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Abstract
Opioid-induced respiratory depression (OIRD) is a potentially life-threatening com-
plication of opioid consumption. Apart from naloxone, an opioid antagonist that has 
various disadvantages, a possible reversal strategy is treatment of OIRD with the hy-
pothalamic hormone and neuromodulator thyrotropin-releasing hormone (TRH). In 
this review, we performed a search in electronic databases and retrieved 52 papers 
on the effect of TRH and TRH-analogs on respiration and their efficacy in the reversal 
of OIRD in awake and anesthetized mammals, including humans. Animal studies show 
that TRH and its analog taltirelin stimulate breathing via an effect at the preBötzinger 
complex, an important respiratory rhythm generator within the brainstem respiratory 
network. An additional respiratory excitatory effect may be related to TRH’s analeptic 
effect. In awake and anesthetized rodents, TRH and taltirelin improved morphine- 
and sufentanil-induced respiratory depression, by causing rapid shallow breathing. 
This pattern of breathing increases the work of breathing, dead space ventilation, 
atelectasis, and hypoxia. In awake and anesthetized humans, a continuous infusion of 
intravenous TRH with doses up to 8 mg, did not reverse sufentanil- or remifentanil-
induced respiratory depression. This is related to poor penetration of TRH into the 
brain compartment but also other causes are discussed. No human data on taltirelin 
are available. In conclusion, data from animals and human indicate that TRH is not a 
viable reversal agent of OIRD in awake or anesthetized humans. Further human stud-
ies on the efficacy and safety of TRH’s more potent and longer lasting analog taltirelin 
are needed as this agent seems to be a more promising reversal drug.
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1  |  INTRODUC TION

Opioid-induced respiratory depression (OIRD) is a serious compli-
cation of opioid therapy and opioid abuse.1,2 The cause of OIRD is 
exogenous opioid-induced activation of μ-opioid receptors. These 
receptors are expressed on respiratory neurons in brainstem respi-
ratory networks and, when activated, cause slowing and eventually 
the silencing of these respiratory neurons and consequently the 
cessation of breathing (apnea).3,4 Recent studies indicate that par-
ticularly the pre-Bötzinger complex, which is involved in respiratory 
rhythm generation, and the parabrachial/Kölliker-Fuse complex, 
which provides excitatory input to the preBötzinger complex, are 
crucial areas in the brainstem for development of OIRD.2-5

When serious OIRD occurs, various strategies are available to 
prevent unintentional death, such as endotracheal intubation fol-
lowed by artificial ventilation, as occurs prior to surgery or in high 
care units, or when spontaneous breathing is required, administra-
tion of an opioid receptor antagonist such as naloxone. Endotracheal 
intubation and artificial ventilation demand not only well-trained 
individuals but also specific well-equipped locations that enable 
artificial ventilation and patient monitoring. In most other settings 
and circumstances, naloxone is the first choice in case of a life-
threatening OIRD.1,2,6 Naloxone is a non-competitive opioid antag-
onist that rapidly crosses the blood-brain-barrier. While in many 
cases the timely and adequately dosed administration of naloxone 
will restore breathing, there are situations where administration of 
this antagonist is undesired or inadequate. These include2: an over-
dose with high-dose potent opioids (such as fentanyl) or with opioids 
with a high affinity for the opioid receptors (such as buprenorphine, 
carfentanil, or sufentanil). In these cases, naloxone is ineffective 
or short-acting6; the (ab)use of an opioid in combination with non-
opioid centrally-acting respiratory depressants such as alcohol, 
benzodiazepines, or antidepressants. Such combinations have been 
proven to be potentially lethal due to additive or synergistic respira-
tory depression, which cannot be antagonized by naloxone7; in case 
of an opioid-use disorder when naloxone will cause immediate with-
drawal symptoms, agitation, and possibly even aggressive behavior 
toward medical personnel8; when naloxone will cause loss of analge-
sia, which may cause sympathoexcitation, stress and consequently 
various complications including pulmonary edema, cardiac arrhyth-
mias, or epileptic seizures8; and finally in case of mass poisoning with 
opioids released in the atmosphere, where supplies of naloxone may 
be insufficient or ineffective.9 Finally, one needs to realize that nal-
oxone has another important drawback and that is its short duration 
of action due to rapid metabolism and clearance from the brain.2,8 
Consequently, development of respiratory stimulants without nalox-
one’s shortcomings is greatly advantageous and currently an unmet 
need in the treatment of an opioid overdose. We recently reviewed 

current advances in the development of opioid-reversal strategies.2 
A variety of respiratory stimulants have been tested to prevent or 
reverse OIRD but none are currently sufficiently scrutinized with re-
spect to efficacy and safety. One of the older reversal strategies is 
the treatment of OIRD with thyrotropin-releasing hormone (TRH). 
The first study on the stimulant effect of TRH on the efficacy of 
antagonism of morphine-induced respiratory depression appeared 
more than 45 years ago.10 In light of the importance of the topic, 
we here appraise the efficacy of TRH and its analogue taltirelin as 
reversal agents of OIRD.

In this short scoping review, we will first discuss the ability of 
TRH and analogues to stimulate breathing and next whether TRH 
is able to reverse OIRD in experimental animal and human mod-
els of OIRD. To get the full picture of the effects of TRH and its 
analog taltirelin on breathing, we performed a search in PubMed, 
Embase, Web of Science, and Cochrane Library on March 17, 2022. 
The search strategy was developed in collaboration with an informa-
tion specialist of the Walaeus Library of Leiden University Medical 
Centre (Jan Schoones) and is available upon request from the authors  
(a.dahan@lumc.nl). No publication date limits were applied; only pa-
pers written in English were considered. We do agree that this is a 
major restriction as we are missing out on a number of papers that 
appeared in the Russian literature. Still, we managed to review the 
translation into English of some of these papers, some of which are 
included in the current review. The search resulted in 297 unique 
papers of which 52 were included in this review. We will first discuss 
TRH itself and its roles in the mammalian system, followed by the 
ventilatory effects of TRH and its analog taltirelin, TRH’s analeptic 
effects and finally the ability of TRH and taltirelin to reverse OIRD.

2  |  THYROTROPIN-RELE A SING 
HORMONE: NEUROMODUL ATOR WITH 
STATE- DEPENDENT EFFEC TS

TRH is a tripeptide, L-pyro-Glu-His-Pro-NH2 (thyroliberin, in 
pharmaceutical form named protirelin), which is produced by the 
hypothalamus but also by other organs, such as the brain, heart, 
pancreas, and intestines.11,12 While TRH is typically considered 
a hormone that plays a central role in regulating the pituitary-
thyroid axis by stimulating thyrotropin cells in the anterior pitui-
tary to release thyroid-stimulating hormone (TSH), Gary et al.13 
and Kamath et al.14 proposed the TRH hypothesis of homeo-
static system regulation. Within this concept TRH plays various 
roles: (i) the well-known role for TRH within the hypothalamic-
hypohysiotropic neuroendocrine axis; (ii) activity of TRH within 
the brainstem, midbrain, and spinal cord; (iii) TRH activity  
within the limbic/cortical system and finally (iv) a role of TRH 
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within the chronobiological system. In fact, the homeostatic prin-
ciple is such that TRH enables return to a homeostatic baseline 
following a perturbation of the system. For example, in case of 
sedation TRH will have analeptic properties, while in case of a con-
vulsion TRH acts as an anticonvulsant.13,14 Important for breath-
ing and OIRD is that TRH and its receptors are present in various 
brain areas involved in ventilatory control, including the medulla 
oblongata and striatum (role #ii), supporting a potential role for 
TRH as an excitatory neuromodulator or neurotransmitter within 
the respiratory network.11,15 TRH mediates its effects by binding 
to the G-protein-coupled TRH receptor (TRHR). Humans have one 
TRH receptor, TRHR1, while rodents additionally possess a second 
receptor, TRHR2.16,17

Although the different targets of TRH support its use in a va-
riety of diseases, such as central nervous system diseases, includ-
ing brain/spinal injury, schizophrenia, Alzheimer’s disease, epilepsy, 
spinocerebellar ataxia, amyotrophic lateral sclerosis, Parkinson’s 
disease, and depression, its use is still restricted because of various 
limitations.18-21 As discussed earlier by Komath et al.19 these restric-
tions are related to poor reproducibility of efficacy in clinical trials, 
short duration of action (half-life 10 min; >90% is cleared from circu-
lation within the first 20 min after intravenous administration),22 low 
intestinal and central permeability, rapid degradation, and various 
(cardiac and endocrinological) side effects. Still, continuous TRH in-
fusions or administration of long-acting TRH analogs may circum-
vent these restrictions and may be useful in the reversal of OIRD, 
either by a direct effect within the respiratory network or via indi-
rect analeptic effects.

3  |  EFFEC T OF THYROTROPIN-
RELE A SING HORMONE ON BRE ATHING

3.1  |  Animal studies

Hedner et al.23 studied the effect of TRH and TRH analogues 
administered intracerebroventricularly (icv) in spontaneously 
breathing halothane-anesthetized rats. TRH and TRH analogs pro-
duced respiratory stimulation causing hypocapnia and alkalosis, 
an effect that was potentiated by pretreatment with naloxone; di-
rect injection of TRH into the nucleus tractus solitarius increased 
respiratory frequency. These TRH effects were unrelated to an 
interaction with opioid receptors.23 Further studies in rats, cats, 
and fetal sheep all showed the respiratory stimulation following 
peripheral or central administration of TRH in α-chloralose, ure-
thane, or volatile anesthesia,24-30 and awake condition.31 Apart 
from areas within the brainstem respiratory network, TRH and its 
receptors were identified in the phrenic motor nucleus and hypo-
glossal motoneurons.22,32 Later studies demonstrate that TRH ex-
erts its effects through actions within the preBötzinger complex 
at TRH-receptors,15,33-37 although similar excitatory effects were 
observed from TRH injections at other nuclei involved in ventila-
tory control such as the dorsal respiratory group, area postrema, 

nucleus ambiguous, nucleus tractus solitarius, and retrotrapezoid 
nucleus,38-43 Still, also respiratory depression was observed after 
injection of TRH into the Bötzinger complex of the anesthetized 
rabbit.43 Finally, TRH analogue taltirelin restored the central ven-
tilatory chemoreflex in rats with an inherent ventilatory insensitiv-
ity to hypercapnia.44

In summary, these data indicate that in, mostly anesthetized, an-
imals, TRH when administered at central sites, is a respiratory stimu-
lant, it enhances rhythmogenic respiratory activity.

3.2  |  Human studies

The number of studies that specifically examined the effect of 
TRH on respiration in humans (as primary endpoint) is limited. Nink 
et al.45 tested the effect of 0.2 and 0.4 mg intravenous TRH on rest-
ing and CO2-stimulated ventilation in 45 healthy volunteers of either 
gender. They observed a rapid, short-lived (3–4 min) increase in ven-
tilation from 8 to 10.5 L/min, primarily elicited through an increase 
of tidal volume, after 0.4 mg but not after 0.2 mg TRH. Concomitant 
with the increase in ventilation, heart rate rose by 15 beats per min. 
The authors concluded that TRH elicits a dose-dependent effect on 
ventilation and adverse events (dizziness, restlessness/agitation). 
Shortcomings of the study include lack of blinding, lack of randomi-
zation, lack of power calculation, and use of medical staff as study 
subjects. This may be the reason for the observation of modest but 
significant respiratory and hemodynamic effects after these rela-
tively low TRH doses.

In a rather small study, Schulz et al.46 tested the effect of 
0.4 mg TRH versus placebo on the rebreathing response to CO2 
in six healthy subjects in a single blinded fashion. They observed 
a small reduction of the apneic threshold by 1.7 mmHg, without 
any effect on the slope of the hypercapnic ventilatory response 
in just three of the six subjects. Since this study is underpowered 
it remains difficult to draw any meaningful conclusions from this 
study.

Finally, Peek et al.47 studied the effect of TRH on fetal breathing-
movements in 75 pregnant women between week 26 and 34 of 
pregnancy in whom pharmacologically fetal lung maturation was 
indicated. After a 0.4 mg bolus TRH infusion, breathing movements 
increased by 35 breaths per hour from a baseline of 60 breaths/h. 
These data indicate the ability of TRH to interact with ventilatory 
control is active in the third trimester of pregnancy. Still, it was an-
ticipated that just 2% of injected TRH would reach the fetus and 
also some subjectivity of operator-dependent scoring may have 
occurred.

In summary, the rather limited number of human studies using 
relatively low TRH doses all point toward rather small and short-lived 
respiratory effects. Various methodological issues are apparent that 
confounded the results of these studies. The best conclusions that 
we can draw from these studies is that at single low intravenous 
doses, insufficient TRH reaches the TRH receptors within the brain-
stem to cause a significant and long-lasting respiratory effect.
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4  |  ANALEPTIC EFFEC TS BY 
THYROTROPIN-RELE A SING HORMONE 
DURING ANESTHESIA

As already indicated and previously discussed, TRH acts as a state-
dependent modulator of the central nervous system arousal state.13,14 
This is exemplified by the observation that TRH given to the hibernat-
ing ground squirrel results in behavioral arousal, while in the eurther-
mic awake squirrel, TRH produces inhibitory effects.13,48 Increase in 
the level of arousal is important in OIRD as it may counteract part of 
the respiratory depression.49 A series of experiments, performed in 
the 1970s and 1980s, explored the analeptic effects of TRH and its 
ability to cause arousal and reduce anesthesia time. Focus was on 
barbiturate and ethanol anesthesia but there are also studies on re-
versal of chloralose hydrate or diazepam anesthesia,10,50-53 ketamine 
or inhalational anesthesia.24,54,55 Experiments were performed in a 
series of species, including mice, rats, cats, dogs, rabbits, and non-
human primates.10,51,56-58 Findings from the different studies agreed, 
showing that during anesthesia, systemic and centrally administered 
TRH enhances locomotor activity, increases muscle tone, body tem-
perature, and respiratory rate and reduces sleep time.50-58 Serbenyuk 
et al.58 showed that hyperventilation-induced apnea is reversed or 
prevented by intravenous TRH in the pentobarbital anesthetized cat, 
suggestive of a role of TRH in the “wakefulness drive” to breathe.59 
In one study, blood gas values showed the development of lactic aci-
dosis in control (awake) and rats anesthetized with volatile anesthet-
ics following TRH administration, although pH remained unaffected, 
possibly related to respiratory compensation.54 Interestingly, in 
pentobarbital-anesthetized, spontaneously-breathing and intubated 
dogs, 1 mg TRH caused tachypnoea combined with a reduction in 
tidal volume.56 This may cause an increase in dead-space ventilation 
with worsening of the ventilation/perfusion (V/Q) mismatch and con-
sequently acidosis and hypoxia. A crucial role for endogenous TRH in 
arousal mechanisms during anesthesia was demonstrated by Lighton 
et al.,60 who showed that passive immunization against TRH, by icv 
administration of anti-TRH serum, prolongs barbiturate anesthesia.

The analeptic effects described above are best explained by 
an effect of TRH on the reticular activating system with possibly a 
crucial role for the cholinergic system.10,61 These data suggest that 
apart from a direct respiratory stimulatory effect within the brain-
stem respiratory network, TRH may excite respiration through an 
analeptic effect, causing arousal and associated tachypnea.

5  |  ABILIT Y OF TRH TO RE VERSE 
OPIOID - INDUCED RESPIR ATORY 
DEPRESSION

5.1  |  Animal studies

The first study on the ability of TRH to reverse OIRD, tested the ef-
fect of 0.05 and 0.1 mg TRH given to rabbits via the icv route follow-
ing administration of 4 mg/kg intravenous morphine.10 TRH had no 

effect on morphine-induced sedation and caused no evident behav-
ioral arousal but did increase respiratory rate and body temperature. 
In fact, after TRH the animals developed hyperthermia, which may 
have further enhanced respiratory rate.

Kharkevich et al.62 measured the effect of systemic and icv ad-
ministered TRH and analogue RGH 2202 on the diaphragm elec-
trical activity in urethane-anesthetized, vagotomized, artificially 
ventilated rats. The depression of diaphragmatic activity by 10 mg/kg  
intravenous morphine was fully restored by intravenous TRH  
(5 mg/kg). Similar results were observed after local application of 
the dorsal pontomedullary surface with morphine (20 mM) and TRH 
and RHG 2202 (both 3 mM) for 7 min. Interestingly, the TRH excit-
atory effects were attenuated by prior administration of N-methyl-
D-aspartate (NMDA) antagonists, ketamine and MK801, suggestive 
of a mechanistic role for NMDA receptor activation in the TRH-
reversal of OIRD.

Takita et al.63 studied the effect of TRH on morphine-induced 
respiratory depression in an artificial cerebrospinal fluid (aCSF) su-
perfused ex vivo preparation of the brainstem-spinal cord from 1 
to 4-day-old rats with respiratory activity measured using suction 
electrodes at the C4 and C5 ventral roots. Morphine (10 μM) applied 
via the aCSF caused a reduction in respiratory frequency to 65% 
of control. Adding TRH (100  nM) caused the partial return of re-
spiratory frequency to 88% of control. Additionally, TRH increased 
tonic motor activity at C4. The authors concluded that TRH partly 
reversed the respiratory depression induced by morphine in the me-
dulla oblongata through activation of TRH receptors expressed on 
respiratory neurons.

In two articles, Cotten and colleagues report on the ability 
of TRH and its analogue taltirelin to reverse OIRD in the rat.31,64 
Taltirelin is a TRH analog that compared to TRH demonstrates an 
improved therapeutic selectivity, is 10–100 times more potent, is 
more rapid in crossing the blood-brain barrier and has an 8-times 
longer duration of action. It is registered in Japan for treatment of 
spinal cerebral degeneration.19,31 Earlier studies showed that talti-
relin increases respiratory rate in the rat when administered cen-
trally.65 TRH and taltirelin, given intravenously (1 mg/kg followed by  
5 mg/kg per h) or intratracheally (5 mg/kg dissolved in 100 µl saline), 
reversed respiratory depression from 5 mg/kg intravenous morphine 
in the isoflurane-anesthetized rat.31 The TRH and taltirelin effects 
were primarily due to increased breathing rates. In contrast with 
TRH, which was unable to fully restore pH, PCO2 and PO2, taltirelin 
restored blood gas values but caused lactic acidosis. Next, Cotton’s 
group studied the effect of intravenous taltirelin on OIRD in awake 
rats.64 Two opioids were studied, the natural opioid morphine and 
the highly potent synthetic opioid sufentanil. In agreement with 
their earlier study,31 taltirelin (1 mg/kg given intravenously) reversed 
OIRD from both opioids by increased breathing rates but failed to 
fully correct hypoxia and lactic acidosis. The return of minute ven-
tilation toward baseline levels was slow and takes about 45 min fol-
lowing taltirelin administration. Respiratory stimulation is due to an 
effect of taltirelin on breathing frequency (increase up to 150% of 
baseline).

https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId%3D4268
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Cotton’s group further studied the effect of 1 mg/kg intrave-
nous taltirelin, 1 ml/kg intramuscular saline and 30 μg/kg intrave-
nous dexmedetomidine on gastrocnemius EMG activity in awake, 
restrained rats following 10 μg/kg intravenous sufentanil adminis-
tration.66 Sufentanil increased EMG activity that was subsequently 
reduced by the α2-adrenergic receptor agonist dexmedetomidine 
but not by taltirelin. In fact, taltirelin seems to increase EMG activ-
ity. Enhanced EMG activity from opioids is a known observation in 
animals and humans (i.e., the rigid cage syndrome), and may be re-
versed by naloxone. Muscle rigidity from opioids may be a cause of 
further impairment of ventilation next to the effect of the opioid 
at the brainstem. Non-opioid interventions that are able to reduce 
muscle tone will enhance tidal volume and consequently improve 
ventilation and gas exchange. Apart from dexmedetomidine, volatile 
anesthetics and the α1-adrenergic receptor agonist prazosine reduce 
opioid-enhanced muscle tone and consequently improve the ability 
of taltirelin (and other non-opioid reversal agents) to reverse OIRD.64

In summary, the animal data show that TRH and taltirelin have an 
excitatory effect on the ventilatory control system when ventilation 
is depressed by an opioid. Still, the observed respiratory phenotype 
of rapid shallow breathing seems disadvantageous and associated 
with persistent hypoxia and lactic acidosis, possibly from an increase 
in muscle rigidity, increase in work of breathing and atelectasis with 
a further mismatch of the V/Q ratio.

5.2  |  Human studies

Lenz and colleagues studied the effect of 0.4 mg TRH on respiration 
in 15 neurosurgical patients under neurolept-anesthesia with fenta-
nyl and flunitrazepam.67 TRH had no effect on arousal or respiratory 
parameters (arterial PO2 and PCO2). These results are disappointing 
and contradict the results of animal studies. Still, it may be argued 
that the TRH dose was too low with insufficient TRH crossing the 
blood -brain-barrier.

To investigate the effect of higher doses, we performed an ex-
ploratory study in six healthy male and female volunteers,66 the vol-
unteers received a continuous infusion of remifentanil (target plasma 
concentration 1.2 ng/mL) such that isohypercapnic ventilation was 
reduced by 45%–50%. When ventilation had reached a steady state, 
dose escalating intravenous TRH infusions were given. The first sub-
ject started was given 0.8 mg over 60 min (an initial bolus dose of 
0.2 mg followed by an infusion of 0.2 mg over 30 min, which was 
repeated once). Since no respiratory effect was observed the dose 
was increased to a total dose of 1.6 mg (bolus 0.4 mg and infusion of 
0.4 mg over 30 min, repeated once), 3.2 mg (0.8 mg/0.8 mg, repeated 
once), 4.8 mg (1.2 mg/1.2 mg, repeated once), 8 mg (2 mg/2 mg, re-
peated once), and 4 mg (2 mg/2 mg, not repeated, because of futil-
ity). None of the subjects showed any sign of consistent reversal of 
OIRD from remifentanil (Figure 1), which is in strong contrast with, 
for example, ketamine that showed a dose-dependent return toward 
baseline ventilation in the same human model of OIRD.68 One can 
argue that the dose (max. dose 8 mg) was too low to cause an effect. 

Still, it was a factor of 20 higher than the dose used in the study 
by Nink et al.45 who did show a significant, albeit modest, effects 
from just 0.4 mg intravenous TRH. Furthermore, the dose of 8 mg 
TRH did reach central sites as all of the participating subjects experi-
enced adverse effects (headache, nausea, warm/cold feelings, rest-
lessness/agitation). We refrained from higher TRH doses to prevent 
worsening of side effects or the development of endocrinological 
effects. Additionally, pricing of the TRH was such (US$ 1000.- for an 
8 mg intravenous solution) that we deemed higher doses an overly 
expensive and thus uneconomic therapy of OIRD.

6  |  DISCUSSION

The picture that emerges from this critical appraisal is that in ani-
mals, TRH interacts with the ventilatory control system by acting 
at the preBötzinger complex, the primary rhythm-generator of the 
brainstem, via activation of local TRH receptors. The efficacy of 
TRH or its analog taltirelin to overcome OIRD in rodents was lim-
ited with rapid shallow breathing associated with lactic acidosis, 
irrespective of the presence of anesthesia or not. In humans, just 
low doses of TRH were tested (<0.4 mg), showing small excitatory 
effects on ventilation, while continuous infusions of doses up to 
8 mg seemed ineffective in reversing OIRD in awake and anes-
thetized states. In this respect animal and human data agree, and 
consequently, the animal and human data currently preclude the 
use of TRH (bolus or continuous infusions) as respiratory stimu-
lant to reverse or prevent OIRD from potent opioids such as the 
synthetic opioids fentanyl, carfentanil, sufentanil, or remifentanil, 
both within the clinical setting or outside the clinical setting when 
illicit opioids (fentanyl or other opioids are often laced with fen-
tanyl) are abused or overdosed. As earlier discussed,19 TRH has 
various shortcomings that make its use in humans as single bolus 
dose ineffective, such as its short duration of action, difficulty in 
passing the blood-brain-barrier, and endocrinological side effects. 
Engel et al.69 studied the effect of TRH on motor function in pa-
tients with amyotrophic lateral sclerosis and observed tachypnoea 
(mentioned as an adverse effect of treatment) after administration 
of 500 mg TRH in some of their patients. This indicates that much 
higher doses of TRH may be needed, which is currently overly un-
economic. Given these limitations, we can be confident in stating 
that there is definitely no place for TRH as respiratory stimulant 
counteracting the respiratory effects of opioids or other respira-
tory depressants. Subsequently we have to give a negative answer 
the question “Is TRH a viable reversal agent of OIRD.” With re-
spect to the TRH analog taltirelin, the animal data were not overly 
positive and further human studies are necessary. While taltirelin 
is more rapid in crossing the blood-brain barrier and is acting at 
about a 100-fold lower dose than TRH,16 return of minute venti-
lation was slow and coincided with development of lactic acido-
sis. Human studies are possible since taltirelin has been approved 
for human use in the treatment of neurodegenerative diseases in 
Japan, but is not registered in the EU or US, presently.

https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId%3D22
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https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId%3D22
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Another analog of interest is rovatirelin.70 Rovatirelin is a rel-
atively new analog of TRH and has been tested in clinical stud-
ies for treatment of spinocerebellar ataxia.71 It has an unnatural 
3-(thiazol-4-yl)-L-alanine amino acid moiety in the middle part, 
instead of L-histidine.72 Compared to taltirelin, oral rovatirelin 
shows greater absorption and brain penetration in rats due to its 
high lipophilicity, and shows stable brain concentrations lasting for 
hours.70 These data indicate that brain uptake is best for rovatirelin 
compared to its parent and to taltirelin (brain uptake TRH <taltirelin 
<rovatirelin). The rapid uptake and prolonged central presence of 
rovatirelin may be of advantage when considering this drug as alter-
native to naloxone for reversal of OIRD. However, pharmacokinetic 

and pharmacodynamic studies in humans are needed to get definite 
answers to our question whether taltirelin or any other TRH analog 
is able to effectively reverse OIRD.

NOMENCL ATURE OF TARGETS AND 
LIGANDS

Key protein targets and ligands in this article are hyperlinked 
to corresponding entries in http://www.guide​topha​rmaco​logy.
org, the common portal for data from the IUPHAR/BPS Guide to 
PHARMACOLOGY (Harding et al., 2018),73 and are permanently 

F I G U R E  1 Influence of TRH or placebo (normal saline) on remifentanil-induced respiratory depression at iso-hypercapnia in human 
volunteers. Initially, the end-tidal PCO2 was elevated so that minute ventilation increased to 20 ± 5 L/min. After reaching steady-state 
ventilation, remifentanil was titrated to cause a depression of ventilation of 50%. Subsequently TRH (panels A-F) or placebo (panels G-I) 
were administered as a bolus dose followed by a continuous infusion over 30 min. In all but one subject (Panel F), this dosing sequence was 
repeated once. The data are obtained from seven healthy volunteers of either gender. Data from panels A and G and B and H are from the 
same subjects. Each symbol represents the minute ventilation averaged over 1-min. The red dotted line gives the average ventilation prior to 
TRH or placebo administration.

http://www.guidetopharmacology.org
http://www.guidetopharmacology.org
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archived in the Concise Guide to PHARMACOLOGY 2019/20 
(Alexander et al., 2019).74
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