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Abstract: Cutting tool wear reduces the quality of the product in production processes. The optimiza-
tion of both the machining parameters and tool life reliability is an increasing research trend to save
manufacturing resources. In the present work, we introduced a computational approach in estimating
the tool wear in the turning process using artificial intelligence. Support vector machines (SVM) for
regression with Bayesian optimization is used to determine the tool wear based on various machining
parameters. A coated insert carbide tool 2025 was utilized in turning tests of 709M40 alloy steel.
Experimental data were collected for three machining parameters like feed rate, depth of cut, and
cutting speed, while the parameter of tool wear was calculated with a scanning electron microscope
(SEM). The SVM model was trained on 162 experimental data points and the trained model was
then used to estimate the experimental testing data points to determine the model performance. The
proposed SVM model with Bayesian optimization achieved a superior accuracy in estimation of
the tool wear with a mean absolute percentage error (MAPE) of 6.13% and root mean square error
(RMSE) of 2.29%. The results suggest the feasibility of adopting artificial intelligence methods in
estimating the machining parameters to reduce the time and costs of manufacturing processes and
contribute toward greater sustainability.

Keywords: artificial intelligence; tool wear; turning machine; SVM; Bayesian optimisation

1. Introduction

Tool life is one of the main parameters in machining. Tools that wear or fail a com-
parably lengthy duration life service can lead to a decreased production rate and surface
finish capacity [1]. Tool wear is an important parameter in machining as its increase not
only increases cutting forces and cutting temperatures but also produces poor finished and
inaccurately machined surfaces. Rapid tool wear also increased the lead time spent in the
replacement of tools, thereby reducing the production rate [2]. Worn tools reduce the qual-
ity of the production and might harm the machine as well as the workpiece. Furthermore,
the cutting force might increase, which elevates the temperature and intensifies the tool
wear. Breakdown of the tool may result in more significant repercussions like scraping
as well as scratching and might cause the workpieces and tool holder to be catastrophic.
Increased cutting forces and power consumption, declining dimensional accuracy as well
as surface quality are indicators of failure of the tool [3]. However, the turning process
has become one of the major metal production processes among metal-cutting procedures
and is frequently used for industrial applications in the area of high technology [4]. In
the turning process, tool wear occurs because of the contact between the workpiece and
cutting tool, which is directly affected by the cutting parameters, cutting forces, tool geom-
etry, power consumption, etc. Feed rate, depth of cut, and cutting speed are the common
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parameters as described previously [5,6]. Machining parameters are determined through
trial and error based on experience and handouts of process planners are expensive and
time-consuming [7]. A human process planner selects the correct process parameters based
on their expertise or machining tables. In most situations, the traditional and far from ideal
specified parameters are present. However, it is important to decide the correct settings
during machining. If the machining settings are not adequate, extensive tool wear is seen
and surface degradation may arise. The machining variables like progressive tool wear
have been shown to have an influence on optimal cutting parameters and only the selection
of suitable optimum parameters may lead to excellent machining process performance [8].
Many different studies have described approaches of machine learning (e.g., to assess the
tool wear), and the machines used are namely SVR (“support vector regression”), SVM,
and ANNs (“artificial neural networks”).

A tool wear predictive model was introduced by Kong et al. [9] based on RVM
(“relevance vector machine”) and KPCA_IRBF (“integrated radial basis function-based
kernel principal component analysis”). The outcomes demonstrate that KPCA IRBF can
lower the RMSE of RVM by over 30% and decrease the confidence interval (CI) width
by over 90 percent. Alajmi and Almeshal [10–12] proposed different machine learning
methods such as ANFIS-PSO, XGBoost-SDA, Gaussian process regression algorithm, and
least squares boosting ensemble, and quantum-behaved PSO to solve manufacturing
processes (e.g., drilling, turning, and milling).

Jurkovic [13] compared three approaches for machine learning approaches to deter-
mine independent output cutting parameters in a high-speed turning mechanism: SVR,
ANN, and polynomial (quadratic) regression were utilized. To determine three output
machining parameters, the findings demonstrate no substantial performance difference
between polynomial regression and SVR. Multilayer perceptron (MLP), used by Twar-
dowski [14], was used for the prediction of tool wear based on mechanical vibration and
cutting forces during turning hard steel. Using measurements of cutting force components,
the wear projection marginally achieved more excellent performance than using vibration
accelerations. The RMSE = 0.045 mm was the accomplished error. This implies that both
vibration acceleration and cutting power are equally appropriate for measuring tool wear
when processing hard-to-cut materials.

McParland et al. [15] presented the Bayesian Gaussian hierarchical process model to
estimate the rates of tool wear for untested experimental scenarios. The results showed
that the projected rate of tool wear is non-linear and that the model may suggest trial
conditions to improve the tool’s life. In conjunction with the local feature extractor, for
long-term prediction, Wang et al. [16] used a recently constructed heterogeneous GRU
model. Systematic feature engineering and optimum searching of the hyperparameter
optimizes the given model. However, practical investigations on the wear test to prove
the superiority and precise MSE and RMSE of the proposed model compared with the
most widely explored multi-variate regression prediction model have been carried out.
Sheng [17] presented a modeling technique for turning parameters coupled depending on
the least cutting-tool wear. With orthogonal trials, the equation between cutting parameters
and temperature was achieved, therefore, the cutting parameters coupled were established
with minimal wear of the cutter. The impact of cutting parameters on cutting temperature,
cutting force, wear mechanism, and tool life as well as surface roughness were explored
by Zheng et al. [18]. The most significant impact on cutting force, tool life, and cutting
temperature was indicated by the cutting speed, whereas the surface roughness was
substantially impacted by feeding rate.

For the control of tool wear, D’Addona et al. [19] used two naturally inspired com-
puting approaches including DBC (“DNA-based computing”) as well as ANN. The re-
sults showed that the ANN may determine the tool-wear degree in a series of tool-wear
photos processed according to a certain protocol while the DBC may recognize the sim-
ilarity/unlike degree in the photos processed. Chang et al. [20] investigated the BNN
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(“backpropagation neural network”) based on iterative gradient convergences for the
estimation of tool life by evaluating its stability and convergence.

Iterative convergence estimation techniques include ADAM (adaptive moment),
Adadelta (adaptive delta), Adagrad (adaptive gradient), momentum, and SGD (stochastic
gradient descent) algorithms. The outcomes of these techniques demonstrate that the best
prediction for the BNN model is the convergence of the ADAM gradient for tool wear
in all instances. To predict tool wear, Wang et al. [21] introduced a new physics-guided
neural network model. As a modeling strategy for the combination of secret data examined
by a data-driven model and a physics-based model, a cross-physical data fusion system
(CPDF) was introduced, then the data hidden in the unlabeled sample were examined
by the physics-based model of tool cutting influenced by semi-supervised learning. The
benefit of the proposed approach is that it examines adequate physics and data domain
information to remove physical inconsistency from standard data-driven models.

The deep learning network is known as the deep belief network, DBN, which was
introduced by Chen et al. [22] to forecast the wear of a cutting tool on the flank. The
performance of a DBN was compared against the performance of SVR and ANNs on
an MSE basis (“mean-squared error”) and the coefficient of determination (Rˆ2), taking
into consideration the data of over 900 tests to determine the superiority of the DBN in
forecasting the tool wear. Wu et al. [23] applied BiLSTM (bidirectional long short-term
memory) as well as SVD (singular value decomposition) neural network for the projection
of tool wear. The results of the experiments revealed that the suggested SVD-BiLSTM
model can efficiently estimate the tool wear and provide better prediction than other
comparative models.

Shen et al. [24] developed a predictive model by employing innovative techniques
of machine learning with a multi-feature multi-model ensemble and dynamic smoothing
method with machining parameters (i.e., feed rate, depth of cut as well as cutting speed)
as model inputs, where the main characteristics for estimations were therefore generated.
With prediction outcomes, the trials revealed great agreement in terms of predictive trends
and the precision of the average values of RMSE.

This work proposes the SVM with Bayesian optimization for regression for estimating
the nose wear in the turning of 709M40 alloy steel. This research contributes to the
investigation of artificial intelligence approaches in estimating the machining parameters
to reduce the processing time, resources, and labor. In addition, the research investigates
the efficacy of the SVM model with Bayesian optimization in estimating the tool wear in
the turning process. Moreover, the research highlights the importance of utilizing artificial
intelligence in contributing toward more sustainable manufacturing.

2. Materials and Methods

The experimental work provided by the College of Technological Studies was con-
ducted at the workshop on machining at the Department of Manufacturing Engineering
Technology. This work aimed to obtain appropriate dependent values in terms of ma-
chining parameters from independent input values of machining parameters. A series of
turning trials were performed by utilizing a multicoating composed of TiCN + Al2O3 + TiN
deposited by CVD carbide removable inserts as part of a coupled project for optimizing
machining operations (SPUN 12 03 12 2025) with four squared working edges [25] for
cutting alloy steel-709M40. Insert configurations were 30◦, 60◦, 0◦, 5◦, 6◦, side approach
and approach angles, inclination, clearance, and normal rake, respectively.

Turning experiments were performed in dry conditions using lathe type Harrison
600 with spindle speed range of 10–1800 rpm. The required tool holder type was a CSBPL
2020K 12. The workpiece was a 709M40 alloy steel bars, which were around 410 mm long
with a diameter of 100 mm. The workpiece is often supplied in the hardened and tempered
condition with a tensile strength ranging from 850–1000 N/mm2 due to its good ductility
and shock resistance and resistance to wear properties [26]. The treatment condition used
for the workpiece was soft annealed. The chemical composition, mechanical, and physical
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properties of the 709M40 alloy steel is given in Table 1. However, to match the practical
rough turning, criterion values of nose wear were considered in this study.

Table 1. Chemical composition, mechanical, and physical properties of the 709M40 alloy steel [27,28].

Composition (Wt%) Mechanical Properties Values

C 0.44 Tensile strength N/mm2 850–1000

Cr 0.99 Yield Strength N/mm2 650

Mo 0.25 Hardness (HB) 248–302

Mn 0.85 Elongation % 13

S <0.04 Impact test (KV) 50

P <0.04 Density
(

Kg
dm3

)
421

3. Methodology
3.1. Support Vector Machine with Bayesian Optimization for Regression

A SVM for regression is one of the well-known machine learning methods that was
first introduced by Drucker et al. [29]. SVM has been widely adopted for various regression
problems and has achieved results with high accuracy when compared to other machine
learning models. SVM can provide predictions for small and high dimensional data, data
with local minima, and nonlinear problems [30].

SVM is based on a mathematical basis and statistical learning approaches that can
improve the generalization capability by employing the structural risk minimization (SRM)
principle [29,30].

For the training dataset Y = {(a1, b1), (a2, b2), (a3, b3), . . . , (an, bn)}, ai, bI ∈ R, where ai
represents the feature vector of the input sample and bi is the corresponding labels to each
sample for i = 1, 2, 3, . . . , n. The fundamental concept of SVM is to build a nonlinear map
between output and input and then map the input data into the high dimensional feature
space from low dimension using kernel as a function. A simple SVM model is shown in
Figure 1.

f (a) = w.ϕ(x) + b (1)

where ϕ(x) is a nonlinear function in which a low dimension feature input will be converted
into high dimensional feature space. In SVM, W contains the coefficients of the data, and b
is the learnable constant. The SVM objective function can be formulated as:

min

w, b, εi, ε
∗
i

1
2
||w||2 + c

n

∑
1=1

(εi + ε∗i ) (2)

subject to


f (a)i − yi ≤ ε + εi
yi − f (ai) ≤ ε + ε∗i

εi ≥ 0, ε∗i ≥ 0, i = 1, 2, . . . , n.
(3)

In the above equation where ε∗i and εi are the upper and lower slack variables. This is

subject to ε –deviation yi − f(ai) ≤ ε, the term 1
2

∣∣∣∣∣∣w∣∣∣∣∣∣2 is a regularization that improves the
generalization of the model.

The regularization constant parameter C determines the trade-off between experiential
error and believing risk. In Equation (3), the ε denotes the loss parameter. Equation (2)
constraint suggests that the loss will be ignored if the difference between the real and
predicted values is less than ε. As shown in Figure 1, the actual value of the data ai is under
the ε, where the chance of getting an error is quite a low estimate as zero. On the other
hand, if the actual values bi are outside the ε , then the error will be εi or ε∗i .
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Figure 1. Support vector regression model.

Machine learning models are prone to underfitting and overfitting during a training

phase. Thus, to avoid this problem, the regularization term, 1
2

∣∣∣∣∣∣w∣∣∣∣∣∣2 as well as c , the
training error is minimized [30] Hyperparameters play an important role in fine-tuning
the performance of machine learning models [31]. The tuning of hyperparameters can be
either a manual or optimized approach. Manual approaches are time-consuming and may
not achieve optimal performance. Due to this, various optimization approaches can be inte-
grated into the selection of hyperparameters of machine learning models such as Bayesian
optimization, heuristical optimization approaches, random search, and grid search meth-
ods. In this research, Bayesian optimization is utilized to optimize the hyperparameters of
the SVM model.

3.2. Bayesian Optimization

In the Bayesian theory concept, by calculating the objective function of the posterior
distribution, which captures the updated belief for the known objective function. For
objective function f(a), Bayesian optimization constructs a probabilistic model. The model
is exploited to predict the unknown next point to evaluate the bounded set A. From the
preceding evaluation f(a) to make full use of predicted information and is not limited only
on the Hessian approximations or local gradient, it can also find the maximum complex of
non-convex functions [32].

There are two-parts that play a role with Bayesian optimization. The first one is
the Gaussian process prior and the second one is the acquisition function that is used to
evaluate the subsequent point by constructing a utility function.

The Gaussian process is an effective and powerful prior distribution over the space
smooth function. It is based on a random variable that has no limit (e.g., an infinite number),
where any finite random variable is subjective to combined Gaussian distribution [32].

The Gaussian distribution (GP) is expressed as:

f (a) ∼ GP(µ(a), k(a, a∗)) (4)

where µ(a) is a mean function of a and the k(a, a∗) value data is a covariance function of
data a, a∗.

There are many ways to choose an acquisition function like expected improvement
(EI) as well as probability of improvement (PI). The PI function is written as

αPI(a) = φ(u(a)), (u(a)) =
f (abest)− µ(a)

σ(a)
(5)
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where σ(a) and µ(a) indicate the predictive variance and mean function of the objective function.
Φ(.) and
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(.) express the PDF as well as CDF of standard normal distribution. The
current best observation is donated by abest = arg max ai ∈a1:t

f (ai), respectively. In the
SVM model, there are three parameters (C, ε, σ) to optimize, where C is the penalization
coefficient; the kernel parameter is denoted by σ, when σ value is larger, the structural risk
will be small; and ε is the insensitive loss coefficient that controls the gap (width) of the
regression function on the insensitive area [33].

4. Results and Discussion

Table 2 illustrates twenty-four experiments with varied cutting parameters that were
carried out under dry conditions. The trials were performed in a single-path double-
pass system. Based on the second pass in each pass, the response was computed. This
was provided to facilitate considerable wear for a 709M40 steel alloy to take place with
24 experimental trials. Scanning images of the nose wear were measured by field-emission
scanning electron microscope (FESEM), as shown in Figure 1. The figure illustrates the
micrographs of nose wear for different cutting speeds and feed rates. Nose wear was found
to be the dominant wear mechanism than the flank and crater wear [34]. Figure 2 shows a
comparison of tool edge performance in three experiments where low, moderate, and high
cutting speed are used in association with a moderate feed of 0.2 mm/rev and a depth
of 2.25 mm. To match the practical rough turning operations, nose wear was considered
as a criteria in the experiment. A Zeiss Gemini SEM 500 field emission scanning electron
microscope (FESEM) equipped with an energy-dispersive X-ray (EDX) microanalysis
system was utilized to examine the worn tool inserts.
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Table 2. The experimental data.

Experiment Trial V
[m/min]

f
[mm/rev]

d
[mm]

Nw
[µm/min]

T1 102.67 0.2 1.5 13.6

T2 103.4 0.2 1.5 5.88

T3 72.35 0.12 2 2.65

T4 145 0.3 2 18.75

T5 148.22 0.12 2 4.48

T6 72.69 0.3 2 3.7

T7 104 0.2 2.25 11

T8 104.72 0.2 2.25 4.6

T9 103.67 0.2 2.25 5

T10 103.06 0.2 2.25 8.33

T11 206 0.2 2.25 75

T12 50 0.2 2.25 2.14

T13 101.71 0.6 2.25 30

T14 104.15 0.06 2.25 2.91

T15 206 0.2 2.25 66.7

T16 50.36 0.2 2.25 2.5

T17 103.55 0.6 2.25 82.41

T18 104.8 0.06 2.25 4.55

T19 145.89 0.12 2.5 15

T20 72 0.3 2.5 10

T21 72.32 0.12 2.5 2.97

T22 144.72 0.3 2.5 36.14

T23 104.66 0.2 3 11.54

T24 103.75 0.2 3 10

4.1. Training Dataset

To train the SVM model for determining the tool wear, data from experiments in the
literature were extracted. Table A1 depicts the training data from [5] that was used to train
the SVM model on the different feed rate, depth of cut, and cutting speed. It can be seen
that the training data had 82 experiments for the CVD coated tool and similarly for the
PVD coated tool, it added to a total of 162 experiments for the training dataset. The depth
of cut (d), feed rate ( f ), and cutting speed (V) were considered as the input parameters
whereas the wear of the cutting tool insert was considered as the response. The selection of
the training dataset was based on the large numbers of experiments presented in [5], where
large datasets are preferable in training artificial intelligence algorithms. In addition, the
data present the input parameters of interests such as depth of cut, feed rate, and cutting
speed with a comparable range, in terms of standard deviation of depth of cut, to our
conducted experiment of the validation dataset of Table 2.

The SVM with the Bayesian optimization model was executed with an acquisition
function defined as the probability of improvement with 30 iterations. Figure 3 illustrates
the estimation of the tool wear of the CVD-coated cutting tool wear of the training dataset,
while Figure 4 presents the estimation of the cutting tool wear of the PVD coated tool wear
of the training dataset. It can be observed that the SVM model with Bayesian optimization
achieved a high extent of accuracy by closely estimating the experimental training dataset.
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Table A2 presents the estimated value of the tool wear parameter of each experiment in
the training dataset. To further assess the performance of the estimation results, statistical
measures were calculated as the MAPE (“mean absolute percentage error”), RMSE (“root
mean square error”), and CVRMSE (“coefficient of variation of root mean square error”),
which are calculated in Equations (6)–(8), respectively, as:

MAPE =
1
n

n

∑
i=1

∣∣∣∣ ŷi − yi
yi

∣∣∣∣× 100% (6)

RMSE =

√
∑n

i=1(ŷi − yi)
2

n
(7)

CVRMSE =

√
∑n

i=1(ŷi − yi)
2

y̆
(8)

where y denotes the experimental data point; ŷ denotes the estimated data point; and y̆
as the average value. Table 3 presented the calculated performance metrics of the SVM
model with Bayesian optimization for the training dataset. The model resulted in superior
performance in terms of the MAPE, RMSE, and CVRMSE with an average of 5.36%, 2.48%,
and 15.9%, respectively.

Table 3. Statistical performance metrics of the SVM model with Bayesian optimization for the
training dataset.

Metric
Training Dataset

PVD Coated CVD Coated

MAPE % 5.630 5.096

RMSE % 1.936 3.040

CVRMSE % 11.619 20.326

4.2. Validation Dataset

The promising trained model was then exported and used to estimate the cutting
tool wear of the validation dataset that was presented in Table 2. Figure 5 illustrates the
experimental and predicted data of the cutting tool wear of the validation dataset with
various depths of cuts of 1.5 mm, 2 mm, 2.25 mm, 2.5 mm, and 3 mm. The estimated data
points by the SVM model with Bayesian optimization closely matched the experimental
data points of the validation dataset. Table 4 depicts the estimated individual values
of the cutting tool wear parameter for each experiment in the validation dataset. The
performance metrics of the SVM model with Bayesian optimization on the validation
dataset were calculated and are presented in Table 5. It can be noted that the proposed SVM
model achieved a high extent of accuracy in estimating the cutting tool wear parameter
of the validation dataset with a MAPE of 6.13%, RMSE of 2.29%, and CVRMSE of 9.02%.
The results validate the model performance and the feasibility of estimating the cutting
tool wear computationally based on the previous training dataset and thus can reduce the
experimental work and resources.
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Table 4. The estimated cutting tool wear of the validation dataset.

Data Actual Nw [µm/m] Estimated Nw [µm/m]

1 13.60 14.683

2 5.88 5.731

3 2.65 2.736

4 18.75 18.691

5 4.48 4.492

6 3.70 4.046

7 11.00 10.385

8 4.60 4.681

9 5.00 5.684

10 8.33 8.463

11 75.00 82.834

12 2.14 2.309

13 30.00 33.981

14 2.91 2.994

15 66.70 72.202

16 2.50 2.928

17 82.41 85.384

18 4.55 4.607

19 15.00 16.600

20 10.00 10.211

21 2.97 3.354

22 36.14 38.199

23 11.54 11.472

24 10.00 10.354

Table 5. Statistical performance metrics of the SVM model with Bayesian optimization for the
validation dataset.

Metric Validation Dataset

MAPE % 6.13

RMSE % 2.29

CVRMSE % 9.02

5. Conclusions

This research explored the performance of the artificial intelligence-based estimation
approach of tool wear in a turning process of 709M40 alloy steel. Support vector machine
for regression with Bayesian optimization model was employed to estimate the tool wear
value based on the depth of cut and cutting speed as well as feed rate inputs. The proposed
model was trained on a training dataset of 162 data points and was then used to determine
the tool wear of our validation dataset. The reported results suggest the feasibility of the
SVM model in estimating the tool wear with high accuracy of MAPE of 6.13%, RMSE of
2.29%, and CVRMSE of 9.02% for the validation dataset. The estimated values closely
match the conducted experimental tool wear values. The approach was validated for the
709M40 alloy steel based on depth of cut, feed rate, and cutting speed for a certain range
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of values. For other materials with a different range of input values, it would require
retraining the algorithm using the transfer learning approach. The proposed approach
contributes more toward saving the cost, time, and labor in the manufacturing process.
Moreover, adopting artificial intelligence estimation methods saves resources and enables
more efficient and sustainable manufacturing processes.
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Nomenclature

V Cutting Speed (m/min)
f Feed Rate (mm/rev)
d Depth of Cut (mm)
Ra Surface Roughness (µm/m)
MAE Mean Root Square Error
RMSE Root Mean Square Error
Nw Nose Tool Wear (µm/min)
CVRMSE Coefficient of the Variation of the Root Mean Square Error

Appendix A

Table A1. Training data of various cutting parameters to train the SVM model [5].

Exp No. Cutting Parameters Cutting Length CVD Coated Tool PVD Coated WC

d [mm] V [m/min] f [mm/rev] L [mm] Ra [µ/m] Nw [µ/min] Ra [µ/m] Nw [µ/min]

1 1 30 0.052 40 1.82 0.110 1.32 0.047

2 1 30 0.052 80 1.94 0.127 1.54 0.079

3 1 30 0.052 120 2.12 0.16 1.68 0.083

4 1 30 0.104 40 2.15 0.135 2 0.07

5 1 30 0.104 80 2.18 0.139 2.4 0.092

6 1 30 0.104 120 2.48 0.173 2.6 0.093

7 1 30 0.162 40 3.3 0.14 3.72 0.086

8 1 30 0.162 80 3.6 0.143 4.1 0.093

9 1 30 0.162 120 3.8 0.186 4.18 0.094

10 1 60 0.052 40 1.76 0.172 1.3 0.11
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Table A1. Cont.

Exp No. Cutting Parameters Cutting Length CVD Coated Tool PVD Coated WC

d [mm] V [m/min] f [mm/rev] L [mm] Ra [µ/m] Nw [µ/min] Ra [µ/m] Nw [µ/min]

11 1 60 0.052 80 1.9 0.184 1.45 0.12

12 1 60 0.052 120 2.04 0.201 1.5 0.123

13 1 60 0.104 40 1.9 0.189 1.76 0.115

14 1 60 0.104 80 2.1 0.232 1.98 0.126

15 1 60 0.104 120 2.3 0.261 2.16 0.132

16 1 60 0.162 40 3.5 0.214 4.12 0.121

17 1 60 0.162 80 3.85 0.279 4.22 0.128

18 1 60 0.162 120 4.1 0.330 4.34 0.15

19 1 90 0.052 40 1.4 0.183 1.28 0.121

20 1 90 0.052 80 1.6 0.221 1.4 0.21

21 1 90 0.052 120 2.3 0.234 1.68 0.308

22 1 90 0.104 40 2.25 0.235 1.94 0.19

23 1 90 0.104 80 2.3 0.287 2.24 0.283

24 1 90 0.104 120 2.7 0.361 2.44 0.321

25 1 90 0.162 40 4 0.242 4.68 0.201

26 1 90 0.162 80 4.3 0.383 4.74 0.297

27 1 90 0.162 120 4.9 0.586 5.08 0.38

28 1.5 30 0.052 40 2.04 0.128 2.02 0.086

29 1.5 30 0.052 80 2.1 0.169 2.2 0.112

30 1.5 30 0.052 120 2.15 0.17 2.4 0.116

31 1.5 30 0.104 40 2.18 0.148 2.24 0.115

32 1.5 30 0.104 80 2.2 0.18 2.32 0.121

33 1.5 30 0.104 120 2.58 0.185 2.72 0.132

34 1.5 30 0.162 40 3.64 0.158 4.16 0.126

35 1.5 30 0.162 80 4.24 0.19 4.32 0.142

36 1.5 30 0.162 120 4.5 0.193 4.4 0.148

37 1.5 60 0.052 40 1.82 0.181 1.64 0.111

38 1.5 60 0.052 80 1.98 0.186 1.7 0.129

39 1.5 60 0.052 120 2.06 0.214 1.86 0.14

40 1.5 60 0.104 40 2.08 0.221 2 0.126

41 1.5 60 0.104 80 2.15 0.252 2.26 0.138

42 1.5 60 0.104 120 2.47 0.276 2.4 0.16

43 1.5 60 0.162 40 4.16 0.237 4.18 0.178

44 1.5 60 0.162 80 4.32 0.289 4.4 0.207

45 1.5 60 0.162 120 4.75 0.369 4.52 0.253

46 1.5 90 0.052 40 2.4 0.218 1.94 0.177

47 1.5 90 0.052 80 2.58 0.226 2 0.36

48 1.5 90 0.052 120 2.6 0.243 2.06 0.567
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Table A1. Cont.

Exp No. Cutting Parameters Cutting Length CVD Coated Tool PVD Coated WC

d [mm] V [m/min] f [mm/rev] L [mm] Ra [µ/m] Nw [µ/min] Ra [µ/m] Nw [µ/min]

49 1.5 90 0.104 40 2.47 0.3 2.2 0.313

50 1.5 90 0.104 80 2.54 0.409 2.36 0.376

51 1.5 90 0.104 120 3.16 0.466 3.02 0.597

52 1.5 90 0.162 40 4.16 0.318 4.22 0.331

53 1.5 90 0.162 80 4.78 0.517 4.6 0.507

54 1.5 90 0.162 120 5.1 0.597 5.26 0.602

55 2 30 0.052 40 2.38 0.147 2.4 0.09

56 2 30 0.052 80 2.39 0.18 2.45 0.12

57 2 30 0.052 120 2.6 0.203 2.8 0.123

58 2 30 0.104 40 2.4 0.154 2.65 0.126

59 2 30 0.104 80 2.52 0.186 2.76 0.13

60 2 30 0.104 120 2.64 0.210 2.92 0.134

61 2 30 0.162 40 4.12 0.227 4.46 0.135

62 2 30 0.162 80 4.45 0.23 4.98 0.175

63 2 30 0.162 120 4.65 0.235 5.06 0.183

64 2 60 0.052 40 1.98 0.199 2.25 0.123

65 2 60 0.052 80 2.1 0.203 2.3 0.15

66 2 60 0.052 120 2.45 0.216 2.44 0.256

67 2 60 0.104 40 2.46 0.238 2.68 0.133

68 2 60 0.104 80 2.62 0.261 2.89 0.275

69 2 60 0.104 120 2.84 0.318 3.01 0.47

70 2 60 0.162 40 4.65 0.248 4.68 0.184

71 2 60 0.162 80 4.7 0.32 5.1 0.425

72 2 60 0.162 120 4.76 0.415 5.56 0.56

73 2 90 0.052 40 2.4 0.255 2.3 0.273

74 2 90 0.052 80 2.42 0.265 2.38 0.454

75 2 90 0.052 120 2.68 0.269 2.75 0.620

76 2 90 0.104 40 2.54 0.372 2.92 0.390

77 2 90 0.104 80 2.7 0.425 3.24 0.56

78 2 90 0.104 120 3.2 0.650 3.45 0.680

79 2 90 0.162 40 4.98 0.555 5.34 0.412

80 2 90 0.162 80 5.02 0.7 5.55 0.601

81 2 90 0.162 120 5.4 0.891 5.92 0.710
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Table A2. Estimated cutting tool wear parameter of the training dataset.

Exp Num

CVD Coated PVD Coated

Experimental SVM Experimental SVM

Nw [µ/m] Nw [µ/m] Nw [µ/m] Nw [µ/m]

1 0.110 0.110 0.047 0.083

2 0.127 0.128 0.079 0.082

3 0.16 0.163 0.083 0.086

4 0.135 0.137 0.07 0.072

5 0.139 0.140 0.092 0.086

6 0.173 0.175 0.093 0.094

7 0.14 0.182 0.086 0.092

8 0.143 0.145 0.093 0.092

9 0.186 0.186 0.094 0.093

10 0.172 0.173 0.11 0.109

11 0.184 0.186 0.12 0.119

12 0.201 0.203 0.123 0.121

13 0.189 0.191 0.115 0.114

14 0.232 0.236 0.126 0.125

15 0.261 0.263 0.132 0.131

16 0.214 0.215 0.121 0.120

17 0.279 0.282 0.128 0.127

18 0.330 0.332 0.15 0.149

19 0.183 0.184 0.121 0.120

20 0.221 0.223 0.21 0.217

21 0.234 0.266 0.308 0.289

22 0.235 0.237 0.19 0.178

23 0.287 0.303 0.283 0.280

24 0.361 0.473 0.321 0.320

25 0.242 0.288 0.201 0.200

26 0.383 0.528 0.297 0.296

27 0.586 0.687 0.38 0.377

28 0.128 0.135 0.086 0.085

29 0.169 0.220 0.112 0.111

30 0.17 0.108 0.116 0.116

31 0.148 0.150 0.115 0.114

32 0.18 0.183 0.121 0.119

33 0.185 0.186 0.132 0.129

34 0.158 0.160 0.126 0.124

35 0.19 0.191 0.142 0.134

36 0.193 0.196 0.148 0.139
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Table A2. Cont.

Exp Num

CVD Coated PVD Coated

Experimental SVM Experimental SVM

Nw [µ/m] Nw [µ/m] Nw [µ/m] Nw [µ/m]

37 0.181 0.181 0.111 0.104

38 0.186 0.186 0.129 0.121

39 0.214 0.214 0.14 0.151

40 0.221 0.224 0.126 0.103

41 0.252 0.255 0.138 0.143

42 0.276 0.276 0.16 0.190

43 0.237 0.239 0.178 0.163

44 0.289 0.346 0.207 0.217

45 0.369 0.431 0.253 0.272

46 0.218 0.267 0.177 0.189

47 0.226 0.230 0.36 0.348

48 0.243 0.247 0.567 0.561

49 0.3 0.304 0.313 0.311

50 0.409 0.411 0.376 0.376

51 0.466 0.469 0.597 0.590

52 0.318 0.322 0.331 0.327

53 0.517 0.526 0.507 0.501

54 0.597 0.600 0.602 0.596

55 0.147 0.149 0.09 0.088

56 0.18 0.182 0.12 0.119

57 0.203 0.205 0.123 0.121

58 0.154 0.155 0.126 0.124

59 0.186 0.188 0.13 0.128

60 0.210 0.213 0.134 0.123

61 0.227 0.231 0.135 0.151

62 0.23 0.231 0.175 0.167

63 0.235 0.236 0.183 0.191

64 0.199 0.199 0.123 0.044

65 0.203 0.240 0.15 0.140

66 0.216 0.232 0.256 0.263

67 0.238 0.324 0.133 0.137

68 0.261 0.265 0.275 0.272

69 0.318 0.322 0.47 0.413

70 0.248 0.253 0.184 0.299

71 0.32 0.324 0.425 0.419

72 0.415 0.421 0.56 0.531

73 0.255 0.259 0.273 0.265

74 0.265 0.266 0.454 0.448
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Table A2. Cont.

Exp Num

CVD Coated PVD Coated

Experimental SVM Experimental SVM

Nw [µ/m] Nw [µ/m] Nw [µ/m] Nw [µ/m]

75 0.269 0.274 0.620 0.590

76 0.372 0.378 0.390 0.390

77 0.425 0.432 0.56 0.553

78 0.650 0.660 0.680 0.680

79 0.555 0.561 0.412 0.407

80 0.7 0.701 0.601 0.592

81 0.891 0.895 0.710 0.699
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