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Ectopic lymphoid tissue containing B cells forms in the meninges at
late stages of human multiple sclerosis (MS) and when neuro-
inflammation is induced by interleukin (IL)-17 producing T helper
(Th17) cells in rodents. B cell differentiation and the subsequent
release of class-switched immunoglobulins have been speculated
to occur in the meninges, but the exact cellular composition and
underlying mechanisms of meningeal-dominated inflammation re-
main unknown. Here, we performed in-depth characterization of
meningeal versus parenchymal Th17-induced rodent neuroinflam-
mation. The most pronounced cellular and transcriptional differ-
ences between these compartments was the localization of B cells
exhibiting a follicular phenotype exclusively to the meninges. Cor-
respondingly, meningeal but not parenchymal Th17 cells acquired
a B cell–supporting phenotype and resided in close contact with
B cells. This preferential B cell tropism for the meninges and the
formation of meningeal ectopic lymphoid tissue was partially de-
pendent on the expression of the transcription factor Bcl6 in Th17
cells that is required in other T cell lineages to induce isotype class
switching in B cells. A function of Bcl6 in Th17 cells was only de-
tected in vivo and was reflected by the induction of B cell–
supporting cytokines, the appearance of follicular B cells in the
meninges, and of immunoglobulin class switching in the cerebro-
spinal fluid. We thus identify the induction of a B cell–supporting
meningeal microenvironment by Bcl6 in Th17 cells as a mechanism
controlling compartment specificity in neuroinflammation.
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Multiple sclerosis (MS) is a chronic autoimmune demyelinating
disorder of the central nervous system (CNS) with complex

etiology (1, 2). The relative contribution of T and B cells to neu-
roinflammation may be location specific. In fact, T cells are abun-
dant in MS lesions in the CNS parenchyma (3), while B cells are
enriched in border tissues surrounding the CNS of MS patients (4).
These border tissues include the multilayered fibrous membranes
termed meninges that ensheath the CNS together with the pro-
tective cerebrospinal fluid (CSF) (5). Both the meninges and CSF
serve immune-related functions with likely contribution to diseases
(6). In MS, class-switched and affinity-matured immunoglobulins
(Ig) and late B lineage cells accumulate in the CSF (7, 8), and
B cell–rich ectopic lymphoid tissue can develop in the meninges in
chronic MS (4, 9) with a gradient of neuronal damage originating
from the meninges (10, 11). However, immunological mechanisms
controlling meningeal inflammation are poorly understood.
Experimental autoimmune encephalomyelitis (EAE) in rodents

replicates many aspects of human MS (12). Especially, the EAE
model induced by adoptive transfer (AT) of myelin-specific inter-
leukin (IL)-17 producing T helper (Th17) cells (13) represents a
good model to study meningeal pathology, because it triggers ro-
bust inflammation and accumulation of ectopic lymphoid tissue in
the meninges (14). Similar to humanMS, parenchymal infiltrates in

EAE consist mainly of T cells, while meningeal inflammation has a
strong B cell component (15). Features of neuroinflammation are,
thus, site-specific in the parenchyma versus meninges and can be
modeled in rodents. This compartmentalization has not been well
characterized, and the mechanisms of meningeal T/B cell interac-
tions are unknown.
We previously identified the transcription factor Bcl6 in CD4+

T cells as a promising candidate to control meningeal T/B cell
interaction because it enables T cells to promote B cell maturation
and class switching (16) and exacerbates two variants of EAE (17).
However, Bcl6 controls the T follicular helper (TFH) cell lineage
(16) by repressing competing Th cell lineages (18), and Bcl6 does
not affect the in vitro differentiation of Th17 cells (17, 19, 20)—
the Th cell lineage that induces EAE. This in vitro versus in vivo
discrepancy led us to speculate that Bcl6 may preferentially
modulate Th17 cell functions in vivo such as their interaction with
B cells.

Significance

The meninges protect the central nervous system but also host
lymphocytes in neuroinflammation. In human multiple sclerosis,
preferentially B cells accumulate in the meninges. By generating
a compartment-specific transcriptional map of meningeal versus
parenchymal leukocytes in experimental neuroinflammation, we
found a follicular phenotype of meningeal B cells and a corre-
sponding follicular helper-like phenotype in meningeal Th17
cells. The meninges thus instructed a site-specific local pheno-
type to proinflammatory autoreactive T cells. We identified the
transcription factor Bcl6 in Th17 cells to promote interactions
with meningeal B cells, isotype-switching, and B cell-supporting
chemokines. This may describe a mechanism controlling menin-
geal autoimmunity and helps understanding how the meninges,
as a recently recognized immunologically active site, contribute
to autoimmune tissue damage in multiple sclerosis.
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We here performed in-depth characterization of meningeal
versus parenchymal leukocytes at the single-cell level in the spinal
cord (SC) of Th17 cell-induced EAE. We found evidence of on-
going Th17/B cell interaction in the meninges while B cells
remained excluded from the parenchyma. By reconstructing
clonality information, we found that antigen-specific Th17 cells
adopted site-specific transcriptional states that differed between
the meninges and parenchyma. This was at least partially con-
trolled by Bcl6 in Th17 cells, which was required for the induction
of a B cell–supporting and lymphoid-tissue inducing microenvi-
ronment in the meninges and CSF, likely signaling through stro-
mal cells. This identifies noncanonical effects of Bcl6 in the Th17
lineage controlling the site-specific B cell–dominated meningeal
inflammation.

Results
High-Resolution Characterization of SC Inflammation in Th17-Mediated
EAE. We initially aimed to deeply characterize the prominent
meningeal inflammation (14) occurring in EAE induced by adop-
tive transfer of T cell receptor (TCR)-transgenic myelin-reactive
2D2tg Th17 donor cells (Vβ11+) (AT-EAE) (21) (Fig. 1A). We
used intravenous (iv) injection of fluorophore-labeled CD45 anti-
body to distinguish CD45highCD45ivneg tissue-resident leukocytes
(TRL) from endovascular leukocytes as described (22, 23) and
applied this to the SC parenchyma and meninges (SI Appendix,
Fig. S1).
We first generated single-cell transcriptomes of TRL sorted

from SC meninges (4,068 cells) and parenchyma (4,071 cells) of
C57BL/6 recipients of 2D2tg Th17 donor cells at peak of AT-EAE
(named wild-type [wt] recipients [=wt-R]; Dataset S1). In unbiased
cell-type clustering of the combined single-cell RNA-sequencing
(scRNA-seq) dataset, we identified 24 individual clusters (Mate-
rials and Methods and Fig. 1B) and annotated them based on highly
expressed genes (Dataset S2) and predefined marker gene sets (SI
Appendix, Fig. S2 A–C). We identified two clusters of B lineage
cells (Bc) (Cd79a, Ms4a1/CD20, Cd74/MHC class II chain) with
either a more-naïve (Bc; Ighd) or a more-differentiated phenotype
(diffBc; Cd19low) (Fig. 1B and SI Appendix, Fig. S2 A–C). We
identified eight CD4+ T cell (Cd3e, Cd8aneg) clusters that spanned
a wide spectrum of phenotypes (Fig. 1B). Of these, three clusters
expressed the Il17a, Rorc markers of Th17 cells, two expressed the
Foxp3, Il2ra/CD25 regulatory T cell markers, and three expressed
markers of proliferation (proli; Mki67/Ki67, Cdk1) (Fig. 1B and
Dataset S2). The identification of cytotoxic (cyto) and myeloid
lineage cells was in accordance with expectations from previous
studies of the brain meninges and in other EAE models (23, 24)
(Fig. 1B and SI Appendix, Fig. S2 A–D). We, thus, successfully
characterized leukocytes from the inflamed SC parenchyma
and meninges.

The Transcriptional Phenotype of Infiltrating Lymphocytes Depends
on the Microenvironment. We next combined the scRNA-seq data
from all CD4+ T cell clusters and compared the gene expression
between meninges and parenchyma (Dataset S3). Differentially
expressed (DE) genes between compartments were related to
T cell trafficking (Ccr7, Cxcr4 up, Ccl1, Ccl4, Cxcr6 down) in the
meninges. In addition, genes related to TFH cell function (Icos,
Il21r, Cxcr4, Stat3) were up-regulated in the meninges. Conversely,
CD4+ T cells in parenchyma increased expression of Th17-related
genes (Il17a, Rorc) with some signs of Th1 differentiation and
pathogenicity (Irf1, Ifng, Tnf) (SI Appendix, Fig. S3A). Differential
expression analysis of the combined Th17 clusters (Dataset S4),
rather than combined CD4+ T cells, revealed similar cell traffick-
ing gene patterns in the meninges (Cxcr4 up, Ccr2, Cxcr6, Itgb7
down) (SI Appendix, Fig. S3B) and down-regulation of Th17-
related (Il17a, Rorc) and Th1-related transcripts (Il12rb1, Stat1,
Irf1, Tnf) in the meninges (SI Appendix, Fig. S3B). Merged Th17

gene scores also differed between compartments (SI Appendix, Fig.
S3C and Dataset S5).
Bulk RNA-seq of Vβ11+ cells sorted from both SC compart-

ments identified that the donor-derived CD4+ T cells also down-
regulated Th17-related (Ctsw, Ikzf1 down, Crem up) and Th1-
related transcripts (Tnf, Socs1) in the meninges (SI Appendix,
Fig. S3D and Dataset S6). The tissue microenvironment thus
shapes the compartment-specific phenotype of encephalitogenic
Th17 cells, with acquisition of a TFH-like phenotype in the me-
ninges and signs of Th1 transdifferentiation in the parenchyma.
More generally, this suggests zonation of autoimmune mechanisms
between CNS compartments.
We next tracked donor-derived Th17 cells in our scRNA-seq

dataset by identifying their defined 2D2tg TCR expression (SI
Appendix, Supplementary Methods and Fig. S3E) (25). Such 2D2tg

cells were more prevalent in the parenchyma (SI Appendix, Fig.
S3 F–I). In both the meninges and parenchyma, 2D2tg cells were
enriched in clusters identified as activated and proliferating CD4+

T cell and Th17 clusters (SI Appendix, Fig. S3I and Dataset S7).
Subclustering of these clusters by tissue of origin was impossible
due to the low total cell numbers. Genes indicating proliferation
(Mki67, Top2a) and activation (Cd28) were induced in 2D2
compared to non-2D2 CD4+ T cell clusters (Dataset S8). This
indicates increased activation and proliferation of myelin-specific
Th17 cells.

Myelin-Reactive Th17 Cells Preferentially Induce Meningeal but Not
Parenchymal B Cell Infiltration in the SC. We next systematically
compared the cellular composition between the meninges (wt-R-
men) and the parenchyma (wt-R-par). We initially classified clus-
ters into B cell (Bc, green), CD4+ T cell (CD4, orange), cytotoxic
(cyto, blue), and myeloid cell (gray) lineages (Fig. 1 B and C and SI
Appendix, Fig. S2D). Already in this broad classification, B cells
predominated in the meninges (29% meningeal versus 1% pa-
renchymal TRL). Conversely, CD4+ T cells were more prevalent in
the parenchyma (CD4: 46% parenchymal versus 29% meningeal
TRL), while myeloid cells were comparably represented in both
compartments (Fig. 1C and Datasets S9 and S24). Testing for
compositional differences using all 24 clusters confirmed the pre-
dominance of B cells in the meninges and of multiple CD4+ T cell
and cytotoxic clusters in the parenchyma (Fig. 1D). Two clusters
classified as Th17 cells (Th17-1, proliTh17) were more abundant in
the parenchyma, while the Th17-2 cluster was more abundant in
the meninges.
To confirm these results, we performed flow cytometry of me-

ninges versus parenchyma-derived leukocytes at the peak of AT-
EAE. We found that B cells were 9.2-fold more abundant in the
meninges than the parenchyma, while CD4+ T cells were 1.8-fold
higher in the parenchyma (Fig. 1E and Dataset S10). The pro-
portion of Vβ11+2D2tg donor-derived cells of all leukocytes and of
all CD4+ T cells was higher in the parenchyma (Fig. 1E) in ac-
cordance with the TCR tracking data (SI Appendix, Fig. S3H). The
most pronounced cellular differences between the meninges ver-
sus parenchyma thus involve B cells and Th17/CD4+ T cells.
We next morphologically localized cell types using semiquanti-

tative cellular heatmaps of SC cross-sections with attached menin-
ges (Materials and Methods). We measured the number (CD3+,
Vβ11+CD3+) or area (B220+, F4/80+) occupied by cells and re-
lated this to the cross-sectional area, which was smaller in the me-
ninges (Fig. 1F). When comparing the resulting cellular density
(CD3+, Vβ11+CD3+; cells/mm2) or proportion of area infiltrated
(B220+, F4/80+; %) between the meninges and the parenchyma,
B220+ B cells were almost exclusively restricted to the meninges
(Fig. 1G), and the densities of CD3+ T cells and Vβ11+2D2tg donor
T cells were significantly higher in the meninges (Fig. 1G and
Dataset S11), while there was no difference in the area occupied by
F4/80+ macrophages. Flow cytometry and immunofluorescence
microscopy generated slightly different results since histological
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cells; Treg, regulatory Tc; proli, proliferating; exh, exhausted; CD8, CD8+ Tc; CTL, cytotoxic T lymphocytes; NK, natural killer cells; prolicyt, proliferating cy-
totoxic Tc; granulo, granulocytes; micro, microglia; (men/p/c)DC, (meningeal/plasmacytoid/classical) dendritic cells; myeloid, myeloid cells. Student’s t test was
used for normally distributed datasets, otherwise Mann–Whitney U test. *P < 0.05, **P < 0.01, ***P < 0.001; ns, not significant.
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analyses quantified cell densities (Fig. 1G), whereas flow cytometry
measured the proportion of total CD45high leukocytes (Fig. 1E).
Immunofluorescence confocal microscopy of the SC meninges

confirmed colocalization of Vβ11+ T cells with B220+ B cells
(Fig. 1H and SI Appendix, Fig. S4 A and B). We also found a
significant correlation between the density of Vβ11+ and B220+

cells (r = 0.62, R2 = 0.38, P = 0.03) in the meninges but not in the
parenchyma (r = 0.23, R2 = 0.02, P = 0.27; SI Appendix, Fig. S4C).
There was no correlation between Vβ11+ and F4/80+ cell densi-
ties in either the meninges (r = 0.42, R2 = 0.18, P = 0.11) or pa-
renchyma (r = 0.28, R2 = 0.17, P = 0.22, SI Appendix, Fig. S4D).
Hence, while Vβ11+2D2tg cells represent a higher proportion of
the total CD45high infiltrate in the parenchyma, they occur at a
higher density in the meninges in close association with B220+

B cells that exhibit specific tropism for the meninges.

Bcl6 Controls Th17 Effector Function Only In Vivo in a Compartment-
Specific Manner. We next identified the transcription factor Bcl6 as
a promising candidate in T cells to control meningeal Th17/B cell
interaction because it generally enables T cells to promote B cell
class switching (16), is up-regulated in Th17 cells upon transfer into
the CNS (14), and exacerbates two variants of EAE (SI Appendix,
Fig. S5 A and B) (17). In addition, in the bulk RNA-seq data from
Vβ11+CD4+ T cells sorted from the SC meninges and parenchyma
of wt-R at peak of AT-EAE, Bcl6 was expressed at a higher level
than in the differentiated Th17 cells pretransfer (Fig. 2A), and this
was confirmed by qPCR (Fig. 2B). Bcl6 was already up-regulated in
Vβ11+CD4+ T cells sorted from draining inguinal lymph nodes in
the early phase of AT-EAE (Fig. 2B).
To test the functional role of Bcl6 in meningeal neuro-

inflammation, we used CD4CreBcl6fl/fl2D2tg (Bcl6KO) mice to de-
lete Bcl6 from myelin-reactive 2D2tg T cells. Th17 differentiation
from naïve CD4+ T cells was unaffected by Bcl6 deletion (SI Ap-
pendix, Fig. S5C) as described previously (17, 19, 20). Bulk RNA-
seq of Th17-differentiated Vβ11+CD4+ T cells collected before
transfer also revealed no significantly DE genes between Bcl6KO
and wt cells (Dataset S12). Bcl6 is known to promote EAE after
in vivo transfer (17). To resolve the discrepancy between un-
changed Th17 cell differentiation in vitro and Bcl6 promoting Th17
cell function after in vivo transfer (17), we postulated that Bcl6
would only affect differentiation when Th17 cells are restimulated
with antigen.
To address this experimentally, we restimulated T cells extracted

from draining lymph nodes and spleen of MOG35–55-immunized
mice in the presence of MOG35–55 antigen and under Th17-
polarizing conditions and found reduced IL17A-production in
Bcl6KO mice compared to wt controls (Fig. 2C), while T cell pro-
liferation was not reduced in Bcl6KO (SI Appendix, Fig. S5D).
To better characterize this “in vivo-restricted” function, we

performed scRNA-seq of TRL sorted from the SC meninges
(3,650 cells) and parenchyma (4,279 cells) of recipient mice at peak
of EAE after transfer of Bcl6KO-derived 2D2tg Th17 cells (Fig. 2D
and E and SI Appendix, Fig. S5E and Dataset S2). We first com-
pared the meningeal leukocyte composition between Bcl6KO re-
cipients (named Bcl6KO-R) and wt-R and found a strong decrease
in the B cell, Th17 cell (Th17-1, Th17-2), and granulo-1 clusters in
Bcl6KO-R (Fig. 2 D and E). Conversely, the proportion of several
myeloid clusters as well as the Treg and multiple cytotoxic clusters
increased in the meninges of Bcl6KO-R compared to wt-R
(Fig. 2 D and E and SI Appendix, Fig. S5 F, J, and K and Data-
sets S9 and S25). We then compared the parenchymal TRL
composition between genotypes and found that the proportion of
clusters classified as CD4+ T cells, especially activated and prolif-
erating CD4+ T cell clusters (actCD4, proliCD4), was reduced in
Bcl6KO-R compared to wt-R (19% versus 46%) (SI Appendix, Fig.
S5 F–H and Datasets S9 and S26). Similarly, the Th17 cell clusters
(Th17-1, Th17-2, proliTh17) were reduced, while the Treg cluster
doubled in Bcl6KO-R compared to wt-R parenchyma (5% versus

2%, Dataset S9). Inversely, cytotoxic leukocyte clusters and plas-
macytoid and classical dendritic cell (pDC/cDC) clusters increased
in the Bcl6KO-R parenchyma (SI Appendix, Fig. S5 F–H). Bcl6
expression in Th17 cells, thus, promoted Th17/B cell–dominated
inflammation in the meninges and CD4+ T cell–dominated in-
flammation in the parenchyma.
Using flow cytometry, we confirmed that the meninges of

Bcl6KO-R contained lower proportions of B220+ B cells and
Vβ11+ T cells than wt-R (Fig. 2F and Dataset S13). The propor-
tion of Vβ11+ T cells in the parenchyma was also lower in Bcl6KO-
R compared to wt-R (SI Appendix, Fig. S5L and Dataset S14).
Cellular density (CD3+, Vβ11+CD3+; cells/mm2) or proportion of
area infiltrated (B220+; %) defined by immunofluorescence mi-
croscopy confirmed a smaller B220+ B cell infiltrate and less dense
Vβ11+2D2tg donor T cell infiltration in the meninges of Bcl6KO-R
compared to wt-R. Total CD3+ T cell density was reduced in
Bcl6KO-R in both meninges and parenchyma (Fig. 2G and SI
Appendix, Fig. S5 K–M and Dataset S11). Bcl6 expression in Th17
cells, thus, promoted the occurrence of meningeal B cells.

Bcl6 in Th17 Cells Promotes Their Lymphoid Tissue-Inducing Phenotype
in the SC Meninges.We next aimed to understand how Bcl6 in Th17
cells controlled these compartment-specific cellular changes. For
highest transcriptome coverage, we performed bulk RNA-seq of
Vβ11+CD4+ T cells sorted from the meninges and parenchyma of
Bcl6KO-R and wt-R. In total, 130 transcripts DE between geno-
types were coregulated in both compartments, 143 transcripts were
only DE in the parenchyma, and 636 transcripts were specifically
DE in the meninges indicating partially site-specific effects of Bcl6
in Th17 cells (SI Appendix, Fig. S6A and Dataset S15).
Notably, only in the meninges, Vβ11+Bcl6KO CD4+ T cells lost

expression of transcripts promoting lymphoid tissue formation (Lta/
Lymphotoxin-α, Ltb, Il17f) and B cell maturation (Il21) (Fig. 2H
and Dataset S16). We confirmed down-regulation of Lta and Il17a
in sorted Vβ11+CD4+ T cells by qPCR (Fig. 2I). In genotype-
specific scRNA-seq data, lymphoid tissue-inducing transcripts
(Lta, Ltb, Il17a) were also down-regulated in Bcl6KO-R-men versus
wt-R-men, and this down-regulation preferentially occurred in Th17
clusters (Fig. 2J and SI Appendix, Figs. S6B and S7 and Dataset
S25). This suggests that Bcl6 drives a lymphoid tissue-inducing
phenotype in Th17 cells specifically in the meninges.
In the parenchyma, Vβ11+Bcl6KO CD4+ T cells instead gained

expression of Th1-related transcripts (Eomes, SI Appendix, Fig.
S6C). In both compartments, Vβ11+Bcl6KO CD4+ T cells gained
expression of Treg-related transcripts (Foxp3, Smad7), suggesting
that Bcl6 represses differentiation to competing Th cell lineages in
a site-specific fashion.

Bcl6 in Th17 Cells Is Required for the Generation of Follicular Meningeal
B Cells. We next characterized how Bcl6 deficiency in donor Th17
cells affected the phenotype of meningeal B cells in neuro-
inflammation. We merged all B cell clusters in the scRNA-seq
dataset and restricted this analysis to the meninges as parenchy-
mal B cells were scarce.
In the meninges, Bcl6KO-R–derived B cells up-regulated

transcripts related to antigen presentation (H2-DMa, H2-DMb2,
H2-Ab1) (Fig. 3A and Dataset S17) and down-regulated tran-
scripts previously identified in meningeal follicular B cells (FOBc)
in B cell–dependent EAE (26) (Hspa1a/HSP70-1A, Hspa1b/
HSP70-1B) and are described to regulate immune responses to
myelin antigen (27).
To achieve higher resolution, we next subclustered all menin-

geal Bc transcriptomes into five subclusters (Fig. 3B and SI Ap-
pendix, Fig. S6D and Dataset S18). When comparing genotypes,
two subclusters annotated as Bc-1 and FOBc were markedly re-
duced in Bcl6KO-R meninges (Fig. 3C), and both expressed the
known FOBc marker Fcer2a/CD23 (28, 29) (Fig. 3D and Dataset
S19). Cluster Bc-1 additionally expressed genes associated with
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Fig. 2. Bcl6 controls local Th17 effector functions in a microenvironment-specific manner. (A) C57BL/6 recipient mice (wt-R) were iv injected with Th17 cells
from wt 2D2tg donors (Fig. 1A). Bulk RNA-seq was performed on in vitro differentiated Th17 cells (Vβ11+ wt-Th17) and on in vivo Vβ11+CD4+ T cells sorted (SI
Appendix, Fig. S1) from SC meninges (men) and parenchyma (par) of wt-R. Raw reads aligned to the Bcl6 gene (Left) and log2 fold change (FC) of Bcl6 gene
expression between in vitro Vβ11+ Th17 cells and Vβ11+ cells from men or par (Right) are depicted (Datasets S6 and S12). (B) qPCR of Bcl6 in in vitro dif-
ferentiated Vβ11+ Th17 cells or in wt-R derived in vivo Vβ11+CD4+ T cells sorted from inguinal lymph nodes (iLN) on day 6 after transfer or from the men or par
at peak of AT-EAE. (C) Wt or CD4CreBcl6fl/fl (Bcl6KO) mice were immunized with MOG35–55, and after 10 d, CD4+ T cells were isolated from iLN and spleen and
cultured under Th17 polarizing conditions; intracellular IL-17A was measured by flow cytometry after 4 h of restimulation. Dots represent biological repli-
cates. (D) CD45ivnegCD45high TRL extracted from SC men of five wt-R (Left) and five recipients of CD4CreBcl6fl/fl2D2tg donor cells (Bcl6KO-R, Right) were
subjected to scRNA-seq (SI Appendix, Fig. S5E). Transcriptomes of wt-R-men (4,068 cells) and Bcl6KO-R-men (3,650 cells) depicted in Uniform Manifold Ap-
proximation and Projection plots. Clusters as in Fig. 1B. (E) Bar plots showing differences of cluster proportions in Bcl6KO-R-men versus wt-R-men. Positive
values indicate higher abundance in Bcl6KO-R-men. (F) Proportions of indicated cell types quantified by flow cytometry of TRL in the meninges of wt-R (black)
and Bcl6KO-R (green). Gating as in Fig. 1E and SI Appendix, Fig. S1. (G) The proportion of area occupied by B220+ (Left) and the density of Vβ11+CD3+ (Middle)
and CD3+ cells (Right) were quantified in cervical, thoracic, and lumbar SC sections (SI Appendix, Fig. S5I). Each dot depicts the mean from three SC sections
(cervical, thoracic, lumbar) per mouse. Median, 25th to 75th percentiles, and 1.5-fold interquartile range indicated in F and G. (H) Donor-derived
Vβ11+CD4+CD45ivnegCD45high cells sorted from the SC meninges of wt-R and Bcl6KO-R were processed by bulk RNA-seq as in A (SI Appendix, Fig. S5E).
Volcano plot of genes DE between genotypes in men. Thresholds: −Log10 adjusted P value < 0.05, log2FC > 0.75. (Dataset S16) (I) qPCR of Lta, Ltb, and Il17a in
sorted Vβ11+CD4+CD45ivnegCD45high cells from Bcl6KO-R-men versus wt-R-men. (J) Dot plot depicting selected genes in clusters identified as CD4+ T cells in
scRNA-seq dataset in wt-R-men and Bcl6KO-R-men. Student’s t test used for normally distributed datasets, otherwise Mann–Whitney U test. *P < 0.05, **P <
0.01, ***P < 0.001; ns, not significant.
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Fig. 3. Bcl6 in Th17 cells influences the development of follicular B cells in the meninges. (A) Transcriptomes identified as B cells (Bc and differentiated [diff]
Bc clusters) in meninges (men) were merged; volcano plot depicts DE genes between genotypes. Thresholds: −Log10 adjusted P value < 0.001, average
logFC > 0.25 (Dataset S17). (B) Bc transcriptomes as in A subclustered into wt-R-men and Bcl6KO-R-men–derived cells. FOBc, follicular Bc; PC, plasma cells. (C)
Bar plot showing differences of Bc subcluster proportions in the men of Bcl6KO-R versus wt-R. Positive values indicate higher abundance in Bcl6KO-R-men. (D)
Dot plot of selected genes in Bc subclusters merged from wt-R-men and Bcl6KO-R-men. (E) Feature plots of selected Bc markers genes. (F) CSF was collected
from the cisterna magna of wt-R and Bcl6KO-R at peak of AT-EAE, and concentrations of Ig isotypes were quantified. Differentially abundant isotypes
(Dataset S20) are depicted. (G) The density of Ki67+B220+ cells was quantified in lumbar SC sections in wt-R-men versus Bcl6KO-R-men. Dots represent bi-
ological replicates. Box-whisker dot plots (median/25th to 75th percentiles/1.5-fold interquartile range) in F and G. (H) In vitro differentiated Th17 cells from
2D2tg (wt) or CD4CreBcl6fl/fl2D2tg (Bcl6KO) donor mice were cocultured with labeled (CellTrace Violet) MOG35–55-specific B cells from secondary lymphoid
organs of a naïve TH mouse in a 1:2 ratio and in the presence of MOG35–55. B cell proliferation was analyzed after 3 d with flow cytometry. *P < 0.05, **P <
0.01; ns, not significant.
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high transcriptomic activity (e.g., Ncl, Eif2f2, Eif4a1), suggesting
activation, and Mif (Fig. 3D), a transcript with relevance in B cells
in MS (30, 31). Cluster FOBc expressed markers of activated
FOBc (Hspa1a, Hspa1b, and Cd69) (26) (Fig. 3 B–E and Dataset
S18). Other B cell clusters decreased (Fig. 3C) but were still de-
tectable in Bcl6KO-R meninges. The smallest B cell subcluster
resembled class-switched plasma cells (PC; Ighg2c, Xbp1, Sdc1/
CD138, Mki67/Ki67, Nme1; Fig. 3 B–E).
We next tested whether Bcl6 in Th17 cells also affected isotype

class switching. Therefore, we collected CSF from the cisterna

magna of wt-R versus Bcl6KO-R mice at peak of AT-EAE and
quantified antibody isotypes with an enzyme-linked immunosor-
bent assay (ELISA)-based proteomics assay. The concentration of
IgG1, IgG2b, and IgG3 was lower in the CSF from Bcl6KO-R
compared to wt-R (Fig. 3F and Dataset S20). This suggests that
Bcl6 in Th17 cells promotes class switching to isotypes IgG1,
IgG2b, and IgG3 in accordance with class-switching effects of
Th17 cells reported previously (32). Due to low sample volume,
we were unable to normalize for total protein content. In accor-
dance with isotype proteins, the Ighg1 and Ighg2b expression in our
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scRNA-seq dataset was also reduced in meningeal B cells from
Bcl6KO-R compared to wt-R (SI Appendix, Fig. S6E). To investi-
gate the effect of Bcl6KO in Th17 cells on meningeal B cell pro-
liferation, we histologically quantified the density of Ki67+B220+

B cells in the meninges and found a significant reduction in
Bcl6KO-R (Fig. 3G and Dataset S21). In accordance, in vitro dif-
ferentiated Bcl6KO Th17 cells promoted the in vitro proliferation
of MOG-specific B cells at lower efficiency than wt Th17 cells
(Fig. 3H). This suggests that the autoimmunity-associated follicular
phenotype and subsequent class switching and proliferation of
meningeal B cells are at least partially controlled by Th17 cells in a
Bcl6-dependent manner.

Bcl6 Induces the Ability to Coinitiate a Local Inflammatory Feed-
Forward Loop in Meningeal Th17 Cells. We next investigated whether
this would affect the formation of ectopic lymphoid tissue known to
form in the meninges after transfer of 2D2tg Th17 cells (14). We,
therefore, quantified a predefined panel of cytokines in the CSF
from wt-R and Bcl6KO-R (Dataset S22). The concentrations of
CXCL13, CXCL16, CCL5, and CCL17 were significantly lower in
Bcl6KO-R than in wt-R (Fig. 4 A and B and SI Appendix, Fig. S6F).
Notably, CXCL13 increases in the CSF in MS (33) and attracts
B cells by binding to CXCR5 (34), and CXCL13 and CXCL16 are
known to be expressed by stromal cells, including fibroblastic
reticular cells (FRCs) and follicular dendritic cells (FDCs) (34).
Both Cxcr5 and Cxcr6, the receptors of CXCL13 and CXCL16,
were expressed by meningeal B cells and T cells in our dataset
(Fig. 4C and SI Appendix, Fig. S6G) suggesting a potential inter-
cellular signaling mechanism affected by Bcl6 in Th17 cells. Of
note, FRCs or FDCs both constitute nonhematopoietic (i.e.,
CD45neg) stromal cell types (35) and were thus not included in
our CD45high-restricted scRNA-seq screen.
We, therefore, employed surrogate markers of FRC abundance

by costaining for ER-TR7, a microfibrillar protein secreted by
FRCs (36), and CXCL13 in SC sections collected at the peak of
AT-EAE. This revealed the presence of CXCL13 in the vicinity of
B cell aggregations that also contained donor-derived Vβ11+
T cells in the meninges of wt-R (Fig. 4D and SI Appendix, Fig.
S8A). In accordance with a previous study (37), we did not identify
CD35+ FDCs in the meningeal B cell aggregations. ER-TR7
staining, which is secreted by FRCs (38, 39), was sparse in the
meninges of Bcl6KO-R with few, small, or no B cell aggregations
detected (Fig. 4E) in contrast to abundant ER-TR7 staining in wt-
R (Fig. 4E). As Bcl6 expression in Th17 cells affects IL-17 secre-
tion in vivo (Fig. 2 C and I), which has been shown by others to
promote FRC formation (36), a similar mechanism may control
meningeal inflammation. This suggests that Bcl6-expressing Th17
cells may modulate the meningeal microenvironment that pro-
motes interactions between Th17 cells and B cells thereby affecting
autoimmune CNS tissue damage.

Discussion
We here demonstrate that the CNS infiltration induced by AT of
myelin-reactive 2D2tg Th17 cells was highly compartmentalized
between meninges and parenchyma with distinct meningeal and
parenchymal phenotypes. B cells showed strong meningeal en-
richment and colocalized with densely packed donor-derived Th17
cells that acquired a B cell–supporting phenotype specifically at
this site. Accordingly, meningeal B cells exhibited a CD23+ fol-
licular rather than germinal center phenotype corresponding to a
follicular helper-like phenotype of the invading Th17 cells. The
lymphoid tissue-supporting and B cell–supporting function of
meningeal Th17 cells was dependent on the transcription factor
Bcl6 in vivo.
Our findings may have relevance for human MS. In fact, class-

switched and affinity-matured Ig and late B lineage cells accu-
mulate in the CSF in MS (7, 8) and facilitate its diagnosis (1, 2).
Several studies have also shown that B cell–rich ectopic lymphoid

tissue can develop in the meninges and correlate with disability in
chronic MS (4, 9). It has been speculated that a gradient of neu-
ronal damage originates from the meninges and is inflicted by
soluble mediators released from the meninges like antibodies (10,
11). In such a mechanistic model, Bcl6-expressing Th17 cells
would be central for controlling B cell aggregations in the men-
ingeal compartment and, thus, disease severity.
Why is inflammation so different between the parenchyma and

the meninges? We speculate that the presence of stromal cells
which is unique to the meninges allows formation of lymphoid
structures. We also extended previous studies that identified
meningeal B cells as antigen-presenting cells (15, 40) and that
reported a role of CXCL13 in Th17-mediated EAE (40) by
identifying Bcl6-dependent functions in Th17 cells in the menin-
ges. Notably, the transcription factor Bcl6 was previously identi-
fied as lineage defining for TFH cells and required for their B cell
supporting function (16). Bcl6 generally functions as a transcrip-
tional repressor inhibiting non-TFH transcriptional programs in
T cells (16). Chromatin binding of Bcl6 varies considerably be-
tween B cells, TFH cells, and macrophages, which is explained by
interactions with other transcriptional regulators (18, 41). This
supports that Bcl6 regulates transcription in a cell type–specific
manner. Whether Bcl6 effects vary between TFH and Th17 cells
has not been tested. We provide evidence that Bcl6 partially
controls Th17 function in vivo, albeit not their differentiation
in vitro (17, 19, 20). We speculate that Th17 cells acquire a TFH-
like function in vivo, because they are known to acquire Bcl6 ex-
pression after transfer (14).
We demonstrate location-specific heterogeneity of Th17 cells,

which are known to acquire heterogeneous phenotypes depending
on environmental clues. For example, Th17 cells can become
pathogenic or nonpathogenic depending on in vitro conditions
(42). Also, Th17 cells sorted ex vivo based on current IL-17 pro-
duction from CNS versus lymph nodes (43) or based on previous
IL-17 production from gut versus CNS (44, 45) are phenotypically
and functionally diverse. Our findings identify a location-specific
transcriptional phenotype of Th17 cells by identifying myelin-
reactive cells through their 2D2tg TCR. This differs from previ-
ous fate-reporting experiments that were performed with
immunization-induced polyclonal Th17 cells and not with TCR-
defined Th17 cells identified by TCR tracing. Tracking individual
TCRs, thus, provides a different angle toward T cell stability than
cytokine-based fate labeling.
We acknowledge that our experiments do not exclude a

trafficking-related mechanism to account for the phenotype induced
by Bcl6 deficiency. Taken together with the data from others (36),
we hypothesize that the transcription factor Bcl6 promotes expres-
sion of Lymphotoxin-α and IL-17 in reactivated meningeal Th17
cells, which is required for the production of B cell–supporting
CXCL13 by meningeal stromal cells (36) (SI Appendix, Fig. S8B).
This attracts B cells to meningeal ectopic lymphoid tissue where
they acquire a follicular phenotype and undergo antibody class
switching.
By identifying a mechanism controlling local Th17/B cell inter-

action, our findings also lend further support to immune-related
functions of the meninges. In fact, meningeal leukocytes respond to
EAE (24), meningeal lymphatic vessels contribute to the disease
(46), and dural sinus-associated meningeal antigen-presenting cells
present CSF-derived antigens (47). We speculate that Bcl6 in in-
vading myelin-reactive T cells controls their interaction with B cells
while they traffic from the meninges to the parenchyma (48). This
mechanism likely also contributes to human MS by controlling
meningeal B cell maturation and class switching detected in the
CSF (7) and in meningeal ectopic lymphoid tissue in chronic MS
(4). It remains to be investigated whether T cell–derived Bcl6 also
controls meningeal IgA+ PC described recently (49). In summary,
this improves our understanding of the immune cell signaling in
border compartments of the CNS.
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Materials and Methods
Mice and AT-EAE. C57BL/6J, CD4Cre (50), 2D2tg (21), Bcl6fl/fl (19), and TH
[=IgHMOG (51)] mice were used. CD4CreBcl6fl/fl2D2tg and CD4CreBcl6fl/fl strains were
bred as described (17). For AT-EAE induction (52), naïve CD44lowCD62LhighCD4+

T cells were sorted from 2D2tg donor mice and cultured for 2 d (2 × 106 cells/mL)
with irradiated antigen-presenting cells, anti-CD3 antibody (2.5 μg/mL), IL-6
(20 ng/mL), TGF-β1 (10 ng/mL), and anti–IFN-γ antibody (10 μg/mL). Cells were
split and cultured with IL-23 (10 ng/mL) for 3 d. Cells (2 × 106 cells/mL) were
plated on anti-CD3 (2 μg/mL) with soluble anti-CD28 antibody (2 μg/mL)
without any cytokines for 2 d. A total of 5 × 106 cells were iv injected into
C57BL/6 recipients. Recipient mice were monitored daily; an ataxia score
(53) was calculated (17).

Leukocyte Isolation from CNS. Blood leukocytes were labeled by iv injection of
fluorescence coupled anti-CD45.2 antibody (3 μg/mouse) (22). After 5 min,
animals were intracardially perfused. SC parenchyma was flushed out from
the spinal canal with hydrostatic pressure. SC meninges remained attached
to the vertebrae and were peeled off. SC parenchyma was cut up, digested
(20 min, 37 °C) with collagenase D (2.5 mg/mL) and DNase I (0.05 mg/mL),
and leukocytes were isolated with a 70/37% Percoll gradient (17). Meninges
were digested under shaking (45 min, 37 °C) with 1 mg/mL collagenase D.
Single cells were stained for flow cytometry. Tissue-resident viable CD45high

CD45ivneg leukocytes were sorted for scRNA-seq or bulk RNA-seq (Vβ11+ CD4+

T cells).

Flow Cytometry and Fluorescence Activated Cell Sorting (FACS). Cells were
stained with anti-mouse antibodies against CD45, CD3, CD4, TCR Vβ11, CD19,
and CD11b; live/dead staining was performed with “Zombie NIR.” To quantify
cytokine production, cells were restimulated for 4 h with PMA, ionomycin,
GolgiStop, and GolgiPlug; IL17A and IFN-γ were stained intracellularly. Cells
were acquired using a Gallios (Beckman Coulter) flow cytometer or a FACSCelesta
flow cytometer (Becton Dickinson), or sorted on a BD FACS Aria III. Data
were analyzed using FlowJo v10.7.0_CL.

scRNA-Seq. scRNA-seq was performed with the Chromium Single Cell 3′ Kit
with version 3 chemistry (10x Genomics). To avoid batch effects, all samples
were processed on the same day with the same chip. Complementary DNA
(cDNA) was partly used in scTCR-seq. Sequencing was done commercially on
an Illumina Novaseq with 150-8-8-150 read setup. Processing of sequencing
data was performed with the cellranger pipeline version 3.0.2. Unbiased cell-
type clustering was performed in the four samples combined. Downstream
analysis was performed with R package Seurat version 3.1.1 (54) using R
version 3.6.1 (55). Further doublet depletion was done by R package Dou-
bletDecon version 1.1.4 (56). Data were normalized and regressed to cell
cycle phase score using SCTransform (57). Dimensionality reduction was
done by Uniform Manifold Approximation and Projection. Clusters (and DE
genes) were identified with “FindNeighbors” and “FindClusters” functions
in Seurat. For cluster annotation, DE genes were searched in literature and
plotted in feature plots. Details in SI Appendix, Supplementary Methods and
Dataset S1.

Bulk RNA-Seq. RNA of flow sorted Vβ11+CD4+ T cells was purified using Quick-
RNA Microprep Kit (Zymo Research). cDNA was prepared for bulk RNA-seq
with a modified version of the SmartSeq2 protocol (58) and partly used for
qPCR. Library preparation was done by the Next Ultra II FS DNA Library Prep
Kit (New England Biolabs). Sequencing was carried out on a NextSeq500
(High-Out 75 cycle kit [Illumina]; 0-8-8-75 set up). Bulk RNA-seq analysis is
described in SI Appendix, Supplementary Methods.

qPCR. qPCR was performed for murine TaqMan probes Bcl6, Lta, Ltb, and
Il17a. Gapdh was used as a housekeeping gene.

Collection of CSF and Proteomics. Mice were anesthetized, hair was removed,
and the headwas mounted in a stereotaxic apparatus via ear bars. The cisterna
magna was exposed under a dissecting binocular microscope (59) and punc-
tured with a Hamilton syringe. CSF was collected by pulling the piston back
carefully. Chemokines were detected with the Bio-Plex Pro mouse chemokine
panel 31-plex (Bio-Rad Laboratories), and Ig isotypes were quantified using the
ThermoFisher (Invitrogen) Antibody Isotyping 7-Plex Mouse ProcartaPlex
Panel. Results were analyzed by the Luminex FLEXMAP 3D platform (15).

Immunofluorescence Staining. Mice were perfused with phosphate-buffered
saline (PBS) and subsequently 4% paraformaldehyde (PFA). SC was dissected
together with surrounding bones. Tissue was fixed in 4% PFA, decalcified in

0.3 M EDTA, and cryoprotected with 30% sucrose. Cross-sections were cut at
cervical, thoracic, and lumbar levels. After tissue blocking, primary antibodies
CD3, TCR Vβ11, B220, and F4/80 and secondary fluorescently labeled anti-
bodies were used for stainings. Nuclei were visualized with DAPI staining. For
intracellular Ki67 staining, cross-sections were permeabilized with 0.1% Triton
before antibody staining. To quantify cell infiltration, the compartment area
(parenchyma or meninges) and infiltrated area (B220+ and F4/80+ cells) were
measured from overview images or the infiltrated cell number (CD3+,
Vβ11+CD3+, and Ki67+B220+ cells) was counted manually. Percentage infil-
trated area was calculated relative to the total area of the compartment
(meninges or parenchyma). The density of infiltrated cells was determined by
dividing the counted cell number/area by the compartment area. Infiltrated
cells were mapped in schematic heatmaps of the SC using Adobe Illustrator
CS6. Heatmaps of individual mice were overlaid, and opacity of infiltrates was
adapted to the number of mice [formula: (100%/n) × 4].

In some cases, isolated SC parenchyma enveloped in meninges were
immediately frozen in Tissue-Tek. Longitudinal sections were fixed in
−20 °C methanol, blocked in 1% bovine serum albumin (BSA) in PBS, and
stained for B220, TCR Vβ11, CD4, CD45.2, Laminin-111 “pan laminin”
(60), CXCL13, or ER-TR7. Staining was otherwise as above. Sections were
examined using a Zeiss AxioImager and acquired images analyzed using
Volocity 6.3 (PerkinElmer) software. Overview images were acquired
with a Zeiss LSM700 confocal microscope, and images were analyzed
using ZEN gray/blue (Zeiss) software. Details for immunofluorescence
staining in SI Appendix, Supplementary Methods.

In Vitro Th17 Polarization and Proliferation of CD4+ T Cells Isolated from EAE
Mice. Active EAE was induced by subcutaneous injection of MOG35–55 peptide
(200 μg/mouse) and Mycobacterium tuberculosis H37Ra extract (1 mg/mL,
BD) emulsified in complete Freund’s adjuvant (200 μl/mouse). CD4+ T cells
and CD11c+ DCs were isolated from draining lymph nodes and spleen on day
10 after active MOG35–55 EAE induction using magnetic beads (Miltenyi
Biotec). CD4+ T cells and CD11c+ DCs were cocultured in a 5:1 ratio in the
presence of MOG35–55 (20 μg/mL) and coated anti-CD3 (0.5 μg/mL). For
proliferation assays, CD4+ T cells were additionally stained with CellTrace
Violet (Thermo Fisher), and T cell proliferation was analyzed by flow
cytometry. For Th17 polarization, TGF-β1 (10 ng/mL), IL-6 (20 ng/mL), and
anti–IFN-γ (10 μg/mL) was added to the culture, and intracellular cytokines
were analyzed after 4 d by flow cytometry.

In Vitro B Cell Proliferation. MOG-specific CD19+ B cells were isolated with
MicroBeads (Miltenyi Biotec) from spleen and iLN of a naïve TH mouse
[synonymously IgHMOG mice (51)] and labeled with cell proliferation dye
CellTrace Violet (Thermo Fisher). Labeled B cells were cocultured in a 2:1
ratio with in vitro differentiated Th17 cells from 2D2tg mice in the presence
of MOG35–55 peptide (3 μg/mL). Th17 had been differentiated as in AT-EAE
(see inMice and AT-EAE). On day 3, B cell proliferation was analyzed by flow
cytometry.

Statistics. Data are presented as combined box-and-whisker/dot plots (me-
dian, 25th to 75th percentiles, 1.5-fold interquartile range). Dots illustrate
individual values. Data were compared using Student’s t test for normally
distributed datasets, otherwise Mann–Whitney U test was applied. P value <
0.05 was considered significant. GraphPad Prism 5 was used for statistical
analysis. Statistical analyses of sequencing data were done in R.

Data Availability. The raw sequencing data supporting the findings in this study
have been deposited in the Gene Expression Omnibus (GEO) repository under
accession code GSE178085 (61). For sequencing analyses, we followed
official tutorials and did not use any custom specific code. All processed
sequencing data are included among the Datasets S1–S26. A full overview
of the methods is provided in SI Appendix, Supplementary Methods. Previously
published data were used for this work (we reproduced SI Appendix, Fig. S5 A–C
from ref. 17).
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