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Abstract

Background: DNA replication begins at specific locations called replication origins, where helicase and polymerase act in
concert to unwind and process the single DNA filaments. The sites of active DNA synthesis are called replication forks. The
density of initiation events is low when replication forks travel fast, and is high when forks travel slowly. Despite the
potential involvement of epigenetic factors, transcriptional regulation and nucleotide availability, the causes of differences
in replication times during DNA synthesis have not been established satisfactorily, yet.

Methodology/Principal Findings: Here, we aimed at quantifying to which extent sequence properties contribute to the
DNA replication time in budding yeast. We interpreted the movement of the replication machinery along the DNA template
as a directed random walk, decomposing influences on DNA replication time into sequence-specific and sequence-
independent components. We found that for a large part of the genome the elongation time can be well described by a
global average replication rate, thus by a single parameter. However, we also showed that there are regions within the
genomic landscape of budding yeast with highly specific replication rates, which cannot be explained by global properties
of the replication machinery.

Conclusion/Significance: Computational models of DNA replication in budding yeast that can predict replication dynamics
have rarely been developed yet. We show here that even beyond the level of initiation there are effects governing the
replication time that can not be explained by the movement of the polymerase along the DNA template alone. This allows
us to characterize genomic regions with significantly altered elongation characteristics, independent of initiation times or
sequence composition.
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Introduction

One of the basic traits of all living systems is the ability to

reproduce and transmit genomic information to their offspring.

The requisite for that is exact and efficient replication of the

genome, a highly controlled cellular process, which makes up a

large part of the cell cycle. Severe malfunctions within DNA

replication are usually lethal. As such, DNA replication is subject

to a complex regulation in all eukaryotic organisms, which makes

the identification of the underlying mechanism a non-trivial task.

In a cell, DNA replication begins at specific locations scattered

across the genome called origins of replication [1–3]. They contain

DNA sequences that are recognized by replication initiator

proteins, such as the dnaA in Escherichia coli or the origin

recognition complex (ORC) in yeast, which in turn recruit other

proteins to separate the two strands and initiate replication [4–6].

A central role in the process of replication is played by activation of

helicases, which break the hydrogen bonds holding the two DNA

strands together and generate two single strands of DNA. In the

budding yeast Saccharomyces cerevisiae, the ORC complex bound to the

origin initiates Mcm2-7 helicase loading in G1 phase by recruiting

specific licensing factors in the pre-replicative complex (pre-RC) [7].

When cells enter S phase, the activation of kinase complexes - Cdk1-

Clb5,6 (S-CDK) and Cdc7-Dbf4 (DDK) [8,9] - regulates the Mcm2-

7 helicase [10,11]. Once activated, Mcm2-7 unwinds origin DNA to

trigger the initiation of DNA replication [12].

This unwinding of DNA at the origin and synthesis of new

strands form a replication fork at which the replication takes places

in a non-symmetric manner. In the 5
0
?3

0
direction, the new DNA

strand, also called the leading strand, is synthesized in a

continuous manner by the DNA polymerase e [13]. In contrast,

the DNA strand at the opposite side of the replication fork, the

lagging strand, is formed in the 3
0
?5

0
direction. Because DNA

polymerase e cannot synthesize in this direction, DNA along the

lagging strand is synthesized in short segments known as Okazaki

fragments [14,15]. In this process, the DNA polymerase a-primase

complex builds RNA primers in short bursts along the lagging

strand, enabling the DNA polymerase d to synthesize DNA

starting from these primers in the 5
0
?3

0
direction [13].

Afterwards, the RNA fragments are removed and the DNA ligase

joins the deoxyribonucleotides together, completing the synthesis

of the lagging strand (see [16,17] for recent reviews).
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In general, two replication forks emerge from an activated

origin of replication, traveling in opposite directions. The rate at

which the DNA is replicated can differ between replication forks

issued from the same origin, as well as for those from the other

origins located on the chromosome. This results in a broad

distribution of replication fork rates in budding yeast [18].

Different fork rates at different chromosome regions could have

either regulatory functions or could be caused by higher order

structures of the chromosome (e.g. protein binding or tertiary

structure). However, what exactly causes deviations in the

replication fork rates has not yet been established satisfactorily.

It has been suggested that epigenetic alterations influence fork

rates both in yeast [19–24] and in higher eukaryotes [25,26], and

that chromatin structure could modulate origin activity [27].

Furthermore, transcriptional activity regulates the replication

origin activity [28–30] and it seems possible that it might play a

role in altering the replication fork progression [31–33], even

though it is not clear whether it enhances the fork rate due to

already partly unwound DNA or impeding it because the DNA is

blocked by proteins involved in transcription.

Besides epigenetic factors, also availability and abundance of

single nucleotides affect activation of origins of replication [34]

and could play a role in variations of replication fork rates. Fork

rates are generally established by a directed movement of the

replication machinery along the DNA template. The polymerase

has to advance nucleotide per nucleotide, apparently making the

process itself non-continuous, with a stepwise character. This is

due to the movement of the complex from a replicated nucleotide

to the next unreplicated one (movement step), that is interrupted

by the catalyzing activity during which the complex is stationary

on the DNA. During the stationary state, the replication

machinery incorporates a nucleotide into the nascent DNA strand

that corresponds to the one of the template. This process is subject

to various fluctuations, like nucleotide-specific polymerization

kinetics, substrate availability (diffusion of the nucleotides),

mismatch control (wrong nucleotides arriving at the polymeriza-

tion sites but not being processed) and malfunctions that

potentially cause delays. This makes DNA replication motion at

least partly a stochastic process that is dependent on sequence

properties such as length and base composition. However, to

which extend this contributes to the overall replication rate

remains unclear, and whether these sequence-specific attributes

play an active role in the variation of DNA replication rates has, to

our knowledge, not been investigated.

In this work, we interpret the replication machinery movement

as a directed random walk. A directed random walk can be seen as

a process in which the location of an object randomly changes by a

single directed step, depending on some probability parameters. In

the case of the replication machinery, the directed step is the

movement with probability p or the stalling/waiting with

probability 1{p. The replication machinery only moves if the

appropriate nucleotide is instantly available and can be incorpo-

rated without problems, and stalls in case of a mismatch or other

fluctuations, as mentioned above. The movement of the

machinery takes the characteristic time t and the stalling takes

the time w. Probabilities (p), transition times (t) and waiting times

(w) may be specific for the four bases A,T,G and C.

A general assumption of this work is that observed replication

rates, that can be found in literature, are governed by two different

and independent aspects, one that is sequence-specific and one

that is not. It is the combination of both aspects that probably

determines the shape of the experimental replication profiles [18]

and the dynamics of DNA replication. However, it is currently not

known to which extent both factors contribute to the observed

dynamics, nor whether these contributions are locally restricted or

not. There are global properties influencing the replication rate

(like the nucleotide composition), as well as e.g. histone

acetylation/methylation or active transcription, which vary

throughout the genome and are therefore rather local quantities.

We assume that the replication time of the profiles (Tprof ) is

composed of the following: the time that the replication machinery

needs in terms of reaction kinetics (nucleotide incorporation) and

motion (Tseq), the time that is needed to account for active

transcription or any other local regulation (Treg) and an error (e)

standing for random fluctuations, thus: Tprof ~TseqzTregze.

This equation also exemplifies our approach: we decompose the

experimental data (Tprof ) into the different components. We do

this by describing and therefore capturing the underlying, seizable

part of the system (Tseq) filtering it from the data, to unravel the

error (e) and the unknown, regulatory component (Treg) of the

data. We provide here a concise characterization of sequence-

specific replication rates, as well as a spatial map of regions with

sequence-independent alterations in replication rates within the

genomic landscape of budding yeast.

Methods

Model formulation and assumptions
Genomic sequences for all the 16 chromosomes of budding

yeast were obtained from the NCBI reference sequences database

[35]. Information about the replication dynamics in budding yeast

was extracted from recently published whole genome replication

profiles [18]. A replication profile is the plot of the replication time

as a function of the position in the chromosome (as an example,

the profile for chromosome II is shown in Fig. 1). Peaks correspond

to replication origins and valleys to termination zones. The earlier

an origin initiates DNA replication, the higher is its respective peak

in the profile. The initiation process is also called origin firing. The

slope of the line connecting an origin (peak) and a termination

zone (valley) shows the direction and the rate of the fork migration.

Replication profiles represent an average of population and not

single cell data, therefore, caution must be taken in directly

relating those profiles to the elongation time of the individual

replication forks. The authors calculated the profiles as means over

several individual measurements, therefore we can not expect to

characterize the level of variation within the data and, thus, the

inherent stochasticity. However, it is possible to calculate the mean

value of the stochastic process that governs the replication

dynamics. Additionally, profiles obtained from the literature have

been smoothened prior to publication and thus been transformed

to a continuous curve where the original peaks and valleys of the

profile at the replication origins are flattened. This leads to a slight

distortion of the data. We approximated the maximum error this

effect imposes on the replication profiles. This error can be

quantified by measuring the lengths of chromosomal regions

within the profile that show a non-zero curvature, thus D
d2y

dt2
Dw0.

Multiplying the lengths of those regions, L (in base pairs), by the

inverse of the average overall replication rate, a{1 (in seconds per

base pairs), yields the error distribution

curv : ~L:a{1: ð1Þ

Furthermore, the profiles contain the combined information of the

initiation (or firing) time of the origins and the time required for

the elongation for every chromosomal regions. In this paper we

shall refer to the genomic sequence between one peak and one

valley in the profile as a ‘‘segment’’. For those segments we

Modelling Replication Motion
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calculated the elongation time as the time difference between the

corresponding peak and valley (as shown in Fig. 1). Thus, a single

segment si is assigned to a single elongation time Ti
prof which we

decomposed into Ti
prof ~Ti

seqzTi
regzei. For Ti

seq we allowed a

direct dependence on the nucleotide composition of the sequence,

which is the frequency of each nucleotide within the segment. The

remainder consists of a normal-distributed error term ei!N (m,s)

and a specific time Ti
reg. Ti

reg denotes some unknown local

influence on the replication time and is not following the normal

distribution of the error. We allowed a non-zero mean (m) here

since we might have systematic global errors. For example curv is

also contained in . This directly imposed a statistical test for

identifying segments with a non-zero Ti
reg by comparing against

the null-hypothesis of the error distribution of the ei. For this aim,

we filtered the individual Tseq from the elongation times Tprof by

building a mathematical model which specifically describes Tseq.

Here, we assumed that the replication machinery movement on

the DNA segment follows a directed random walk where the

probabilities for the movement and the corresponding waiting and

step times were only dependent on the current position (base) of

the replication machinery and independent of the previous or next

position. Furthermore, since the data of Raghuraman et al. only

indicate the movement of the replication machinery and does not

give detailed information about leading and lagging strand

polymerization, we made further assumptions. The following

components are not modeled explicitly but assumed as part of the

replication machinery: helicase Mcm2-7 with associated factors,

polymerases d and e, polymerase a-primase and ligase. We further

assume that the synthesis of the leading and the lagging strand

occurs in parallel.

For the movement we assumed that the replication machinery

would either move forward with a base-dependent probability

p(X ) for base X or wait with probability 1{p(X )
(X[fA,G,C,Tg). For a finite sequence this yields a total step

number Ntot(X ) for each base being the sum of forward (f ) and

waiting (w) steps (Nf (X )zNw(X )). Here the forward step would

take a characteristic time t(X ) and the waiting step a time w(X )
(illustrated in Fig. S1). Due to the spatial independence the

probability for k forward steps for base X now follows a binomial

distribution, thus

P(k,X )~
Ntot(X )

k

� �
p(X )k(1{p(X ))Ntot(X ){k ð2Þ

with expected forward steps

Nf (X )~E(k,X )~Ntot(X )p(X ), ð3Þ

where E(k,X ) denotes the expectation of the binomial distribu-

tion. However, since Ntot(X )~Nf (X )zNw(X ) and Nf (X ) being

the (expected) number of forward steps for base X , we can derive

the expected number of waiting steps by the number of forward

steps, since

Ntot(X )p(X )~Nf (X ) ð4Þ

Nf (X )zNw(X )
� �

p(X )~Nf (X ) ð5Þ

Nw(X )p(X )~Nf (X )(1{p(X )) ð6Þ

Nw(X )~Nf (X )(p(X ){1{1): ð7Þ

This formulation is important since the information we get from

the profiles is the number of forward steps for each of the bases

(simply the base counts in the segment). Thus, receiving the

Figure 1. Schematic view of the data processing procedure. The genomic sequence between one peak and one valley in the experimental
profiles (Chromosome II is shown as an example [18]) is called ‘‘segment’’. We calculated the elongation time as the time difference between the
corresponding peak and valley, where ecurv denotes the error caused by data smoothing.
doi:10.1371/journal.pone.0010203.g001
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number of forward steps for each base Nf (X ) from the segment

lengths we can now derive the expected replication time as the

sum of times required for each subset of bases,

t̂t~
X

X

Nf (X ) t(X )z p(X ){1{1
� �

w(X )
� �

: ð8Þ

Defining the column vectors p~(pX )T , t~(tX )T and

w~(wX )T and setting N to be the (F|4) matrix with the base

counts for each of the F segments in its columns, we can concisely

derive the segment-depending replication times via

T̂T~N tz diag(p){1{1
� �

w
� �

: ð9Þ

Equation (9) is, under the given assumptions, the most general

description of the time required for the replication of a single

segment. We call it here model 1. It is the most complex model

because it allows different parameters for each of the four bases (12

parameters in total).

However, one may also drop some of the assumptions in order

to reduce the complexity of the model and test whether the four

bases have the same influence. In this special case, where we

assume independence of the base itself, the matrix N becomes a

column vector where each row entry denotes the length of the

segment and the parameter vectors become scalar. The approx-

imated replication times are then given by

T̂T~N tz(p{1{1)w
� �

: ð10Þ

The description in equation (10) is called model 2. It uses the same

parameters for each of the four bases (3 parameters in total).

Finally, we further simplified the model to a version where the

second term was summarized into a single parameter
~tt~t{(p{1{1):w, yielding a completely linear model of the form

T̂T~N:t: ð11Þ

Equation (11) is the most simple description, called model 3: an

average replication time per base multiplied with the length of the

segment.

All filtering has been done with the most detailed description we

derived (model 1). The other two models were solely used for

model comparison.

Model fitting
The models 1 and 2 were fitted to the experimental data [18] by

an initial global regression step followed by a local refinement step.

The global step was performed using Simulated Annealing with a

modified sampling step, where we used a kernel of truncated

normal distributions in order to include boundaries for the

parameters (all parameters were assumed to lie within [1e-8, 1])

[36]. The local refinement step was executed using the L-BFGS-B

algorithm with the same boundaries [37]. As a goal function we

chose the sum of squared residuals given by the measured values T
and the approximated values T̂T , given by (T{T̂T)T (T{T̂T).

The regression was performed for 1000 uniformly distributed

initial values (in the range [1e-8, 1]) for the parameters which

enabled us to derive the parameter correlations. The remaining

replication times, or filtered times, were then calculated as the

difference of the experimental and the mean of the fitted

replication times (T{
1

1000

X1000

i~1
T̂Ti) and their distribution

and remaining correlation to the segment lengths was comput-

ed. For all correlation measures, we used the Spearman rank

correlation [38]. In order to quantify the effects independent of

the underlying sequence or segment length the filtered times

were first approximated by a normal distribution. The rationale

behind is that a normal distribution would indicate a

combination of random processes being responsible for the

residuals whereas all deviations from that distribution would

indicate some form of regulation. The parameters for the

normal distribution were approximated by robust measures,

namely the median for the mean and the median absolute

deviation (MAD) for the standard deviation. In a second step we

identified all segments whose remaining replication time

(deviation from the approximated segment-dependent replica-

tion time) was significantly different from the prior normal

distribution on a significance level of 0.05 with the Holm-

Bonferroni correction applied [39]. This also ensured that the

smallest significant remaining replication time was still larger

than the largest error which we can expect due to the

smoothening of the profiles. Thus, the significance can not be

explained by the data smoothening.

Model ranking
In a last step we ranked the models according to the Akaike

Information Criterion (AIC) [40]. The AIC is a tool for model

selection, which means it can be used to compare competing

models with one another. It quantifies the information that is lost

when an estimated statistical model is used to describe reality and

combines this goodness of fit with the complexity (degrees of

freedom) of the model. The model with the lowest AIC value of

the model ensemble is the best. The AIC value is a relative

measure and therefore not suitable for single model evaluation but

only ranking within a model ensemble. Here, the AIC has been

calculated on the basis of two different statistical measures, the

residual sum of squares (RSS) and the coefficient of determination

(R2) as follows

AIC~2kzn ln
RSS

n

� �� �
ð12Þ

with n equal to the number of observations and

RSS~(T{T̂T)T (T{T̂T). Furthermore,

AIC
R2~2kzln

1{R2

n

� �
ð13Þ

with R2~1{
(T{T̂T)T (T{T̂T)

(T{T)T (T{T)
where T is equal to the mean of

T .

All tasks were implemented and analyzed with the R statistics

environment [41].

Results

Elongation times are directly related to the segment
lengths for a large part of the genome

On the assumption that the observed replication profiles can be

decomposed into a sequence-related part and a non-related part

(see introduction), we built a stochastic model for the replication

machinery movement to characterize the first part of the equation

TseqzTregze~Tprof . Therefore, the model must be able to

capture the two different attributes of Tseq that matter the most:

Modelling Replication Motion
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differences in base composition of the DNA and differences in

lengths of segments.

We found a large dependency between the segment lengths and

the experimental replication times (correlation coefficient *0.82

(Supplementary Information, Fig. S2)). On the contrary, we found

almost no dependency between the replication times and the base

composition of the segments. The correlation matrix for the 12

parameters of model 1, calculated as described in Methods, shows

that they are correlated in a block-like manner (Fig. 2A). The

blocks represent probabilities for the movement of the replication

machinery, the transition times and the waiting times. All

probabilities for the single nucleotides are slightly positively

correlated to the transition times (white and light orange ovals)

and negatively correlated to the respective waiting times (light blue

and blue ovals). A small negative correlation between transition

and waiting times (violet and light blue ovals) is observed, however,

the intensity of the correlations differs amongst them. Neverthe-

less, we notice that the higher the chance that the replication

machinery moves across a certain nucleotide, the shorter are

waiting times in case the polymerase stalls (Supplementary

Information, Figs. S3 and S4).

Fig. 2B shows a similar, yet inversed, trend for the 3

parameters of the small model. The transition probability is

highly positively correlated to the waiting time (orange oval). The

transition time is, if so at all, slightly positively correlated to the

transition probability (light orange oval) and slightly negatively

correlated to the waiting time (violet oval). In other words, the

higher the chance that the polymerase moves at all, the longer it

waits in case of stalling.

Fig. 2C shows the filtered times for the three models. Even

though the models differ in the number of parameters, model 1

cannot describe the experimental data more accurately than the

smaller model 2 or even the linear model 3. Despite the difference

in degrees of freedom, the residual sum of squares is only slightly

smaller (0.05%) for model 1 compared to the small and the linear

ones (Table 1).

Model ranking yields that relative to the different number of

parameters the linear model 3 performs best, the small model

2 second best and model 1 worst. The detailed model does not fit

the experimental data significantly more accurate than the smaller

or the linear model. This indicates that the effect which determines

the velocity of the replication machinery is largely independent of

the composition of the sequence that is to be replicated. If there

are differences in transition probabilities, transition times or

waiting times between the nucleotides, their contribution is too

small to finally determine replication rate deviations. This also

holds for nucleotide pairs and triplets (data not shown). Thus,

apparent deviations in the replication rate cannot be explained by

differences in the sequence composition. Furthermore, despite the

huge amount of experimental data points, model 1 as well as

model 2 seem to be over-determined; too many parameters show

correlation, which indicates that one parameter can be enough to

characterize the replication rate in budding yeast, as we recently

proposed [42].

Since base composition does not seem to play a major role,

and in order to test how much of the length specific correlation

is captured by the model, we calculated the correlation

coefficient for the filtered times and the segment lengths

(Fig. 3). This value was significantly smaller (*0.05), which

indicates that there is hardly any correlation left between the

length of the replicated segment and the rate at which it is

replicated. In conclusion, we succesfully filtered out *95% of

Figure 2. Model comparison. [A] Correlation matrix for model 1. The shape of the ellipses correspond to 95% confidence regions of a Gaussian
kernel with the given correlation, as such the longer diameter of the ellipses specifies the direction of correlation whereas the smaller diameter
describes how the data deviates from the line of correlation. Orange and blue colors indicate positive and negative correlations, respectively. [B]
Correlation matrix for model 2. [C] Filtered times for the three models.
doi:10.1371/journal.pone.0010203.g002
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all sequence-specific rate deviations (Tseq) from the experimental

data (Tprof ).

Regions with strongly altered elongation distinctly map
onto the budding yeast genome

The remaining component of the data is now e and Treg, which

can be observed in Fig. 3. We found that our model (model 1,

average of 1000 different parameter sets), indicated by the median

of the filtered time histogram, is slightly too slow (Med-

ian = 62:7735 seconds). However, on a time scale of up to

1500 seconds, this is an error of only *4%. Furthermore, we

observe a lower and an upper tail of the filtered time distribution,

which are prominently placed outside the overlying normal

distribution. These tails indicate DNA segments where the model

Figure 3. Histogram of the filtered times. The filtered times are calculated as experimentally measured replication times minus the mean of the
approximated replication times. They are compared against a normal distribution with mean = 262.7735 and standard deviation = 113.3735, which is
shown as well.
doi:10.1371/journal.pone.0010203.g003

Table 1. Model statistics and ranking.

Large Small Linear

RSS 42682347 42701178 42701178

R2 0.535819751983114 0.535614953567048 0.535614953574985

AIC 7425.48716598 7407.78070659 7403.78070659

AICR2 16.7267336032 21.27282528956 25.27282528958

Rank 3 2 1

Residual Sum of Square (RSS), Coefficient of determination (R2), general Akaike Information Criterion (AIC), Akaike Information Criterion based upon the Coefficient of
determination (AICR2 ) and the model rank are shown.
doi:10.1371/journal.pone.0010203.t001

Modelling Replication Motion
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predicts much faster or slower replication than observed in the

experiments. The upper tail is more prominent compared to the

lower one. However, it seems that, since the times are already

filtered, in both regions other mechanisms, different from segment

composition or length, influence the rate of DNA replication. We

visualized all regions of replication rate deviation for the 16

chromosomes of budding yeast (Fig. 4). The chromosomal regions

that replicate faster in the experimental data compared to the

predictions of model 1 are shown in blue, whereas the regions that

replicate slower are shown in green. The magnitude of the

deviation is indicated by the intensity of the colors.

We found that only few regions replicate faster (blue), whereas

many regions show significant delays in DNA replication (green). In

particular, we found that only two regions on chromosome IX, one

region on chromosomes XI and XII, respectively, and three regions

on chromosome XIV replicate significantly faster. On the opposite,

the regions where replication is delayed are more frequent and

scattered over nearly all chromosomes (except for chromosomes II,

XIV and XV). No significant deviations could be detected only for

chromosomes II and XV. The exact landscape of the filtered times

and the original profiles from Raghuraman et. al. for all 16

chromosomes can be found in the Supplementary Information

(Fig. S5). We did not observe that regions with strongly altered

elongation correlate with late or early firing origins.

Altogether, our results indicate that replication times in DNA

replication are due to, and therefore can be split into, a sequence-

specific and a sequence-independent component. Within the

sequence-specific part, it is rather the segment length than the

segment composition that has an influence on the replication time,

which is why the linear model fits almost as good as model 1. It

seems intuitive that the larger the segment of DNA is, the longer

the replication time. Nevertheless, filtering this fact from the data

enabled us to physically locate and map sequence-independent

components with a certainty of 95% under the prior normal

distribution. From looking at the map, it becomes apparent, that

rate deviations that are caused independently of the underlying

sequence, are not scattered randomly across the genome, but are

clustered on distinct locations within the genomic landscape of

budding yeast.

Discussion

In this work we aimed at quantifying effects that influence DNA

replication time in budding yeast. We described the movement of

Figure 4. Regions of replication speed deviation for the 16 yeast chromosomes. Deviations within the filtered times across the genome of
budding yeast are shown. Blue shades indicate faster replication in the experiments than predicted by model 1, whereas green shades indicate
slower replication in the experiments (linear scale, lighter tones indicate smaller deviations). Dark shades indicate a significant deviation from the
prior normal distribution. A quantitative view of the deviations (in seconds) for each chromosome can be found in the Supplementary Information
(Fig. S5).
doi:10.1371/journal.pone.0010203.g004
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the replication machinery along the DNA template as a directed

random walk. By using this approach, we decomposed influences

on DNA replication time into two major components, a sequence-

specific one and a sequence-independent one.

We have shown that the nucleotide composition of a segment

does not significantly influence its replication time. Obviously, we

cannot rule out completely that there is a nucleotide composition-

specific effect on the replication time. It seems intuitive to assume

that there are fluctuations, e.g. in the availability of nucleotides in

the nucleus. In our analysis, the probabilities p can be viewed as an

expression of such fluctuations. They summarize a mixture of

factors, incorporating the nucleotide availability among others.

However, the contribution of nucloetide composition seems to be

too small to be detected by our method using the experimental

data taken from Raghuraman et al. [18].

We have demonstrated a strong correlation between segment

length and replication time. Once again, this seems to be intuitive,

since we can assume that the longer a segment is, the more time it

will take to be replicated. Nonetheless, we filtered these two results

(non-nucleotide-dependency and length correlation) from the

replication times. What we were left with was a distribution of

replication times, independent of sequence and length. From the

filtered replication times we could directly infer the distribution of

replication rates, since all length-specificity is filtered out. This

means that, if the replication time is longer than average, the rate

would be decelerated and vice versa. The distribution of filtered

times was then approximated by a normal distribution. We

assumed that all deviations from that normal distribution indicated

some form of regulation. Applying this logic, we physically located

and mapped sequence-independent components with a certainty

of 95%. We observed that regions with significant deviations

(violating the assumption of normal distribution) do not show

uniform spatial distribution but are clustered on distinct locations,

which forms a regulatory landscape within the budding yeast

genome. Thus, a large part of the elongation time is dictated by

some spatial and sequence-independent factors. We therefore

present evidence for another aspect, beyond initiation and origin

timing, of the puzzle that is the understanding of regulation of

DNA replication in time and space.

However, what exactly regulates DNA replication in the regions

where we observed a significant faster or slower replication (see

Fig. 4) is not clear. Although, it has been shown that epigenetic

factors can influence DNA replication, none of them directly

corresponded to the regions we identified [19–24]. Nevertheless,

an inhomogeneous histone acetylation/methylation pattern could

lead to differences in DNA unwinding efficiency, which might

cause the observed effect. Histone modification status and

remodeling of the chromatin structure could influence the rate

at which the replication machinery operates. In fact, particular

dense packing of the DNA tertiary structure could account for

deceleration of the replication rate and, therefore, modulate origin

activity as well [27]. On the other hand, loosely packed or already

unwound DNA, due to e.g. transcription, could facilitate

replication [31–33]. However, it is still under investigation

whether these mechanisms of regulation are tightly related to

DNA replication or if they are merely the side effects of the

regulation of other processes, e.g. transcription. At this point, the

reason for the observed local deviations in the replication times

remain unclear, but this might be changed as more and more

experimental data become available. There is a number of

experiments that could be directly infered from our results, e.g.

transfer a significantly slower or faster replicating segment to

another location in the genome and check whether the replication

time is conserved, or mutate the sequence of this segment to

investigate the potential changes of the elongation time. Consid-

ering the tight connection between DNA replication and the other

cell cycle events, a link between the replication speed and the

accessibility of the origins is likely. In particular, this is presumably

the case for origins that show delayed replication due to the

chromatin state of the chromosomes [27] or to the Cdk1-Clb5

activity [43,44].

On a different note, in this work we have shown, by using the

Akaike information criterion [40], that the replication rate in

budding yeast can be best approximated using only a single

parameter, as we have recently proposed [42]. Naturally, one

could argue that we did only test models that consider sequence-

specific attributes and no spatial regulatory events. However, we

have shown that spatial regions of interest are not randomly

distributed, which is why they can only be described explicitly.

In a further development of the analysis presented, we anticipate

to relax some of our modelling assumptions. For example, in

budding yeast, polymerases a, d, and e are localized to early firing

origin regions during early S phase, suggesting that they function

together at multiple replication forks [45]. Their contribution for

the apparent speed of the DNA replication process however, has still

to be highlighted. In this direction, our study could be suitable for

further investigation of their distinctive roles and velocities in the

polymerization process. As soon as more experimental data

regarding the polymerase kinetics will become available, our model

could be extended. In addition, it could be interesting to further

investigate stochastic components of DNA replication dynamics in

budding yeast. Since S phase dynamics depends both on the

replication fork velocity and the initiation frequency of origins, an

interesting aspect is to combine time-dependent changes in the

replication origin activation and a fork density-dependent affinity of

the different polymerases for the origins.

Supporting Information

Figure S1 Schematic view of the DNA replication model. The

replication machinery can move forward with a base-dependent

probability p(X) for base X, taking a mean time t(X) for the forward

step and a mean time w(X) for the waiting step.

Found at: doi:10.1371/journal.pone.0010203.s001 (0.03 MB

PDF)

Figure S2 Estimated parameters for model 1. Histograms for the

12 parameters as obtained from 1000 independent optimization

runs with uniformly distributed initial values. CV denotes

coefficient of variation (standard deviation/mean).

Found at: doi:10.1371/journal.pone.0010203.s002 (0.04 MB

PDF)

Figure S3 Estimated parameters for model 2. Histograms for the

3 parameters as obtained from 1000 independent optimization

runs with uniformly distributed initial values. CV denotes

coefficient of variation (standard deviation/mean).

Found at: doi:10.1371/journal.pone.0010203.s003 (0.02 MB

PDF)

Figure S4 Dependence of replication times on the lengths of the

DNA templates. In the experimental data a significant correlation

between the length of the replicated DNA template and the

replication time (,0.82, Spearman-Rank Correlation) is observed.

Found at: doi:10.1371/journal.pone.0010203.s004 (0.01 MB

PDF)

Figure S5 Filtered times mapped onto the 16 chromosomes of

budding yeast. The filtered times mapped onto the locations of

their corresponding DNA segments are shown. The shadings

correspond to the ones used in Fig. 4. The orange line denotes the
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actual filtered time in seconds and the red line shows the

replication profile from Raghuraman and colleagues.

Found at: doi:10.1371/journal.pone.0010203.s005 (0.20 MB

PDF)
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