a poor OS of patients. Fructose-1, 6-

bisphosphatase 1 (FBP1), a rate-limiting enzyme for

gluconeogenesis (39), plays a critical role in tumor initiation

and progression of ccRCC. FBP1 has two major mechanisms

that inhibit ccRCC progression: first, FBP1 can inhibit a

potential Warburg effect; second, FBP1 can interact with the

HIF inhibitory domain and inhibit nuclear HIF function (40).

Targeting FBP1 has been an emerging therapeutical target for

cancers (39). Thus, this study aimed to explore more

therapeutical targets for ccRCC via screening the prognostic

metabolism-related genes.

Using the six prognostic metabolism-related genes, we

constructed a risk score prognostic model and divided patients

with ccRCC into high- and low-risk groups based on the risk

score of each patient. We found that the patients in the high-risk

group have poor OS, and lass survival time. Based on the violin

plots, we discovered that the risk scores on each grade and stage
B

C D

E

F

A

FIGURE 7

Risk score evaluation. (A) To evaluate the prognostic model, we compared the expression of six hub genes in high-risk patients and low-risk
patients. Heatmap shows the condition of six hub genes expression. Risk score cove and patients’ survival time plot show the relationship
between risks core and patients’ survival time. (B) Kaplan-Meier survival curves for high-risk and low-risk patients. (C) Forrest plot of the
univariate Cox proportional regression analysis in TCGA-KIRC cohort. (D) Forrest plot of the multivariate Cox regression analysis in TCGA-KIRC
cohort. (E) Violin plot shows risk score was closely associated with ccRCC grade. (F) Risk score has a relationship with the ccRCC stage. *, P<
0.05; **, P< 0.01; ****, P< 0.0001.
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of ccRCC were significantly different, and the risk scores

displayed a significantly positive correlation with the degree of

malignancy of ccRCC. The results of multivariate Cox regression

analysis showed that the risk score of the prognostic model could
Frontiers in Oncology 12
serve as an independent prognostic factor. Based on the

prediction of clinical chemotherapeutic response analysis, we

screened four drugs, namely, Vinblastine, ZM.447439,

AP.24534, and CGP.60474, which may be more sensitive for
B

C
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I

A

FIGURE 8

Further analysis of the prognostic model. (A) The prognostic nomogram for the prediction of 1- to 5-year overall survival in ccRCC. (B) The
calibration curves of the nomogram for the prediction of 3-year survival. (C) The calibration curves of the nomogram for the prediction of 5-
year survival. (D) Kaplan-Meier survival curve for high-risk and low-risk patients in the validation cohort. (E) ROC curve in the validation cohort.
(F) The calibration curves of the nomogram for the prediction of 5-year survival in the validation cohort. (G) RT-qPCR validation shows the
expression of the six hub genes was downregulated in ccRCC tumor tissues. **, P< 0.01; ****, P< 0.0001. (H) Multi-GSEA enrichment analysis
shows the top 13 representative KEGG pathways in high-risk and low-risk patients. (I) Drug sensitivity analysis shows the most sensitive four
drugs in high-risk patients.
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patients in the high-risk group. Vinblastine is a dimeric alkaloid

isolated from the Madagascar periwinkle plant, which exhibits

significant cytotoxic activity, and it is used as an antineoplastic

agent in antitumor therapy (41). For our analysis, Vinblastine is

the principal sensitive drug for high-risk group patients. Mitotic

Aurora kinases are essential for accurate chromosomal

segregation during cell division. As an Aurora-selective ATP-

competitive inhibitor, ZM.447439 can interfere with the spindle

integrity checkpoint and chromosomal segregation (42). In

addition, Vinblastine and ZM.447439 function by interfering

with cancer cell proliferation. AP.24534 and CGP.60474 are

kinase inhibitors. Ponatinib, AP.24534, is a third-generation

tyrosine kinase receptor inhibitor (43), and CGP.60474 is an

inhibitor of cyclin-dependent kinase (44). Tyrosine kinase

inhibitors are novel therapies for ccRCC treatment (45, 46),

including sunitinib, sorafenib, pazopanib, axitinib, and tivozanib

(47–50). Tyrosine kinases are signaling molecules, and tyrosine

kinase inhibitors have become a successful class of drugs in the

treatment of ccRCC. Thus, we might consider that these four

identified sensitive drugs could be potential treatments for

ccRCC, and we believe that novel drugs worked by regulating

the pathway of cellular metabolism will appear increasingly in

the near future.

This research also has some limitations. First, this is a

retrospective study, we need more clinical samples to improve

our findings and the predicted effect of the risk score prognostic

model. Second, the molecular mechanisms of the six key genes

need to be further elucidated in vivo and in vitro experiments for

ccRCC clinical applications.
Conclusions

In conclusion, based on the metabolic reprogramming

characteristics in ccRCC and combined with WGCNA

analysis, we identified six metabolism-related genes, which

could be potential treatment targets for ccRCC. Furthermore,

we constructed a risk score prognostic model, the risk score of

which constitutes an effective independent prognostic factor. By

including the risk score, the nomogram can help us make a more

accurate prediction of patient survival. The improvement of the

prognostic model may improve the outcome prediction for

ccRCC patients in the future.
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