
entropy

Article

Toward Accelerated Training of Parallel Support Vector
Machines Based on Voronoi Diagrams

Cesar Alfaro , Javier Gomez * , Javier M. Moguerza , Javier Castillo and Jose I. Martinez

����������
�������

Citation: Alfaro, C.; Gomez, J.;

Moguerza, J.M.; Castillo, J.; Martinez,

J.I. Toward Accelerated Training of

Parallel Support Vector Machines

Based on Voronoi Diagrams. Entropy

2021, 23, 1605. https://doi.org/

10.3390/e23121605

Academic Editor: Sotiris Kotsiantis

Received: 23 October 2021

Accepted: 25 November 2021

Published: 29 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Computer Science, University Rey Juan Carlos, 28933 Móstoles, Spain; cesar.alfaro@urjc.es (C.A.);
javier.moguerza@urjc.es (J.M.M.); javier.castillo@urjc.es (J.C.); joseignacio.martinez@urjc.es (J.I.M.)
* Correspondence: javier.gomez@urjc.es

Abstract: Typical applications of wireless sensor networks (WSN), such as in Industry 4.0 and smart
cities, involves acquiring and processing large amounts of data in federated systems. Important chal-
lenges arise for machine learning algorithms in this scenario, such as reducing energy consumption
and minimizing data exchange between devices in different zones. This paper introduces a novel
method for accelerated training of parallel Support Vector Machines (pSVMs), based on ensembles,
tailored to these kinds of problems. To achieve this, the training set is split into several Voronoi
regions. These regions are small enough to permit faster parallel training of SVMs, reducing compu-
tational payload. Results from experiments comparing the proposed method with a single SVM and
a standard ensemble of SVMs demonstrate that this approach can provide comparable performance
while limiting the number of regions required to solve classification tasks. These advantages facilitate
the development of energy-efficient policies in WSN.

Keywords: classification; machine learning; Support Vector Machines; sensor networks; distributed
algorithms

1. Introduction

Machine learning applications are radically changing our world as a key asset of
an Information Society. New algorithms and methods for data processing and analysis,
along with the capacity to deal with large and complex datasets, has led to the rise of a
new industry. Over the next decades, data science and machine learning are expected to
transform the way in which we interact with our surrounding environment.

One of the main challenges is to effectively prepare and analyze vast and distributed
datasets. Classical algorithms for classification, such as convolutional neural networks
(CNN) [1,2] or SVMs [3], are being pushed to their limits. Therefore, it is essential to
develop efficient parallel architectures and techniques that can cope with massive data in
distributed systems. As a result, algorithm parallelization is taking a key role, as it enables
the exploitation of computing power available in large data centers, especially in cloud
computing environments, to train and deploy these algorithms.

More classical machine learning algorithms, such as SVMs, can also be used as a viable
alternative for classification of large datasets. Nonetheless, one of their main disadvantages
is that, unlike CNN and other intrinsically parallel algorithms, SVMs lack from such prop-
erty. For this reason, several proposals have been presented for their parallelization [4–6].
In general, parallel Support Vector Machines (pSVMs) are based on algorithm modifications
to execute some code sections simultaneously. As well, alternative approaches consider
incremental executions deployed on distributed architectures, such as MapReduce [7].

In this article, we present an alternative method for machine learning classification
via SVMs, specially designed for structures similar to a federated network of sensors, such
as wireless sensor networks [8]. These networks are characterized by the fact that it is
necessary to discern between two classes in each region. These tasks arise in many contexts,
such as decentralized intrusion detection systems [9], controlling environmental conditions

Entropy 2021, 23, 1605. https://doi.org/10.3390/e23121605 https://www.mdpi.com/journal/entropy

https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0002-9146-4067
https://orcid.org/0000-0001-6434-7263
https://orcid.org/0000-0003-1415-1961
https://orcid.org/0000-0002-2651-745X
https://orcid.org/0000-0002-5261-5352
https://doi.org/10.3390/e23121605
https://doi.org/10.3390/e23121605
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/e23121605
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e23121605?type=check_update&version=2

Entropy 2021, 23, 1605 2 of 17

in smart buildings [10], or emergency alert networks [11], among others. Processing
large datasets acquired by WSN devices can be challenging. Specific goals in this context
are to minimize communication between nodes or groups of nodes, to optimize energy
consumption, as well as to attain conservative management of limited storage capacity [12].

The main contribution of our algorithm, in comparison to other similar approaches, is
that it takes advantage of this kind of spatial distribution. Roughly speaking, our method
works as a guided ensemble-type approach. In practice, this spatial distribution can be
emulated by dividing the dataset into Voronoi regions [13]. In the case of sensor networks,
data subregions contain almost complete Voronoi regions, with a rather empty intersection
to other regions. At this point, it is important to remark that, in cases in which the spatial
distribution of the data is known in advance and made up of small groups, this process
could be avoided by using the known groups as approximated Voronoi-type regions.
However, under the presence of large groups of data, the use of Voronoi regions will still be
of help from a computational point of view. For the sake of completeness, in this paper, we
describe the full process of building the Voronoi regions although, as commented above, it
could be skipped in some situations.

In the same way, each task can be independently solved, using a standard SVM
implementation such as libSVM [14], already available in popular programming languages
such as Python, R, or C. As a result, any system already based on SVM can take advantage
of this method, not only to reduce execution time but to also increase its processing capacity.

To this aim, we create a set of small SVMs that work as an ensemble of classifiers [15].
The key point is that members of the ensemble can be trained following a parallelization
scheme. The success of these kinds of ensembles based on SVMs have already been proved
in [16]. In related work, however, the SVM used for the selection of the ensemble does not
admit parallelization.

The rest of the paper is organized as follows. We review previous related work in
Section 2. In Section 3, the proposed algorithm is presented. Then, Section 4 describes the
experimental setup to validate the proposed algorithm and presents the discussion of the
results. Finally, the main conclusions and future lines of work are presented in Section 5.

2. Related Works

Nowadays, machine learning algorithms play a central role in wireless sensor net-
works [17]. In particular, SVMs are involved in diverse applications in this context such
as localization techniques, anomaly and fault detection, or congestion control, among
others. The new method introduced in this paper is based on the parallel implementation
of SVM algorithms in Voronoi regions, efficiently combining selected results from some of
these regions, following ensemble learning principles. In this section, we review the main
background machine learning concepts and tools related to this work.

2.1. Support Vector Machines

SVMs are one of the most popular supervised learning methods that is used for both
classification and regression tasks. They appeared by the end of the last century as optimal
margin classifiers in the context of Vapnik’s statistical learning theory [18]. The goal of
the SVM algorithm is to find a hyperplane that optimally separates a higher dimensional
space into different categories. SVM training consists of solving an optimization problem
whose objective function gives a tradeoff between margin and misclassification error over
the training dataset [19]. An advantage of the support vector method is that only a few
training samples are involved in the determination of the prediction functions, facilitating
the application of SVM to data mining problems with a huge amount of data. The whole
formulation and some discussion can be found at [20].

Entropy 2021, 23, 1605 3 of 17

SVM has been widely used in real application due to its efficient performance in
machine learning problems. In the last years, different SVM methods have been successfully
applied to solve the practical problems. In [21], a hybrid of k-means and SVM methods
is developed and its application on breast cancer detection is presented. The k-means
algorithm is applied to identify the patterns of the benign and malignant tumors which are
used as features to build the dataset for SVM training. This approach achieves competitive
performance results compared with other methods in cancer diagnosis. A multi-stage
framework for sentiment analysis and opinion mining is proposed in [22]. This approach
combines SVM and k-nearest neighbors methods, aiming to detect positive and/or negative
opinion trends within weblogs containing knowledge written by baseline adopters. The
authors in [23] introduced a SVM method for detection of American football head impacts
using biomechanical features. A combined use of head impact sensors with video analysis
was developed to the features extraction and to build training and validation datasets. A
method of fault detection in wireless sensor networks based on SVM is presented in [24].
All data collected by the sensors of the network are redirected to the server that uses them
to train an individual SVM with Gaussian kernel. Although this approach achieves good
performance results, it requires additional communication overhead and a significant delay
in data processing.

Although SVMs achieve excellent performance results, the computational time and
memory requirements increase rapidly on complex and large datasets. For this reason,
many research efforts have been conducted to design fast training algorithms of SVMs. The
authors in [25] suggest a decomposed algorithm which divides the problem into smaller
sub-problems that are solved iteratively. The method introduced in [26] proposes to reduce
the size of the optimization problem by solving a sequence of sub-problems considering
only a few features of the training dataset that are selected using a heuristic approach.
Similarly to the aforementioned approaches, a decomposition method, called Sequential
Minimal Optimization (SMO), is developed in [27]. The key idea behind the SMO method
is to split the problem into the smallest possible sub-problems. Each sub-problem is solved
analytically so the numerical optimization is avoided entirely, leading to a considerable
reduction in computation time. More recent work [28] proposes a novel approach to select
a representative subset from the training dataset using an algorithm based on convex hulls
and extreme points.

2.2. Ensemble Learning

An ensemble of classifiers is a set of classifiers whose performance as a group improves
the performance of individual classifiers. These individual classifiers are trained with
subsets of the original training set and generate their own separating surfaces that will be
later integrated in order to achieve more accurate and precise classification [29].

A nice theoretical property of ensembles is that the generalization error converges
as the number of members of the ensemble increases. This property guarantees that
overfitting will not become a problem [15]. Regarding accuracy, it can be demonstrated
that an ensemble’s accuracy depends on the strength of the individual classifiers and a
measure of the dependence between them. To guarantee this property, the best members of
the ensemble can be chosen during the training stage.

The widely used methods for constructing ensemble learning algorithms are boost-
ing [30] and bagging [31]. Boosting is an algorithm that works by training base learners
sequentially, so in each iteration the learner assigns higher weight to the observations of
the dataset that have been misclassified by its predecessor. In bagging, different sample
subsets are randomly drawn from the training dataset and each subset is used to train a
basic learning model in a parallel manner. To obtain the global decision of the ensemble
method, the outputs of the individual models are aggregated by voting.

Ensemble learning has been successfully used in diverse applications such as text
classification [32], speech recognition [33,34], sentiment analysis [35], protein folding
recognition [36], or streamflow forecasting [37]. Different learning algorithms have been

Entropy 2021, 23, 1605 4 of 17

used as base models to build ensemble methods such as neural networks, naive Bayesian, or
decision trees, among others. An ensemble method based on neural network with random
weights for online data stream regression is presented in [38]. The main idea of this method
is to train various neural networks with subsets of the training dataset generated from
combining bootstrap sampling with random feature selection. The results indicate an
accuracy improvement and reduction in computational time compared to other available
algorithms from literature. In [39], an ensemble of fine-tuned naive Bayesian classifiers
for text classification is proposed. A bagging method is used for ensemble construction
in combination with parameter modification over learning rate and number of iterations.
In [40], a novel approach for constructing ensembles of decision trees is proposed, where
each tree is trained with a subset containing all features of the training set, giving a different
weight to every feature. All the nodes in a tree use the same vector of random weights, but
different weights are used for each tree of the ensemble.

Finally, there is extensive research that has successfully applied SVMs as base mod-
els to build ensemble methods for solving machine learning problems, often leading to
improved results compared with alternative techniques. An approach developed in [41]
generates a new quality training dataset through the marginal density ratios transformation
on the original features. The transformed data is used to train several SVM classifiers and
feed their outputs to another SVM to train the final classification model. The results show
that their method performs better than other ensemble approaches in terms of accuracy and
training speed. The authors in [42] compared classification performance for breast cancer
prediction of an individual SVM and various SVM ensemble methods. They used bagging
and boosting methods for constructing the SVM ensembles combining different kernel
functions. The experimental results showed that the radial basis function (RBF) kernel
SVM ensemble based on the boosting method performed better than other classifiers.

2.3. Voronoi Diagrams

The Voronoi diagrams are an important method of computational geometry, designed
primarily for evaluating nearest neighbor over two-dimensional spatial points [43]. A
Voronoi diagram is characterized by regions of proximity, making the partitioning of a
plane into disjoint convex polygons where the distance of points is defined by Euclidean
distance so that all points in the same polygon have the same nearest neighbor, called
the centroid. Thereby, from a given polygon, every point is closer to its centroid than to
any other.

The Voronoi diagrams method has been used in a wide variety of applications [44] such
as virus spread analysis among mobile devices [45], cluster analysis [46–48], continuous
location-based services [49], or high-dimensional query evaluation [50].

In recent years, several works have been published presenting novel methods in
diverse fields such as computer graphics, pattern recognition, or robotics. For instance,
in [51], a method to achieve cost-effective 3-D printing of stiffened thin-shell objects is
proposed. For that, they use the finite element analysis to determine the regions of the
object with high stress and use a given number of seeds to create a Voronoi diagram to
distribute these seeds in the areas with higher stress. These seeds are mapped from a
3-D mesh to a 2-D space with least squares conformal maps (LSCMs) [52]. The authors
in [53] introduce the Voronoi diagrams for the analysis of the spatial organization in team
sports, such as basketball, and define the behavioral team patterns during a positional
attack. The approach in [54] proposes to reduce the computation time of the robots to make
quick decisions before they collide with obstacles, using Voronoi diagrams for building a
roadmap in the environment of the robot.

Finally, there are numerous studies using Voronoi diagrams to tackle imbalanced
classification problems [55–57]. These kinds of problems arise when the distribution of
examples among the classes is skewed. Real-world examples abound with problems of this
type from fields such as visual computing, text classification, medicine, security, finance,
among others. Furthermore, in the imbalanced classification problems, the class of interest

Entropy 2021, 23, 1605 5 of 17

is usually the minority class (e.g., credit card fraud detection, spam detection, disease risk
detection) and traditional classifiers typically maximize an overall performance, which
often results in the minority class being ignored. The synthetic minority oversampling
technique (SMOTE) [58] is probably the most widely used method to mitigate this problem.
It is based on the generation of synthetic samples for the minority class aiming to balance
the dataset. An alternative approach is that of [55]. They proposed an over-sampling
method based on Voronoi regions. The underlying idea of this method is to identify
exclusive regions of the feature space where the generation of new instances by random
resampling provides consistent data generalization. The results of this work suggest that,
in certain cases where the complexity of the datasets is high, their proposed method leads
to more accurate and better classification models than using SMOTE.

3. pSVM Algorithm

The key idea underpinning our novel method for pSVM is to build a guided ensemble
of SVM classifiers. In this ensemble, each SVM can be trained separately and in a parallel
environment. The ensemble is built using a clustering method over the training set that gen-
erates a Voronoi diagram, which splits the space into a specific number of regions defined
by its center. Then, these regions are used to generate the ensembles in a guided manner.

3.1. Data Partitioning

Typically, in a binary classification problem, a training set consisting of n samples can
be represented as:

D = {(xi, yi)}n
i=1, (1)

where xi ∈ Rd denotes the training samples and yi ∈ C = {−1,+1} the associated labels.
In this phase, we split D into P training subsets D1, . . . , DP, each consisting of np

samples. Thus, the jth subset can be represented as:

Dj = {(xi, yi)}
nj
i=1. (2)

These subsets are created by ensuring that each Dj maintains a similar proportion
of samples from each class as in the original dataset D. For this, a partitioning approach
separately on each of the classes DC is used. Thus, we can represent D as a collection of
C classes:

D = {Di}C
i=1. (3)

The next step is to generate a Voronoi diagram from the samples of each of the classes
DC. This can be achieved using a cluster algorithm such as k-means [59]. The idea of this
method is to find k regions of the space, such that any point inside its region is closer to
its region’s center than to any other region’s center. It is important to remark that we do
not need to find a global minimum of the optimization problem involved in the k-means
algorithm. For our purposes, it is enough with a single execution of a limited number of
iterations of the k-means algorithm in order to obtain regions with a balanced number
of data.

In order to determine the optimal number of clusters in a dataset, several methods
have been proposed [60–63]. We have adapted the Sturges rule [64] to a multi-dimensional
setting. Show, given a dataset of n samples, the number of clusters is estimated through
the formula:

k = 1 + 3.332 log n. (4)

Therefore, as we mentioned above, we use k-means clustering on each of the classes
separately leading to generate different Voronoi diagrams, one per class. Let us assume
VC

i denotes the ith Voronoi region of class C and ci represents its associated centroid, the
Voronoi diagrams of class −1 and class +1 could be represented as V− = {(V−i , c−i)}

k−
i=1

and V+ = {(V+
j , c+j)}

k+
j=1, respectively, where k− and k+ are estimated by Equation (4).

Entropy 2021, 23, 1605 6 of 17

Then, we generate the subset of all pairs, resulting as the combination of each Voronoi
region of the class −1 with each of the regions of the class +1. Therefore, the new training
subsets can be represented as:

D′ = {(V−i , V+
j) | i = 1, . . . , k− and j = 1, . . . , k+}. (5)

Figure 1 illustrates the steps carried out to perform data partitioning process.

Training dataset

Class +1 Class -1

V+
1 V+

2 V+
k

Group by class

. . .

k-means

V−1 V−2 V−k
. . .

k-means

.D11 D12 D1k− D21 D22 D2k− Dk+1 Dk+2 Dk+k−

Figure 1. The flowchart of data partitioning method.

3.2. Training

Let D1, . . . , DP represent the P training subsets generated in the previous stage that
contain data samples from both classes. Then, each of these subsets can be used to train a
small SVM (sub-SVM) that can be trained independently using a standard SVM training
algorithm. Each of the sub-SVM will generate a sub-model.

It is important to remark that the sub-models can be perfectly trained in a parallel
manner, as the input data for the sub-SVM models are independent thanks to the Voronoi
partitioning. Therefore, the training subsets are distributed among all available nodes.
When the number of nodes is less than P, several sub-SVM are trained sequentially by
each node. Otherwise, each node trains a sole sub-SVM. Formally, the parallelized sys-
tem composed of N nodes, where H training subsets are allocated in each node, can be
represented as:

SVMensemble = {SVMlh|l = 1 . . . N, h = 1 . . . H}. (6)

Additionally, in order to improve training times, the number of iterations required to
converge toward the solution within each sub-SVM model could be limited. This is possible
because the theory underlying ensembles guarantees that the accuracy of an ensemble
depends on the strength of the individual classifiers [15].

Learning Strategy of Each Sub-SVM

Each sub-SVM follows the typical learning strategy based on regularization the-
ory [20]. SVMs build a classification function through the solution of the following opti-
mization problem:

min
f∈Hk

1
n

n

∑
i=1

L(yi, f (xi)) + M‖ f ‖2
k , (7)

where (xi, yi), i = 1, . . . , n, is a training dataset with xi ∈ Rd and yi ∈ {+1,−1}; HK is a
reproducing kernel Hilbert space (RKHS) with a kernel K; ‖ f ‖K is the norm of f in the
RKHS; L(yi, f (xi)) is a loss function; and the cost M > 0 is a constant that penalizes non-

Entropy 2021, 23, 1605 7 of 17

smoothness of the possible solutions to optimization problem (7). The SVM loss function
for classification purposes is:

L(yi, f (xi)) = max(1− yi × f (xi), 0). (8)

It can be shown that the solution of problem (7) using Equation (8) leads to a smooth
function f ∗ ∈ HK, such that:

f ∗(x) =
n

∑
i=1

αiK(x, xi) + b∗, (9)

where αi and b∗ are constants; K(x, y) = φ(x)Tφ(y) is the kernel function that generates
HK; and φ : Rn → Rp is a mapping defining K. φ maps the data from Rd (known as the
“input space”) into Rp (the so-called “feature space”).

The main steps of the training algorithm are illustrated in Algorithm 1.

Algorithm 1: pSVM training algorithm.

Data: D = {(xi, yi)}n
i=1, xi ∈ Rd, yi ∈ C = {−1,+1};

N: number of nodes;
Result: S (set of Voronoi regions pairs);
SVMensemble (ensemble of SVM);

1 {Dc}C
c=1 ← build a collection of C classes;

2 kc = 1 + 3.332 log nc, where nc is the number of samples in Dc and c ∈ C;
3 Vc = {(Vc

i , cc
i)}kc

i=1 ← k-means(Dc, kc), where cc
i is the centroid of the Voronoi

region Vc
i and c ∈ C;

4 D′ ← D′ij = {(V
−
i , V+

j)|i = 1, . . . , k−1 and j = 1, . . . , k+1};

5 H ← length(D′)
N ;

6 S = {Slh|l = 1 . . . N, h = 1 . . . H}, where S is the distributed version of D′ among
the nodes ;

7 for h← 1 to H do
8 SVMlh = train-SVM(Slh), l = 1, . . . , N ;
9 SVMensemble = {SVMlh|l = 1 . . . N, h = 1 . . . H}

3.3. Classification

Once the training phase is finished, an ensemble of sub-SVMs could be used to classify
new data. Instead of using all sub-SVMs, the proposed algorithm selects a subset of them
based on k nearest neighbor approach (k-NN) [65]. To achieve this, for each new individual,
the Euclidean distance with the centroids of the Voronoi regions is computed and the γ
closest ones of each class are selected. Let T− and T+ represent, respectively, the γ nearest
Voronoi regions of class −1 and class +1 to the new individual. Then, a subset of the
training subsets of Equation (5), T ⊂ D′, is generated as the Cartesian product of T− and
T+:

T = {(v−, v+), v− ∈ T− and v+ ∈ T+}. (10)

Thereby, only the sub-SVM trained with the subsets on T are taken into account for
prediction, discarding the remaining sub-SVM.

The pSVM uses a voting scheme similar to the one described in [66], where each new
individual is evaluated by the selected sub-SVM, being the evaluation provided by each
sub-SVM considered as a vote. Once all the votes are aggregated, the new individual
is classified as a member of the most voted class. If there is an even number of sub-
SVMs, ties during the voting of some individuals might take place. Those individuals are
assigned at random, although more sophisticated schemes may classify those individuals
as undetermined in order to evaluate their classification later by an expert. To be more

Entropy 2021, 23, 1605 8 of 17

specific, if t sub-SVMs are available, the class assigned to an individual z will be denoted
as class(z) and determined by Equation (11).

class(z) =

sgn

(
t

∑
i=1

predictioni(z)

)
if

t

∑
i=1

predictioni(z) 6= 0

±1(randomly) if
t

∑
i=1

predictioni(z) = 0
(11)

where predictioni(z) is the vote corresponding to sub-SVM i and sgn is a function de-
fined as:

sgn(x) =

1 if x > 0
0 if x = 0
−1 if x < 0

(12)

The steps to perform the classification stage are summarized in Algorithm 2.

Algorithm 2: pSVM classification algorithm.

Data: {V+, V−}: the set of Voronoi regions of class c ∈ {−1,+1} computed in
data partitioning stage;

N: number of nodes ;
{Sj}N

j=1, where Sj = {Sjh|h = 1 . . . H} is a set of pairs of Voronoi regions;

{SVMensemble
j }N

j=1, where SVMensemble
j corresponds to Voronoi pair Sj;

z: new point to classify;
γ: number of neighbors that we consider for voting;
Result: class(z)

1 Calculate {T+, T−}, where T+ and T− are, respectively, the γ closest regions to z
in V+ and V−;

2 ens← 0 ;
3 for j← 1 to length(S) do
4 l ← 1;
5 exit← False;
6 while (l ≤ γ) AND (not exit) do
7 if (Sj contains T+

l) OR (Sj contains T−l) then
8 ens = ens + 1;
9 pens ← prediction(p, SVMensemble

j), with pens ∈ {+1,−1};
10 exit← True;
11 l ← l + 1
12 class(z) = sgn(∑ens

j=1 pi);

3.4. Computational Complexity

The following theoretical result shows that the computational complexity of our
proposal lowers the computational complexity of a single SVM.

Theorem 1. For a bounded number of iterations of the k-means method, the worst case computa-
tional complexity of the pSVM training algorithm proposed in this work amounts to O((n

log n)
3).

Proof. The worst case computational complexity of using a single SVM is O(n3) [67].
Regarding the k-means algorithm, it is well known that the optimization problem involved
in this method is NP-hard [68]. In practice, truncated versions of this algorithm are used,
so that a rough worst case bound can be assumed to be O(I ∗ k ∗ n), where I is the number
of iterations and k is the number of Voronoi regions. In a typical truncated version of
k-means method, the maximum number of iterations is fixed. Therefore, for a large k, this

Entropy 2021, 23, 1605 9 of 17

computational complexity can be considered to be lower than O(n2). By construction, each
sub-SVM used in the pSVM algorithm has a computational complexity of:

O((
n

1 + 3.332 log n
)3) = O((

n
log n

)3).

Since each sub-SVM can be trained simultaneously to the rest, the overall com-
putational complexity of our pSVM algorithm amounts to O(n2) + O((n

log n)
3), that is,

O((n
log n)

3).

4. Experimental Results

In this section, we provide empirical evidence of our analysis of guided pSVM based on
Voronoi regions using two synthetic datasets and discuss the results. All experiments were
conducted on a workstation running Linux with two Intel Xeon E5-2630 (6 cores per CPU,
two threads per core), at 2.3 GHz and 64 GB of RAM memory. A prototype implementing the
algorithms described in Section 3 was developed using the statistical software R v3.6.0 [69],
RStudio v1.4.1106, and the following additional R packages. Data processing was carried out
with packages stats v3.4.4 and dplyr v1.0.0. Visualization was undertaken using package
ggplot2 v3.3.3. We created a custom function based on package e1071 v1.6-8 to build the
SVM classifier, so that we can limit the number of iterations to achieve convergence. Finally,
parallelization was carried out through package doParallel v1.0.16.

4.1. One Region with Two Partially Overlapping Classes

A first simple experiment consists of the classification of two partially overlapping
classes, where all the data are located in the same space region. Figure 2 shows the situation
for the two-dimensional case. We use two d-dimensional Gaussian distributions (x, y) ∼
Nm(µm, σm), m ∈ {1, 2} to simulate each class, where µ1 = (0, 0), µ2 = (2, 2) and the
covariance matrix is ([1, 0]; [0, 1]) for both distributions. In particular, µ1 = (0, . . . , 0) ∈ Rd

and µ2 = (2, . . . , 2) ∈ Rd. The covariance matrices σm were randomly generated with
diagonal (1, . . . , 1),∈ Rd. The experiment is executed for d = 2. A balanced dataset is
artificially generated by randomly sampling 500,000 training points and 50,000 testing
points from each class.

As each class has a sample size of 500,000 points, from Equation (4), the number of clusters
obtained is 45 (k−1 = k+1 = 45). Since the Voronoi diagrams corresponding to classes−1 and
+1 are very similar, for conciseness, in Figure 3 we only show the diagram for class +1.

Results

Here, we evaluate the performance of pSVM versus a single SVM and a standard
SVM ensemble [70]. We choose the well-known SVM implementation provided by the
libSVM library [14]. We randomly split each dataset into a training and a testing group,
where the training set is 10 times larger than the testing set, and run all methods using this
setup. This procedure is repeated 10 times and we obtain the average value and standard
deviation of the accuracy performance measure, that is, the fraction of individuals correctly
classified, given by:

accuracy =
tp + tn

tp + fp + tn + fn
,

where tp (true positives) are defined as the set of individuals correctly classified in a certain
class, tn (true negatives) as the set of individuals correctly left out of a certain class, fp (false
positives) as individuals incorrectly classified in a certain class, and fn (false negatives) as
individuals that have been incorrectly left out of a certain class. Because we are using a
balanced dataset, this measure will work correctly providing reliable information to assess
the performance of these methods.

Entropy 2021, 23, 1605 10 of 17

−2.5

0.0

2.5

5.0

−2.5 0.0 2.5 5.0

x

y

class

−1

1

Figure 2. An example of the synthetic dataset in a 2-D feature space.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19 20

21

22

23
24

25

26

27

28

29

30
31

32

33

34

35

36

37

38

39

40 41

42

43

44

45

−2.5

0.0

2.5

5.0

−5.0 −2.5 0.0 2.5 5.0

x

y

Figure 3. Voronoi diagram for class 1.

Each method is run with two different kernel functions (see [20] for different choices),
namely a linear kernel and a radial basis function (RBF) kernel with parameters estimated
by cross validation. Then, we compare the following approaches:

• Single SVM, ensemble, and pSVM with no limit of iterations;
• Single SVM, ensemble, and pSVM with a limit of 10 iterations;
• Single SVM, ensemble, and pSVM with a limit of 1 iteration.

As mentioned in Section 3.3, a k-NN approach based on Voronoi regions is used
to select the sub-SVMs considered as classifiers. It seems obvious that different values
of k lead to different performance results. To select the optimal value of this parameter
empirically, we tested different choices for k: 1, 3, 5, 7, and 9. As Figure 4 shows, the

Entropy 2021, 23, 1605 11 of 17

accuracy improves while we increase k from 1 to 7, whereas it is relatively stable for k larger
than 7. Therefore, k = 7 was chosen as the optimal number of Voronoi regions used in the
classification scheme.

Figure 4. Number of Voronoi regions, for each class, selected for classification.

Table 1 shows the average classification accuracy and the standard deviation of the
algorithms for ten runs on the synthetic dataset. As we can see, when the number of
iterations required to converge to the solution is not limited, all approaches provide
accuracy results over 91.0%. Best results are obtained by the ensemble with RBF kernel
and the pSVM with RBF kernel being, respectively, 92.69% and 92.65%. However, when
the number of iterations is limited, for energy saving reasons, the only methods providing
consistent results are the two versions of the pSVM approach, which do not seem to be
affected by the iteration limit. In these cases, the best accuracy results are 92.65% and
92.57%, for the two limited versions of the pSVM with RBF kernel. Furthermore, it is
important to notice that the only method whose accuracy systematically remains over
91.0% is pSVM, for all versions.

Table 1. Average (standard deviation) for accuracy for each method. The method with the best accuracy is boldfaced.

Iterations SVM
(Linear Kernel)

SVM
(RBF Kernel)

Ensemble
(Linear Kernel)

Ensemble
(RBF Kernel)

pSVM
(Linear Kernel)

pSVM
(RBF Kernel)

No limit 0.9223 (0.0030) 0.9246 (0.0125) 0.9237 (0.0011) 0.9269 (0.0076) 0.9130 (0.0139) 0.9265 (0.0122)
10 0.6641 (0.1929) 0.4465 (0.1226) 0.8963 (0.0128) 0.4958 (0.0227) 0.9150 (0.0049) 0.9265 (0.0120)
1 0.6543 (0.2790) 0.4241 (0.1266) 0.8887 (0.0167) 0.3107 (0.0189) 0.9107 (0.0078) 0.9257 (0.0129)

4.2. Eight Multi-Dimensional Regions with Two Partially Overlapping Classes

This second experiment is based on a synthetic dataset that emulates a federated
network of sensors. As mentioned above, such networks are characterized by providing
data distributed in different regions in which it is necessary to categorize events in different
classes. For this experiment, to simulate each class we generate sixteen d-dimensional
Gaussian distributions (x, y) ∼ Nm(µm, σm), m ∈ {1, . . . , 16}, paired two by two. For
simplicity, 16,000 elements in a 10-dimensional space have been generated (1000 elements
per class for each region), although similar results were obtained for larger dimensional
settings and datasets, up to one million elements. Figure 5 depicts this dataset for d = 2.

Entropy 2021, 23, 1605 12 of 17

0.0

2.5

5.0

7.5

10.0

0 5 10 15

x

y

class

−1

1

Figure 5. A two-dimensional example with two classes and eight regions.

Results

Again, on this dataset, we compare the performance of our pSVM approach to a single
SVM and a standard SVM ensemble. For the three methods, two different versions are
implemented: one using a linear kernel and another using an RBF kernel, with parameters
estimated by cross validation. Moreover, for the ensemble and pSVM approaches, different
classification schemes are used. In particular, for both methods, we implement the classifi-
cation scheme described in Algorithm 2 for different values of the γ parameter, namely:
γ = 1, γ = 7, and γ = 15. In the case of the single SVM, the classification scheme is made
up of a single decisor and, in Table 2, the result appears in the row corresponding to γ = 1.
In a similar manner to the previous example, we randomly split each dataset 10 times into
a training and a testing set. Similarly, we run the methods and calculated the average value
and standard deviation of the accuracy performance measure.

Table 2 presents the average classification accuracy and the standard deviation of the
algorithms for ten runs on the multidimensional dataset. As we can observe, the best result
for the linear kernel versions of the algorithms are always provided by the pSVM approach.
This is because the method has been specifically designed for data whose structure is
similar to that of a federated network of sensors. As expected, using a more complex kernel,
the ensemble approach improved its results, especially for large values of γ. Unfortunately,
this approach requires a cross-validation process to estimate the parameters of the kernel,
whereas the linear kernel does not require this additional step. Finally, it is remarkable that,
under a severe reduction in the number of training iterations up to a single one, the best
overall accuracy result (94.95%) is obtained by the pSVM with an RBF kernel.

Entropy 2021, 23, 1605 13 of 17

Table 2. Average (standard deviation) for accuracy for each method. The method with the best accuracy is boldfaced.

Iterations γ
SVM SVM Ensemble Ensemble pSVM pSVM

(Linear
Kernel) (RBF Kernel) (Linear

Kernel) (RBF Kernel) (Linear
Kernel) (RBF Kernel)

No limit

1 0.6183 (0.0580) 0.9747
(0.0047) 0.4404 (0.1000) 0.9687

(0.0028) 0.9641 (0.0053) 0.9695
(0.0051)

7 - - 0.4033 (0.0100) 0.9751
(0.0036) 0.8493 (0.0563) 0.8297

(0.0219)

15 - - 0.391 (0.0029) 0.9763
(0.0042) 0.5437 (0.0799) 0.6566

(0.0931)

10

1 0.5730 (0.0025) 0.5506
(0.0100) 0.4779 (0.0097) 0.6513

(0.0183) 0.8970 (0.0249) 0.9495
(0.0073)

7 - - 0.4289 (0.0083) 0.8956
(0.0088) 0.8218 (0.0787) 0.7950

(0.0670)

15 - - 0.3910 (0.0029) 0.9555
(0.0074) 0.5220 (0.0917) 0.6714

(0.1103)

1

1 0.5350 (0.0399) 0.5421
(0.0138) 0.4276 (0.0077) 0.5570

(0.0157) 0.7675 (0.0154) 0.8331
(0.0111)

7 - - 0.4372 (0.0099) 0.6736
(0.0093) 0.7637 (0.0449) 0.7616

(0.0288)

15 - - 0.4303 (0.0156) 0.7600
(0.0151) 0.5329 (0.0400) 0.6639

(0.0153)

4.3. A Numerical Estimation of Training Time

Finally, for completeness, we provide a table with the execution time exhibited by
the different methods on the 10-dimensional example in Section 4.2. It is important to
notice that, although the smallest time results are obtained by the single SVM with a
limited number of iterations, these implementations provide very poor classification results.
Therefore, it would never be chosen in practice. Considering a tradeoff between accuracy
and training times, the best implementations correspond to the pSVM approach with linear
kernel. In particular, the pSVM version without a limit of iterations is, on average, up to
11.88 times faster than the single SVM with linear kernel. This magnitude is in accordance
with the expected proportional reduction in the order of log(n), shown in Section 3.4.

Table 3 summarizes the execution time (in seconds) for all versions of the methods
implemented in this comparative.

Table 3. Average (standard deviation) for training time. The method with the shortest training time is boldfaced.

Iterations SVM
(Linear Kernel)

SVM
(RBF Kernel)

Nodes Ensemble
(Linear Kernel)

Ensemble
(RBF Kernel)

pSVM
(Linear Kernel)

pSVM
(RBF Kernel)

4 15.2576 (0.2009) 7.9840 (0.0817) 3.0220 (0.1934) 3.7600 (0.2626)
No limit 29.8763 (6.9040) 5.0406 (0.0184) 9 9.1846 (0.4014) 5.3840 (0.1412) 2.5140 (0.1260) 2.9566 (0.1526)

16 8.6923 (0.1162) 4.4406 (0.0155) 2.6280 (0.2912) 2.6910 (0.0818)

4 2.5753 (0.0307) 2.8840 (0.1424) 2.3566 (0.1353) 2.7400 (0.1582)
10 0.1240 (0.0006) 0.1202 (0.0015) 9 1.9853 (0.0186) 2.2166 (0.0200) 1.8656 (0.0558) 2.0940 (0.1471)

16 1.8790 (0.1065) 2.0703 (0.1079) 1.7970 (0.1799) 1.9126 (0.0489)

4 2.4300 (0.1455) 2.5233 (0.1459) 2.4100 (0.2364) 2.5756 (0.0895)
1 0.0933 (0.0011) 0.0683 (0.0049) 9 1.8416 (0.0256) 2.1013 (0.2426) 1.8203 (0.0592) 1.8686 (0.0499)

16 1.8903 (0.0584) 1.9260 (0.0270) 1.8460 (0.1292) 1.8860 (0.0770)

5. Conclusions

In this paper, we present a novel method for accelerated training of parallel Support
Vector Machines that is especially well-suited for problems involving a federated network
of sensors where optimization of energy consumption is required. The proposed algorithm

Entropy 2021, 23, 1605 14 of 17

builds on a parallel training alternative of SVM ensembles (pSVMs), determined by Voronoi
regions. Experimental results indicate that training time is reduced according to the
analytical computational complexity analysis of the method. This method exhibits a stable
performance when the convergence iterations within the training stage are limited. In
particular, it is important to remark that the simplest version of this pSVM approach, that
is, the one using a linear kernel, makes this method the most appropriate for a parallel
implementation. In that case, the evaluation of the kernel function simply involves a scalar
product without additional parameters, and thus cross validation is not needed.

Concerning further research, a more detailed complexity analysis including the effect
of the dimension of the data may be interesting, especially for data coming from very high
dimensional settings. Another interesting area of future research is the development of
multiclass versions of the pSVM approach. As well, a drastic acceleration of the training
stage could be achieved through a hardware implementation of this novel approach. To
this aim, pSVM versions with a limited number of iterations are even more suitable.

Regarding possible shortcomings of our proposal, there is still room for improvement.
Alternatives for constructing the Voronoi regions should be explored. Another limitation
that requires future attention is that the Sturges formula was originally developed for
one-dimensional data. Therefore, it would be advisable to develop a more sophisticated
version, including in its closed-form the dimension d of the representation space. This
is related to the necessary compromise between the number of Voronoi regions and the
number of data elements comprised in each region, which may be crucial to improve the
performance of this method.

Author Contributions: Conceptualization, J.M.M., J.C. and J.I.M.; methodology, C.A., J.G. and
J.M.M.; software, C.A. and J.G.; validation C.A., J.G. and J.M.M.; writing—original draft preparation,
C.A. and J.G.; writing—review and editing, C.A., J.G., J.M.M., J.C. and J.I.M.; supervision, J.M.M.
and J.C.; funding acquisition, J.M.M. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was supported by research grant MODAS-IN of Spanish MICINN (ref. RTI2018-
094269-B-I00).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. LeCun, Y.; Boser, B.E.; Denker, J.S.; Henderson, D.; Howard, R.E.; Hubbard, W.E.; Jackel, L.D. Backpropagation Applied to

Handwritten Zip Code Recognition. Neural Comput. 1989, 1, 541–551. [CrossRef]
2. LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998,

86, 2278–2324. [CrossRef]
3. Schölkopf, B.; Smola, A.J. Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond; Adaptive

Computation and Machine Learning Series; MIT Press: Cambridge, MA, USA, 2002.
4. Clarkson, K.L. Algorithms for Closest-Point Problems (Computational Geometry). Ph.D. Thesis, Stanford University, Stanford,

CA, USA, 1985.
5. Graf, H.P.; Cosatto, E.; Bottou, L.; Durdanovic, I.; Vapnik, V. Parallel Support Vector Machines: The Cascade SVM. In Proceedings

of the Advances in Neural Information Processing Systems 17 [Neural Information Processing Systems, NIPS 2004, Vancouver,
BC, Canada, 13–18 December 2004; pp. 521–528.

6. Chang, E.Y. PSVM: Parallelizing Support Vector Machines on Distributed Computers. In Foundations of Large-Scale Multimedia
Information Management and Retrieval: Mathematics of Perception; Springer: Berlin/Heidelberg, Germany, 2011; pp. 213–230.
[CrossRef]

7. Caruana, G.; Li, M.; Qi, M. A MapReduce based parallel SVM for large scale spam filtering. In Proceedings of the 2011 Eighth
International Conference on Fuzzy Systems and Knowledge Discovery (FSKD), Shanghai, China, 26–28 July 2011; Volume 4,
pp. 2659–2662.

http://doi.org/10.1162/neco.1989.1.4.541
http://dx.doi.org/10.1109/5.726791
http://dx.doi.org/10.1007/978-3-642-20429-6_10

Entropy 2021, 23, 1605 15 of 17

8. Arampatzis, T.; Lygeros, J.; Manesis, S. A Survey of Applications of Wireless Sensors and Wireless Sensor Networks. In
Proceedings of the 2005 IEEE International Symposium on, Mediterrean Conference on Control and Automation Intelligent
Control, Limassol, Cyprus, 27–29 June 2005; pp. 719–724. [CrossRef]

9. da Silva, A.P.R.; Martins, M.H.T.; Rocha, B.P.S.; Loureiro, A.A.F.; Ruiz, L.B.; Wong, H.C. Decentralized intrusion detection in
wireless sensor networks. In Proceedings of the Q2SWinet’05—Proceedings of the First ACM Workshop on Q2S and Security for
Wireless and Mobile Networks, Montreal, QC, Canada, 13 October 2005; Boukerche, A., de Araujo, R.B., Eds.; ACM: New York,
NY, USA, 2005; pp. 16–23. [CrossRef]

10. Han, Z.; Gao, R.X.; Fan, Z. Occupancy and indoor environment quality sensing for smart buildings. In Proceedings of the
2012 IEEE International Instrumentation and Measurement Technology Conference Proceedings, Graz, Austria, 13–16 May 2012;
pp. 882–887. [CrossRef]

11. Ko, J.; Lim, J.H.; Chen, Y.; Musvaloiu-E, R.; Terzis, A.; Masson, G.M.; Gao, T.; Destler, W.; Selavo, L.; Dutton, R.P. MEDiSN:
Medical emergency detection in sensor networks. ACM Trans. Embed. Comput. Syst. 2010, 10, 11:1–11:29. [CrossRef]

12. Wan, S.; Zhao, Y.; Wang, T.; Gu, Z.; Abbasi, Q.H.; Choo, K.R. Multi-dimensional data indexing and range query processing via
Voronoi diagram for internet of things. Future Gener. Comput. Syst. 2019, 91, 382–391. [CrossRef]

13. Voronoi, G. Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Deuxième mémoire. Recherches
sur les parallélloèdres primitifs. J. Reine Angew. Math. (Crelles J.) 1908, 1908, 198–287. [CrossRef]

14. Chang, C.C.; Lin, C.J. LIBSVM: A library for Support Vector Machines. ACM Trans. Intell. Syst. Technol. (TIST) 2011, 2, 1–27.
[CrossRef]

15. Breiman, L. Some Infinity Theory for Predictor Ensembles. Available online: http://citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.87.5037&rep=rep1&type=pdf (accessed on 29 November 2021).

16. Hu, Z.; Cai, Y.; Li, Y.; Xu, X. Support vector machine based ensemble classifier. In Proceedings of the 2005 American Control
Conference, Portland, OR, USA, 8–10 June 2005; pp. 745–749.

17. Donta, P.K.; Amgoth, T.; Annavarapu, C.S.R. Machine learning algorithms for wireless sensor networks: A survey. Inf. Fusion
2019, 49, 1–25. [CrossRef]

18. Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [CrossRef]
19. Fischetti, M. Fast training of Support Vector Machines with Gaussian kernel. Discret. Optim. 2016, 22, 183–194. [CrossRef]
20. Moguerza, J.M.; Muñoz, A. Support Vector Machines with applications. Stat. Sci. 2006, 21, 322–336. [CrossRef]
21. Zheng, B.; Yoon, S.W.; Lam, S.S. Breast cancer diagnosis based on feature extraction using a hybrid of K-means and support

vector machine algorithms. Expert Syst. Appl. 2014, 41, 1476–1482. [CrossRef]
22. Alfaro, C.; Cano-Montero, J.; Gómez, J.; Moguerza, J.M.; Ortega, F. A multi-stage method for content classification and opinion

mining on weblog comments. Ann. Oper. Res. 2016, 236, 197–213. [CrossRef]
23. Wu, L.C.; Kuo, C.; Loza, J.; Kurt, M.; Laksari, K.; Yanez, L.Z.; Senif, D.; Anderson, S.C.; Miller, L.E.; Urban, J.E.; et al. Detection of

American football head impacts using biomechanical features and support vector machine classification. Sci. Rep. 2017, 8, 1–14.
[CrossRef]

24. Zidi, S.; Moulahi, T.; Alaya, B. Fault detection in wireless sensor networks through SVM classifier. IEEE Sensors J. 2017, 18, 340–347.
[CrossRef]

25. Osuna, E.; Freund, R.; Girosi, F. An improved training algorithm for Support Vector Machines. In Proceedings of the Neural
networks for signal processing VII. Proceedings of the 1997 IEEE Signal Processing Society Workshop, Amelia Island, FL, USA,
24–26 September 1997; pp. 276–285.

26. Joachims, T. Making Large-Scale SVM Learning Practical. Available online: https://www.cs.cornell.edu/people/tj/publications/
joachims_99a.pdf (accessed on 29 November 2021).

27. Platt, J.C. Using Analytic QP and Sparseness to Speed Training of Support Vector Machines. In Advances in Neural Information
Processing Systems 11, NIPS Conference, Denver, CO, USA, 30 November–5 December 1998; Kearns, M.J., Solla, S.A., Cohn, D.A., Eds.;
The MIT Press: Cambridge, MA, USA, 1998; pp. 557–563.

28. Nandan, M.; Khargonekar, P.P.; Talathi, S.S. Fast SVM training using approximate extreme points. J. Mach. Learn. Res. 2014,
15, 59–98.

29. Kuncheva, L.I. Combining Pattern Classifiers: Methods and Algorithms, 2nd ed. Available online: https://www.wiley.com/
en-in/Combining+Pattern+Classifiers%3A+Methods+and+Algorithms%2C+2nd+Edition-p-9781118315231 (accessed on 29
November 2021).

30. Schapire, R.E. The strength of weak learnability. Mach. Learn. 1990, 5, 197–227. [CrossRef]
31. Breiman, L. Bagging predictors. Mach. Learn. 1996, 24, 123–140. [CrossRef]
32. Kang, M.; Ahn, J.; Lee, K. Opinion mining using ensemble text hidden Markov models for text classification. Expert Syst. Appl.

2018, 94, 218–227. [CrossRef]
33. Deng, L.; Platt, J. Ensemble deep learning for speech recognition. Available online: https://www.microsoft.com/en-us/research/

wp-content/uploads/2016/02/EnsembleDL_submitted.pdf (accessed on 29 November 2021).
34. Zvarevashe, K.; Olugbara, O. Ensemble learning of hybrid acoustic features for speech emotion recognition. Algorithms 2020,

13, 70. [CrossRef]
35. Araque, O.; Corcuera-Platas, I.; Sánchez-Rada, J.F.; Iglesias, C.A. Enhancing deep learning sentiment analysis with ensemble

techniques in social applications. Expert Syst. Appl. 2017, 77, 236–246. [CrossRef]

http://dx.doi.org/10.1109/.2005.1467103
http://dx.doi.org/10.1145/1089761.1089765
http://dx.doi.org/10.1109/I2MTC.2012.6229557
http://dx.doi.org/10.1145/1814539.1814550
http://dx.doi.org/10.1016/j.future.2018.08.007
http://dx.doi.org/10.1515/crll.1908.134.198
http://dx.doi.org/10.1145/1961189.1961199
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.87.5037&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.87.5037&rep=rep1&type=pdf
http://dx.doi.org/10.1016/j.inffus.2018.09.013
http://dx.doi.org/10.1007/BF00994018
http://dx.doi.org/10.1016/j.disopt.2015.03.002
http://dx.doi.org/10.1214/088342306000000493
http://dx.doi.org/10.1016/j.eswa.2013.08.044
http://dx.doi.org/10.1007/s10479-013-1449-6
http://dx.doi.org/10.1038/s41598-017-17864-3
http://dx.doi.org/10.1109/JSEN.2017.2771226
https://www.cs.cornell.edu/people/tj/publications/joachims_99a.pdf
https://www.cs.cornell.edu/people/tj/publications/joachims_99a.pdf
https://www.wiley.com/en-in/Combining+Pattern+Classifiers%3A+Methods+and+Algorithms%2C+2nd+Edition-p-9781118315231
https://www.wiley.com/en-in/Combining+Pattern+Classifiers%3A+Methods+and+Algorithms%2C+2nd+Edition-p-9781118315231
http://dx.doi.org/10.1007/BF00116037
http://dx.doi.org/10.1007/BF00058655
http://dx.doi.org/10.1016/j.eswa.2017.07.019
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/EnsembleDL_submitted.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/EnsembleDL_submitted.pdf
http://dx.doi.org/10.3390/a13030070
http://dx.doi.org/10.1016/j.eswa.2017.02.002

Entropy 2021, 23, 1605 16 of 17

36. Liu, B.; Li, C.C.; Yan, K. DeepSVM-fold: Protein fold recognition by combining Support Vector Machines and pairwise sequence
similarity scores generated by deep learning networks. Briefings Bioinform. 2020, 21, 1733–1741. [CrossRef] [PubMed]

37. Tyralis, H.; Papacharalampous, G.; Langousis, A. Super ensemble learning for daily streamflow forecasting: Large-scale
demonstration and comparison with multiple machine learning algorithms. Neural Comput. Appl. 2021, 33, 3053–3068. [CrossRef]

38. de Almeida, R.; Goh, Y.M.; Monfared, R.; Steiner, M.T.A.; West, A. An ensemble based on neural networks with random weights
for online data stream regression. Soft Comput. 2020, 24, 9835–9855. [CrossRef]

39. El Hindi, K.; AlSalman, H.; Qasem, S.; Al Ahmadi, S. Building an ensemble of fine-tuned naive Bayesian classifiers for text
classification. Entropy 2018, 20, 857. [CrossRef]

40. Maudes, J.; Rodríguez, J.J.; García-Osorio, C.; García-Pedrajas, N. Random feature weights for decision tree ensemble construction.
Inf. Fusion 2012, 13, 20–30. [CrossRef]

41. Gu, J.; Wang, L.; Wang, H.; Wang, S. A novel approach to intrusion detection using SVM ensemble with feature augmentation.
Comput. Secur. 2019, 86, 53–62. [CrossRef]

42. Huang, M.W.; Chen, C.W.; Lin, W.C.; Ke, S.W.; Tsai, C.F. SVM and SVM ensembles in breast cancer prediction. PLoS ONE 2017,
12, e0161501. [CrossRef]

43. Boots, B.; Okabe, A.; Sugihara, K. Spatial tessellations. Geogr. Inf. Syst. 1999, 1, 503–526.
44. Du, Q.; Faber, V.; Gunzburger, M. Centroidal Voronoi tessellations: Applications and algorithms. SIAM Rev. 1999, 41, 637–676.

[CrossRef]
45. Wang, P.; González, M.C.; Menezes, R.; Barabási, A.L. Understanding the spread of malicious mobile-phone programs and their

damage potential. Int. J. Inf. Secur. 2013, 12, 383–392. [CrossRef]
46. Hartigan, J.A. Clustering Algorithms; John Wiley & Sons, Inc.: Chichester, UK, 1975.
47. Jain, A.K.; Dubes, R.C. Algorithms for Clustering Data; Prentice Hall; Pearson Education, Inc.: Upper Saddle River, NJ, USA, 1988.
48. Preparata, F.P.; Shamos, M.I. Computational Geometry: An Introduction; Springer Science & Business Media: Dordrecht,

The Netherlands, 2012.
49. Albers, G.; Guibas, L.J.; Mitchell, J.S.; Roos, T. Voronoi diagrams of moving points. Int. J. Comput. Geom. Appl. 1998, 8, 365–379.

[CrossRef]
50. Berchtold, S.; Ertl, B.; Keim, D.A.; Kriegel, H.P.; Seidl, T. Fast nearest neighbor search in high-dimensional space. In Proceedings

14th International Conference on Data Engineering, Orlando, FL, USA, 23–27 February 1998; pp. 209–218.
51. Zheng, A.; Bian, S.; Chaudhry, E.; Chang, J.; Haron, H.; You, L.; Zhang, J.J. Voronoi diagram and Monte-Carlo simulation based

finite element optimization for cost-effective 3D printing. J. Comput. Sci. 2021, 50, 101301. [CrossRef]
52. Haker, S.; Angenent, S.; Tannenbaum, A.; Kikinis, R.; Sapiro, G.; Halle, M. Conformal surface parameterization for texture

mapping. IEEE Trans. Vis. Comput. Graph. 2000, 6, 181–189. [CrossRef]
53. Lopes, A.; Fonseca, S.; Lese, R.; Baca, A. Using voronoi diagrams to describe tactical behaviour in invasive team sports: An

application in basketball. Cuad. Psicol. Deporte 2015, 15, 123–130. [CrossRef]
54. Ayawli, B.B.K.; Mei, X.; Shen, M.; Appiah, A.Y.; Kyeremeh, F. Mobile robot path planning in dynamic environment using Voronoi

diagram and computation geometry technique. IEEE Access 2019, 7, 86026–86040. [CrossRef]
55. Young, W.A.; Nykl, S.L.; Weckman, G.R.; Chelberg, D.M. Using Voronoi diagrams to improve classification performances when

modeling imbalanced datasets. Neural Comput. Appl. 2015, 26, 1041–1054. [CrossRef]
56. Silva, E.J.; Zanchettin, C. A voronoi diagram based classifier for multiclass imbalanced data sets. In Proceedings of the 2016 5th

Brazilian Conference on Intelligent Systems (BRACIS), Recife, Brazil, 9–12 October 2016; pp. 109–114.
57. de Carvalho, A.M.; Prati, R.C. DTO-SMOTE: Delaunay Tessellation Oversampling for Imbalanced Data Sets. Information 2020,

11, 557. [CrossRef]
58. Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic minority over-sampling technique. J. Artif. Intell.

Res. 2002, 16, 321–357. [CrossRef]
59. Lloyd, S. Least squares quantization in PCM. IEEE Trans. Inf. Theory 1982, 28, 129–137. [CrossRef]
60. Milligan, G.W.; Cooper, M.C. An examination of procedures for determining the number of clusters in a data set. Psychometrika

1985, 50, 159–179. [CrossRef]
61. Tibshirani, R.; Walther, G.; Hastie, T. Estimating the number of clusters in a data set via the gap statistic. J. R. Stat. Soc. Ser. B (Stat.

Methodol.) 2001, 63, 411–423. [CrossRef]
62. Sugar, C.A.; James, G.M. Finding the number of clusters in a dataset: An information-theoretic approach. J. Am. Stat. Assoc. 2003,

98, 750–763. [CrossRef]
63. Masud, M.A.; Huang, J.Z.; Wei, C.; Wang, J.; Khan, I.; Zhong, M. I-nice: A new approach for identifying the number of clusters

and initial cluster centres. Inf. Sci. 2018, 466, 129–151. doi: 10.1016/j.ins.2018.07.034. [CrossRef]
64. Sturges, H.A. The choice of a class interval. J. Am. Stat. Assoc. 1926, 21, 65–66. [CrossRef]
65. Cover, T.; Hart, P. Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 1967, 13, 21–27. [CrossRef]
66. Krebel, U.G. Pairwise classification and Support Vector Machines. Available online: https://dl.acm.org/doi/10.5555/299094.299

108 (accessed on 29 November 2021).
67. Bordes, A.; Ertekin, S.; Weston, J.; Botton, L.; Cristianini, N. Fast kernel classifiers with online and active learning. J. Mach. Learn.

Res. 2005, 6, 1579–1619.

http://dx.doi.org/10.1093/bib/bbz098
http://www.ncbi.nlm.nih.gov/pubmed/31665221
http://dx.doi.org/10.1007/s00521-020-05172-3
http://dx.doi.org/10.1007/s00500-019-04499-x
http://dx.doi.org/10.3390/e20110857
http://dx.doi.org/10.1016/j.inffus.2010.11.004
http://dx.doi.org/10.1016/j.cose.2019.05.022
http://dx.doi.org/10.1371/journal.pone.0161501
http://dx.doi.org/10.1137/S0036144599352836
http://dx.doi.org/10.1007/s10207-013-0203-z
http://dx.doi.org/10.1142/S0218195998000187
http://dx.doi.org/10.1016/j.jocs.2021.101301
http://dx.doi.org/10.1109/2945.856998
http://dx.doi.org/10.4321/S1578-84232015000100012
http://dx.doi.org/10.1109/ACCESS.2019.2925623
http://dx.doi.org/10.1007/s00521-014-1780-0
http://dx.doi.org/10.3390/info11120557
http://dx.doi.org/10.1613/jair.953
http://dx.doi.org/10.1109/TIT.1982.1056489
http://dx.doi.org/10.1007/BF02294245
http://dx.doi.org/10.1111/1467-9868.00293
http://dx.doi.org/10.1198/016214503000000666
doi: doi: 10.1016/j.ins.2018.07.034
http://dx.doi.org/10.1016/j.ins.2018.07.034
http://dx.doi.org/10.1080/01621459.1926.10502161
http://dx.doi.org/10.1109/TIT.1967.1053964
https://dl.acm.org/doi/10.5555/299094.299108
https://dl.acm.org/doi/10.5555/299094.299108

Entropy 2021, 23, 1605 17 of 17

68. Aloise, D.; Deshpande, A.; Hansen, P.; Popat, P. NP-hardness of Euclidean sum-of-squares clustering. Mach. Learn. 2009,
75, 245–248. [CrossRef]

69. R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria,
2021.

70. Kim, H.C.; Pang, S.; Je, H.M.; Kim, D.; Bang, S.Y. Constructing support vector machine ensemble. Pattern Recognit. 2003,
36, 2757–2767. [CrossRef]

http://dx.doi.org/10.1007/s10994-009-5103-0
http://dx.doi.org/10.1016/S0031-3203(03)00175-4

	Introduction
	Related Works
	Support Vector Machines
	Ensemble Learning
	Voronoi Diagrams

	pSVM Algorithm
	Data Partitioning
	Training
	Classification
	Computational Complexity

	Experimental Results
	One Region with Two Partially Overlapping Classes
	Eight Multi-Dimensional Regions with Two Partially Overlapping Classes
	A Numerical Estimation of Training Time

	Conclusions
	References

