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Stanozolol promotes osteogenic gene 
expression and apposition of bone 
mineral in vitro

Stanozolol (ST) is a synthetic androgen with high anabolic potential. 
Although it is known that androgens play a positive role in bone metabolism, 
ST action on bone cells has not been sufficiently tested to support its clinical 
use for bone augmentation procedures. Objective: This study aimed to assess 
the effects of ST on osteogenic activity and gene expression in SaOS-2 cells. 
Material and Methods: SaOS-2 deposition of mineralizing matrix in response 
to increasing doses of ST (0-1000 nM) was evaluated through Alizarin Red S 
and Calcein Green staining techniques at 6, 12 and 24 days. Gene expression 
of runt-related transcription factor 2 (RUNX2), vitamin D receptor (VDR), 
osteopontin (SPP1) and osteonectin (ON) was analyzed by RT-PCR. Results: 
ST significantly influenced SaOS-2 osteogenic activity: stainings showed 
the presence of rounded calcified nodules, which increased both in number 
and in size over time and depending on ST dose. RT-PCR highlighted ST 
modulation of genes related to osteogenic differentiation. Conclusions: This 
study provided encouraging results, showing ST promoted the osteogenic 
commitment of SaOS-2 cells. Further studies are required to validate these 
data in primary osteoblasts and to investigate ST molecular pathway of action.
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Introduction

The research for new strategies and materials to 

enhance bone repair and/or bone regeneration is a 

major goal for the management of demanding clinical 

cases in orthopedics and maxillofacial surgery.

Androgens (or androgenic hormones) can be defined 

as any natural or synthetic steroid that stimulates or 

controls the development and maintenance of primary 

and secondary male characteristics in vertebrates by 

binding to the androgen receptor AR.1 Androgens also 

provide anabolic functions, which result in growth 

and differentiation of cells and increase in body size.2 

Particularly, they play a significant role in regulating 

skeletal morphogenesis and maintaining bone 

homeostasis throughout life.3,4 The most abundant 

circulating androgen in men is testosterone, whose 

effect in peripheral tissues not only depends on a 

direct action, but also results from a local enzymatic 

conversion in different metabolites. 5α-reductase and 

aromatase are among the most important enzymes 

responsible for testosterone transformation in bone 

tissues. 5α-reductase activity reflects in the formation 

of the potent androgen dihydrotestosterone, while 

aromatase catalyzes androgen conversion into the 

estrogen estradiol. Depending on its peripheral 

conversion, systemically administered testosterone 

may bind either to the AR (testosterone itself or 

dihydrotestosterone) or to the estrogen receptors 

ERα/ERβ (testosterone converted to estradiol), which 

results in androgenic or estrogenic effects.5-7

The anabolic potential of androgens leads to the 

synthesis of molecules with a low androgenic and high 

anabolic action, with prolonged activity compared with 

endogenous androgens: these synthetic testosterone-

derivative drugs are generally known as anabolic-

androgenic steroids (AAS). One of these agents is 

stanozolol (ST), a non-aromatizable AAS derived from 

dihydrotestosterone.

Systemic administration of AAS in animal models 

provided some encouraging results, showing an overall 

increase in bone formation and mineralization, as well 

as improvements in bone density and biomechanical 

properties.8-10 Nevertheless, other investigations 

reported qualitative alterations in the bone geometry 

and low bone turnover in response to ST treatment.11 

In brief, the overall efficacy and the long-term safety 

of AAS administration for the osteoporosis therapy 

and the prevention of fracture risk appears to be at 

least questionable.12 Systemic administration, local 

applications of ST and other AAS have been tested 

in animal models to improve bone healing. Such 

approaches allow the use of relatively low doses of 

steroid and imply short-term treatment protocols. 

Intra-articular ST administration showed positive 

effects on the synovial membrane and cartilage 

regeneration in osteoarthritis conditions13, and ST-

soaked deproteinized bone grafts enhanced new bone 

formation in calvarial critical-size defects.14

Although some evidence has been provided in 

human and animal studies, only a limited number 

of studies investigating ST effects on bone cells 

are currently available. SaOS-2 (literally “Sarcoma 

OSteogenic”) cell line represents a validated option 

for the study of osteoblastic differentiation and 

responsiveness to exogenous stimuli. In 1987, 

Rodan, et al. first conducted a study on SaOS-2 

characterization and assessed that these cell lines 

possess several osteoblastic features and could be 

useful as a permanent line of human osteoblast-like 

cells and as a source of bone-related molecules.15

SaOS-2 cells have the advantage of following the 

main molecular steps of osteoblast differentiation and 

have the ability “to deposit a mineralization-competent 

extracellular matrix”.16 Thus, they have been recently 

validated as a feasible model to investigate osteoblast 

activity and maturation.17 Immunocytochemical assays 

revealed that SaOS-2 cells express osteoblast-like 

markers such as osteocalcin (OC or BGLAP) and 

osteopontin (OPN or SPP1). Expression of genes 

involved in osteoblast differentiation and function 

(i.e. runt-related transcription factor 2, RUNX2) 

has been documented.18 Also, the literature data 

provided evidence of SaOS-2 responsiveness to steroid 

stimulation.19

The aim of this study was to assess the effects 

of ST on osteogenic activity and gene expression in 

SaOS-2 cells. The investigation of ST effects on bone 

cells may in fact provide evidence to support the 

clinical use of this steroid in the field of bone healing 

and regeneration, particularly for developing targeted 

drug administration protocols applied to orthopedic, 

maxillofacial and oral surgery.

Stanozolol promotes osteogenic gene expression and apposition of bone mineral in vitro
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Materials and methods

Stanozolol preparation
ST powder (ACME Srl, Reggio Emilia, Italy) was 

weighted and dissolved in absolute ethanol (ETOH), 

preparing 1000X stock solutions. Sequential dilutions 

of stocks were performed in the osteogenic medium, 

to obtain final concentrations of 1 nM, 10 nM, 100 nM, 

500 nM and 1000 nM, respectively.

Cell culture
We preliminarily assessed ST effects on cell 

proliferation using resazurin assay up to 12 days of 

culture.

SaOS-2 cells ranging from 8 to 12 passages were 

plated at a density of 1×104 cells/cm2 into 6-well and 

24-well plates, using respectively 2 mL and 500 μL 

of DMEM-low glucose with 10% fetal bovine serum 

(FBS), penicillin (100 μg/mL), streptomycin (100 μg/

mL) and L-glutamine (2 mM). After 24 h, this medium 

was replaced with an osteogenic medium consisting 

of DMEM-low glucose completed with 2-Phospho-L-

ascorbic acid (100 μM), L-proline (34.8 μM) and β2-

glycerol phosphate (5 mM). The day after (day 0), the 

medium was changed with fresh osteogenic medium 

containing stanozolol at the described concentrations, 

while osteogenic medium with 0.1% ETOH was used 

as a control. The culture medium was changed every 

two/three days.

Culture staining
After 6, 12 or 24 days, cells lying in 24-well plates 

were treated either with Alizarin Red S or Calcein 

Green staining.

Alizarin Red S staining: the cells were washed three 

times with PBS and fixed by adding 250 μL of 4% 

formaldehyde solution for 15 min at room temperature 

and rinsed twice with ddH2O. Then, 500 μL of Alizarin 

Red S solution in water (40 mM, pH 4,2) were added 

to each well, and the whole plates were kept at RT for 

30 min with gentle shaking. The dye was removed, and 

cells were rinsed 5 times (5 min each time) with ddH2O.

To measure Alizarin Red S concentration, each 

well was treated with 200 μL of 10% acetic acid and 

incubated for 30 min at RT with shaking. Cells were 

scraped from the plate and transferred to a 1.5 mL 

microcentrifuge tube and sealed with parafilm. After 

vortexing vigorously for 30 seconds, the samples were 

heated to 85°C for 10 min. Then they were transferred 

on ice for 5 min and centrifuged at 20000 rpm for 15 

min. After centrifugation, the slurry was transferred to 

a new tube, and pH was adjusted to 4.1-4.5 by adding 

75 μL of 10% ammonium hydroxide. An Alizarin Red 

S standard curve was prepared with serial dilutions of 

Alizarin Red ranging from 10 mM to 10 μM, absorbance 

was measured at 405 nm with an Enspire microplate 

reader (Perkin Elmer, Waltham, Massachusetts, USA).

Calcein Green staining: 24 h before the end of 

the experimental period, 2 μl of Calcein Green (10 

mg/mL) were added to each well. At the end of the 

experimental period, the samples were treated with 

500 μl of acetic acid 10% dabbed with ammonium 

hydroxide pH 7.0. The whole plate was placed under 

slow oscillation for 20 min and then placed in an 

ultrasonic bath for 15 min. Each well was then washed 

three times with PBS. Semi-quantitative analysis of 

Calcein Green fluorescence was measured with an 

Enspire microplate fluorescence reader (Perkin Elmer, 

Waltham, Massachusetts, USA) set to a wavelength of 

512 nm, as described elsewhere.20

Gene expression analysis
RNA extraction and reverse transcription: At 12 and 

24 days of culture, total RNA was isolated from cells 

seeded onto 6 well dishes with GenEluteTM Mammalian 

Total RNA Miniprep Kit (Sigma-Aldrich) following the 

manufacturer’s instructions, and 1 μg RNA/sample 

was reverse transcribed to cDNA (GoScript Reverse 

Transcription System, Promega Corporation, Madison, 

Wisconsin, USA). Briefly, RNA on 0.5 μg of random 

hexamer oligonucleotide primers, in a total volume of 

5 μl, was heated to 70°C for 5 min, cooled to 4°C for 

5 min, and then incubated with 15 μl of a mixture of 

components to achieve the final concentration of 0.5 

mM each dNTPs, 1× first-strand buffer, 3 mM MgCl2, 

1 U/μl Recombinant RNasinR Ribonuclease Inhibitor, 

Improm-II 1 μl/reaction, for 1 h at 42°C. The reaction 

was stopped by heating to 70°C for 15 min. The RT 

reaction was then diluted with nuclease free water 

to a total volume of 200 μl, and a triplicate of 5 μl 

aliquots was used for gene expression quantification 

in a 20 μl PCR.

Polymerase chain reaction: The primer set was 

designed according to the known sequences reported 

in GenBank with Primer 3 program [Steve Rozen, 

Helen J. Skaletsky (1998) Primer3. Code available at 

http://www-genome.wi.mit.edu/genome_software/

other/primer3.html.] (Figure 1). cDNA was amplified 
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with 1X GoTaq qPCR Master, 5 pmol specific primers 

and RNase-free water. PCR was performed in a 36-

well Rotor Gene 3000 (Rotor-Gene™ 3000, version 

5.0.60, Mortlake, Australia). Each cycle consisted 

of a denaturation step at 95°C for 15 s, followed by 

separate annealing (15 s, 57°C or 60°C, depending 

on the examined gene) and extension (15 s, 72°C) 

steps. Fluorescence was monitored at the end of 

each extension step. A no-template, no-reverse 

transcriptase control was included in each experiment. 

At the end of the amplification cycles a melting curve 

analysis was added. The data analysis was performed 

according to the Relative Standard Curve Method.21 

Data normalization was carried out in relation to 

the housekeeping gene glyceraldehyde 3-phosphate 

dehydrogenase (GAPDH), which was found to be 

expressed uniformly in all the tested conditions.

Statistical analysis
Growth curves were analyzed using the Boltzmann 

sigmoidal function, and a comparison of curve fits was 

performed to verify the null hypothesis of one curve 

fitting all data sets and the alternative hypothesis 

of different curves for each culture condition. Cell 

differentiation and osteogenic activity was analyzed 

with one-way ANOVA and Tukey’s post-test. A linear 

regression analysis was performed to assess variations 

on different time-points. p<0.05 was considered the 

level of statistical significance. Graphs were obtained 

with GraphPad Prism 6.0 software. Data are expressed 

as mean value ± standard deviation.

Results

Culture staining
Optical microscopy showed a typical polygonal 

shape of SaOS-2, which tended to become slightly 

elongated once they reached confluence. The resazurin 

assay revealed a growth pattern perfectly fitting a 

Sigmoidal Boltzmann curve up to 10 days of culture 

Gene Abbreviation Primer sequences (Forward and Reverse)

Runt-related transcription factor 2 RUNX2
5’-CCA GGC AGG CAC AGT CTT C-3’

5’-GTC AGA GGT GGC AGT GTC ATC-3’

Vitamin D Receptor VDR
5’-CGC ATC ACC AAG GAC AAC C-3’

5’-CTG GCA GAA GTC GGA GTA GG-3’

Alkaline Phosphatase ALP
5’-TGA TGT GGA GTA TGA GAG TGAC-3’

5’-TGA AGT GGG AGT GCT TGT ATC-3’

Osteonectin ON
5’-GCA TCA AGC AGA AGG ATA-3’

5’-AAT AGT TAA GTT ACA GCT AAG AAT-3’

Osteopontin (Secreted Phosphoprotein 1) SPP1
5’-CTC CAT TGA CTC GAA CGA CTC-3’

5’-CGT CTG TAG CAT CAG GGT ACT G-3’

Glyceraldehyde 3-phosphate dehydrogenase GAPDH
5’- TGT TCC TAC CCC CAA TGT GT-3’

5’-GGT CCT CAG TGT AGC CCA AG-3’

Figure 1- Sequences of primers used for RT-PCR

Figure 2- (a) Aspect of SaOS-2 cells at confluency. Optical microscopy, 10X magnification; (b) Graphic representation of SaOS-2 growth 
under different conditions: DMEM-low (red line), ETOH 0.1% (blue line), ST 1-1000 nM (shades of grey). The X axis represents the days 
of culture, whereas the Y axis reports fluorescence values expressed in arbitrary units (A.U.)

a b
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(DMEM low: r2=0.94, ETOH 0.1%: r2=0.96, ST 1nM: 

r2=0.98, ST 10nM: r2=0.93, ST 100nM: r2=0.99, 

ST1000 nM: r2=0.98), while at 12 days of culture 

an overall decrease in cell vitality was recorded 

independently of the culture conditions. A comparison 

of curve fits did not allow us to reject the null 

hypothesis of one curve fitting all data sets (p=0.8), 

thus indicating a superimposable growth pattern of 

SaOS-2 under all the tested conditions up to the end 

of the experimental period. A graphic representation 

of data is reported in Figure 2.

Alizarin Red S staining confirmed the capacity of 

Figure 3- (a) Appearance of SaOS-cell culture treated with different stanozolol (ST) concentrations (0-1000 nM) at 6, 12 and 24 days after 
Alizarin Red S staining. Optical microscopy, 10X magnification; (b) Alizarin Red S staining quantification with different ST concentrations 
(0-1000 nM) at 6, 12 days and 24 days. Data are reported as fold change over controls and expressed as mean ± standard deviation. 
Asterisks indicate statistical significance (*: p<0.05 vs ST 0 nM; ** p<0.005 vs ST 0 nM; ***: p<001 vs ST 0 nM)

a

b
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SaOS-2 to produce calcified extracellular matrix. The 

apposed matrix was characterized by round-shaped 

granules which increased progressively both in size 

and in number depending on the concentration of the 

administered steroid and extent of the induction (Figure 

3a). Cells treated with ST revealed the presence of 

areas with mineralization since the earlier observation 

time-point, which peaked at 1000 nM concentration 

(fold change vs control: ST 1 nM: 1.44±0.08, p>0.05, 

ST 10 nM: 1.47±0.15, p>0.05, ST 100 nM: 1.55±0.15, 

p>0.05, ST 500 nM: 1.64±0.16, p>0.05, ST 1000 nM: 

2.24±0.56, p<0.05). At 12 days, SAOS cell layers 

cultured with ST appeared consistently more filled 

with calcified granules compared with the controls 

at all the tested doses (fold change vs control ST 1 

nM: 1.92±0.08; ST 10 nM: 1.95±0.09; ST 100 nM: 

2.06±0.11; ST 500 nM: 2.10±0.16; ST 1000 nM: 

2.17±0.01, p<0.01). A similar outcome was recorded 

at 24 days (fold change vs control ST 1 nM: 2.02±0.19; 

ST 100 nM: 2.13±0.24; ST 500 nM: 2.25±0.01, ST 

1000 nM: 2.20±0.57, p<0.05) (Figure 3b).

Semiquantitative analysis of Calcein Green 

fluorescence revealed a deposition of calcium 

phosphates in response to ST administration (Figure 

4a). At 6 days’ observation, a dose-dependent 

trend was also evident (fold change vs control ST 

1nM: 1.50±0.16, p>0.05; ST 10 nM: 1.84±0.18, 

p>0.05; ST 100 nM: 3.58±0.54, p<0.005; ST 500 

nM: 4.89±0.46, p<0.01; ST 1000 nM: 11.27±1.06, 

p<0.01). Observations at further time-points revealed 

a massive calcification in all the samples. All the tested 

ST doses produced significantly higher Calcein Green 

fluorescence compared with the controls both at 12 

days (fold change vs control ST 1 nM: 2.03±0.14, 

p<0.05; ST 10 nM: 2.46±0.21, p<0.05; ST 100 

nM: 3.11±0.21, p<0.005; ST 500 nM: 3.21±0.21, 

p<0.005; ST 1000 nM: 4.04±1.06, p<0.05) and 24 

days (fold change vs control ST 1 nM: 1.75±0.10; ST 

10 nM: 1.80±0.04; ST 100 nM: 2.07±0.04; ST 500 

nM: 1.67±0.04; ST 1000 nM: 1.74±0.04; p<0.01) 

(Figure 4b).

Gene expression analysis
The gene expression analysis related to osteogenic 

differentiation revealed differences depending both 

on the time-point (either 12 or 24 days) and on the 

concentration of the steroid (Figure 5).

RUNX2: At 12 days’ observation, the Runx2 

expression was shown to increase at growing 

concentrations of ST, with significant differences vs 

controls for doses ranging from 10 to 1000 nM (fold 

change vs control ST 10 nM: 1.701±0.182, p<0.05; 

ST 100 nM: 1.847±0.226, p<0.005; ST 500 nM: 

2.061±0.143, p<0.001; ST 1000 nM: 2.535±0.295, 

a

b

Figure 4- (a) Appearance of samples treated with stanozolol (ST) (0-1000 nM) at 24 days observation period using a phase contrast 
microscopy and fluorescence microscopy to reveal Calcein Green staining (10X magnification); (b) Graph illustrating fluorescence 
absorbance of Calcein Green staining with different ST concentrations (0-1000 nM) at 6, 12 and 24 days observation period. Data are 
expressed as mean ± standard deviation. Asterisks indicate statistical significance (*: p<0.05 vs ST 0 nM; ** p<0.005 vs ST 0 nM; ***: 
p<001 vs ST 0 nM)

Stanozolol promotes osteogenic gene expression and apposition of bone mineral in vitro
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p<0.001). A similar pattern was recorded at 24 days 

(fold change vs control ST 1 nM: 2.025±0.191; ST 100 

nM: 2.130±0.240; ST 500 nM: 2.250±0.014, ST 1000 

nM: 2.200±0.566, p<0.05). At 24 days, the Runx2 

expression showed a significant increase vs control 

only at the lowest ST concentrations (1 and 10 nM) 

a

c

b

d

Figure 5- Gene expression of SaOS-2 treated with different concentrations (0-1000 nM) of stanozolol (ST) at 12 and 24 days observation 
period; (a) RUNX2: runt-related transcription factor 2; (b) VDR: Vitamin D Receptor; (c) SPP1: Osteopontin; (d) ON: Osteonectin. Data 
are reported as fold change over 0 nM ST and are expressed as mean ± standard deviation. Asterisks indicate statistical significance (*: 
p<0.05 vs control; ** p<0.005 vs control; ***: p<001 vs control)
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used (fold change vs control ST 1nM: 1.514±0.234, 

p<0.05; ST 10 nM: 1.786±0.201, p<0.005). A 

tendency to decrease at the highest ST concentrations 

(500, 1000 nM) was also detected, although without 

any statistical significance (Figure 5a).

VDR: The VDR expression showed a consistent 

increase vs controls with the administration of the 

highest ST concentrations (fold change vs control 

ST 10 nM: 2.037±0.543, p<0.05; ST 100 nM: 

2.388±0.427, p<0.001; ST 1000 nM: 2.255±0.247, 

p<0.001) at 12 days. At 24 days, all the tested ST 

doses were associated with significantly higher VDR 

expression vs controls (fold change vs control ST 1 nM: 

2.158±0.070; ST 10 nM: 2.622±0.179; ST 100 nM: 

2.770±0.090, ST 1000 nM: 2.901±0.073, p<0.001) 

(Figure 5b).

SPP1: The expression pattern of SPP1 showed 

variations depending on the observation period, with 

no significant differences in test groups vs controls at 

12 days (p>0.05) and a consistent induction observed 

at 24 days for all the tested concentrations of ST (fold 

change vs control ST 1 nM: 2.691±0.145; ST 10 nM: 

2.401±0.416; ST 100 nM: 2.540±0.197; ST 500 nM: 

2.680±0.166, ST 1000 nM: 2.331±0.048, p<0.005) 

(Figure 5c).

ON: The ON gene expression increased in response 

to the higher ST dose of 100 nM (fold change vs 

control: 2.645±0.109, p<0.05) and 1000 nM (fold 

change vs control: 4.175±0.577, p<0.001) at 12 days. 

At 24 days, no significant differences in test groups vs 

controls were recorded (p>0.05) (Figure 5d).

Discussion

This research investigated the effects of different 

doses of ST on the proliferation and osteogenic 

response of SaOS-2 cells. Growing evidence suggests 

androgens act directly on bone cells, playing a 

complex regulatory role.22 Androgen effects on 

osteogenic differentiation are still controversial, 

nevertheless it has been suggested they may stimulate 

osteoblastic differentiation and extracellular bone 

matrix apposition.23-25 Previous authors observed 

the effects of androgenic steroids on cell lines and 

reported positive effects of testosterone at doses of 

10-10 M and 10-9 M on the proliferation of SaOS-2 cells 

after 48 h.26 However, to the best of our knowledge, 

only one study reported on ST effects on osteogenic 

activity of bone cells, concluding that “Stanozolol at a 

concentration of 10−10 mol/l to 10−6 mol/l consistently 

stimulated the incorporation of [3H]thymidine into DNA 

of human bone cells and increased proliferation” up to 

15 days of culture.27

According to our assay, ST treatment at the doses 

of 1 to 1000 nM did not affect the growth pattern of 

SaOS-2 cells up to 12 days of culture. This result may 

be due to the specific characteristics of the steroid 

used, although a peculiarity of the cells used in our 

experimental setting cannot be ruled out. Indeed, 

various SaOS-2 subpopulations that responded 

differently to proliferative and differentiative stimuli 

were identified.28 Moreover, the phenotypic stability of 

SaOS-2 may be affected by the number of passages 

they have undergone: it was noticed that a higher 

passage SaOS-2 demonstrated higher proliferation 

rates and lower alkaline phosphatase activities, 

although mineralization was significantly more 

pronounced in cultures of late passage cells.29 Such 

findings are consistent with our results of an overall 

high proliferation rate of SaOS-2 ranging from 8 to 

12 passages as well as a high mineralizing activity.

Alizarin Red S and Calcein Green staining showed ST 

administration notably increased mineralization. These 

findings highlighted the advantages of treating cells 

with androgens compared with the use of a standard 

differentiation medium. At 12 days’ observation all the 

tested doses showed a similar effect with Alizarin Red 

S quantification technique, whereas a different dose-

dependent effect was recorded with Calcein Green 

staining. These differences may point to a greater 

sensitivity of Calcein Green technique compared with 

Alizarin Red S. Nevertheless, neither Alizarin Red S nor 

Calcein Green revealed any differences between the 

effect of treatment at 24 days’ observation, when all 

the samples presented abundant uniform calcification.

RT-PCR analysis revealed a modulatory role 

played by ST on the gene expression related to 

osteogenic differentiation. RUNX2 represents an early 

differentiation marker, as its expression is enhanced 

since the first stages of osteoblast maturation.30 

The detection of RUNX2 mRNA in control samples 

confirmed previous observations that described a 

constitutive expression of this gene in SaOS-2 cells.18 

In addition, we found out that RUNX2 expression 

may be modulated by steroid treatment: according 

to our results at 12 days, the expression of RUNX2 

was increasing with a dose-dependent trend, 

Stanozolol promotes osteogenic gene expression and apposition of bone mineral in vitro
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consistently with the mineralization pattern (Calcein 

Green staining). We may hypothesize that treatment 

with higher doses of ST induced a faster activation 

in terms of osteo-differentiation and mineralization 

when compared with lower doses. Thus, an overall 

decrease in RUNX2 expression at 24 days in samples 

treated with high doses of ST is compatible with a 

lower mitotic activity and a more mature phenotype. 

On the other hand, lower doses may produce a similar 

effect throughout a longer timeframe. It would be 

interesting to investigate the mineralization pattern 

occurring between 12 and 24 days, as at 24 days we 

observed a massive mineralization, which may mask 

previous differences between samples.

Another hypothesis to explain RUNX2 decrease at 

24 days is that of a biphasic effect of higher ST doses, 

which may improve cell differentiation at early time 

points (12 days) and may not keep this effect at late 

time points (24 days). A biphasic effect of androgens 

on cell viability has been described in the literature, 

with an initial increase in cell proliferation followed 

by a decrease after prolonged exposure.31 However, 

according to our preliminary assay, ST treatment did 

not affect the growth pattern of SaOS-2 up to 12 

days. It would be interesting to investigate whether 

a different effect on cell viability is observed between 

12 and 24 days.

An increase in SPP1 expression in response to 

ST was recorded respectively at 12 and 24 days 

of ST treatment, which first demonstrated the 

modulatory activity of this androgen on genes 

related to osteogenic function. Interestingly, the 

expression pattern of RUNX2 and SPP1 was shown 

to be inversely correlated, with a marked increase of 

SPP1 observed together with a decrease in RUNX2 

expression. This finding may indicate an expression 

switch from 12 to 24 days, as it was observed that in 

SaOS-2 cells RUNX2 repressed SPP1 gene expression, 

and the induction of SPP1 expression during normal 

human osteoblast differentiation has been previously 

related to a decrease in RUNX2.32 Consistently, the 

ON expression pattern revealed that, at the highest 

tested concentration, ST promoted the initial phases of 

osteoblastic commitment (12 days), whereas its action 

was no more evident at a longer time-point (24 days), 

when the differentiation was more advanced. Another 

gene expression that was strongly enhanced by ST 

treatment in our study was VDR, which encodes the 

nuclear hormone receptor for vitamin D3 and has been 

recognized as a key gene for SaOS-2 differentiation 

elsewhere.33 It would be relevant to assess changes 

in the expression of other genes typical of both early 

and late differentiation phases and to set a more 

complete differentiation profile of cells in response to 

growing steroid doses. Moreover, an examination of 

protein levels would be appropriate to validate our RT-

qPCR data, since mRNA expression could not directly 

correlate to protein translation and activity.

A major limitation of this study is represented 

by the lack of assessment of ST receptor binding 

and molecular pathway of action. Since ST is a non-

aromatizable androgen, we may suppose its action 

to be exerted through AR. The expression of AR in 

SaOS-2 cells has been previously described in the 

literature.34 However, the interaction of ST with AR 

and its influence on cell transcriptional activity is still 

unclear: previous studies documented an activation 

of AR in response to ST treatment,35 but also a variety 

of other receptors have been reported as ST ligands 

(including progesterone receptor, estrogen receptor 

alpha and low-affinity glucocorticoid-binding sites).36-39 

Such differences could be dependent on the cell type, 

as ST may have tissue-specific binding sites and elicit 

differential biological responses. According to these 

considerations, it would be relevant to characterize 

SaOS-2 receptor profile, to investigate ST binding 

to AR and to perform blockage tests to verify the 

activation of different molecular pathways in response 

to ST administration.

Finally, we recommend considering potential side 

effects of AAS in further in vivo studies: changes in 

cholesterol levels (increased low-density lipoprotein 

and decreased high-density lipoprotein), liver 

damage, nephropathy, cardiovascular pathologies as 

well as conditions pertaining to hormonal imbalance 

have been reported in response to AAS high-dose or 

prolonged administration.40

Conclusions

This study provided encouraging results, as it 

showed ST promoted the osteogenic commitment of 

SaOS-2 cells, by enhancing the mineralization process 

and modulating the expression of genes related to 

osteogenic differentiation.

Nevertheless, further studies are required to 

validate these data in primary osteoblasts as well 
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as to investigate ST receptor binding and molecular 

pathway of action.
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