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Objectives: Retinal nerve fiber layer (RNFL) thickness has been detected by numerous

studies about alterations and abnormalities in childhood glaucoma, but these studies

have yielded inconsistent results about the RNFL thinning region. The investigation of

characteristics of RNFL in pediatric patients would contribute to the deep understanding

of the neuropathic mechanisms of childhood glaucoma. Thus, the degree of thinning in

different quadrants deserves further discussion and exploration.

Method: A systematic literature search was conducted using the Cochrane Central

Register of Controlled Trials, Medline, Embase, and PubMed databases to identify clinical

studies published from inception to April 1, 2021.

Results: Ten studies were included in this review with a total of 311 children with

glaucoma and 444 in nonglaucomatous controls. The results revealed that average

peripapillary RNFL (pRNFL) thickness was attenuated in pediatric patients with glaucoma

[weighted mean difference (WMD) = −20.75; 95% CI −27.49 to −14.01; p < 0.00001].

Additionally, pRNFL thickness in eight quadrants (superior, inferior, temporal, nasal,

superotemporal, inferotemporal, superonasal, and inferonasal) had different levels of

reduction in the pediatric group of glaucoma.

Conclusion: This study indicates that eight regions of RNFL thickness show various

degrees of thinning in childhood glaucoma. However, caution is required in the

interpretation of results due to marked heterogeneity. Future studies, especially larger

samples and multicenter, need to confirm our results.

Keywords: childhood glaucoma, retinal nerve fiber layer (RNFL) thickness, glaucoma optic nerve damage,

spectral-domain optical coherence tomography (SD-OCT), meta-analysis

INTRODUCTION

Glaucoma is a multifactorial, progressive optic neuropathy with unclear pathogenesis
characterized by visual field deficits and cupping of the optic nerve (1–3). As a major
cause of irreversible blindness, more than 70 million people worldwide are affected and
approximately 10% of the patients with glaucoma are bilaterally blind (4, 5). Childhood
glaucoma is a varied group of disorders occurring in children and adolescents younger
than 16 years that requires careful attention to prevent vision loss throughout life. It is
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estimated that 5% of blindness in children worldwide is caused
by childhood glaucoma (6). Primary congenital glaucoma (PCG)
is the most common type of childhood glaucoma accounting for
32–47% (7, 8) and 70–80% of cases are bilateral (9, 10). Most of
the patients with childhood glaucoma present within 6 months of
birth with∼ 80% appearing before 1 year of age (11). Childhood
glaucoma and its management not only have a marked impact
on functional vision of children, but also reduced the quality of
life of the patients, relatives, and caregivers (12–14). Hence, early
diagnosis is crucial for children affected with glaucoma to receive
timely and appropriate treatment.

The clinical visual field is regarded as the essential part
of following-up and identifying neurological damage and
progressive change in glaucoma. However, visual field testing in
children is limited. Different from the adult patients, children
have shortened duration for maintaining attention and learning
curve, which requires correctly explaining the visual field findings
(15, 16). The measurement of intraocular pressure (IOP) is
another essential part of the diagnosis and follow-up of glaucoma.
However, this detection of young children often has large
fluctuation due to poor cooperation.

The pathological changes in glaucoma include cupping of the
optic disk, thinning of the retinal nerve fiber layer (RNFL), and
loss of the retinal ganglion cells (3, 17, 18). Recently, detection
of glaucomatous structural changes has relied on the assessment
of morphological changes within fundus photography or direct
ophthalmoscopes such as cup-to-disk ratio (CDR) and bilateral
asymmetry. A well-known phenomenon in pediatric glaucoma is
that cupping of the optic disk can be reversible after remarkable
IOP reduction, especially before 1 year of age (19–21). However,
cupping reversal in childhood glaucoma may not be a good
indicator to assess the improvement of optic nerve head health.
Continued RNFL thinning was observed in some cases with IOP
reduction and cupping reversal after treatment of glaucoma (22).
Preoperative RNFL thickness is a key prognostic indicator of
RNFL thinning progress even after surgery and visual prognosis.
A precise evaluation of the RNFL is crucial for diagnosing and
monitoring pediatric glaucoma.

With the appearance of spectral-domain optical coherence
tomography (SD-OCT), it is possible to monitor the automatic
segmentation of the individual retinal layers. It has been widely
used in the diagnosis and follow-up of glaucoma in recent years.
Being a simple, non-invasive, and safe imaging test, it has been
intensely applied to measure and observe the change in the
peripapillary retinal nerve fiber layer (pRNFL) (23). SD-OCT
has dramatically improved image resolution and reliably detects
glaucoma disease and progression in adults (24). Considering the
difficulty of testing children, the most recent SD-OCT is designed
to handheldOCT or overheadmountedOCT tomake infants and
young children benefit from this technology.

Recently, several studies using SD-OCT were performed to
compare pRNFL thickness in children with glaucoma and healthy
children and to convey conflicting results. Some researchers have
reported the thinning of average pRNFL thickness in all sectors
between pediatric glaucoma and controls (25–30). However,
other studies have found that children with glaucoma and
normal participants have comparable pRNFL thickness in some

regions such as the temporal, nasal, and inferior nasal quadrants
(31–34). Thus, the possible association of each sector between
pRNFL thickness and childhood glaucoma remains unclear,
which justifies the need for more studies on this issue. In this
meta-analysis, we aimed to carry out a comprehensive overview
of the characteristics of thinning RNFL in childhood glaucoma
offered by SD-OCT applications. Furthermore, by analyzing
the average eight quadrants of pRNFL thickness changes in
pediatric glaucoma compared with the normal participants, we
can investigate whether pRNFL thickness measurements are
affected in childhood glaucoma and whether they could provide a
diagnostic tool in assessing pediatric patients as in adults. Finally,
this study also summarized similarities and differences of RNFL
thickness between children and adults and the role of SD-OCT in
childhood glaucoma.

MATERIALS AND METHODS

This review was conducted and reported according to the
guidelines presented by the PRISMA statements and the Meta-
Analyses and Systematic Reviews of Observational Studies
statement (35, 36).

Literature Search
We searched Cochrane Central Register of Controlled Trials,
Medline, Embase, and PubMed from database inception to
April 1, 2021, with keywords: “childhood glaucoma,” “pediatric
glaucoma,” “juvenile glaucoma,” “retinal nerve fiber layer,”
“RNFL,” “spectral-domain optical coherence tomography,” and
“SD-OCT.” Manual searching of reference lists from all
relevant retrieved articles was conducted to identify additional
eligible studies. Eligible papers were screened by two authors
independently and the duplicated and irrelevant studies were
removed. After screening the abstracts, the remaining articles
were checked by full-text review.

Inclusion and Exclusion Criteria
We enrolled the studies if all the inclusion criteria and no
exclusion criteria were met as follows. The relative search and
selection were shown as a flowchart (Figure 1).

In our meta-analysis, the inclusion criteria were (1)
original articles reporting independent studies; (2) images
with satisfactory quality that measured RNFL thickness by
using SD-OCT; (3) satisfactory SD-OCT scan quality recorded
in the article; (4) clinical trial, prospective or retrospective
cross-sectional study, or case-control study; (5) comparison
of pediatric patients with glaucoma and healthy controls or
physiologic cupping controls; and (6) sample size ≥10 in each
group. Moreover, studies were excluded if they met the following
criteria: (1) the study groups were adult patients (aged 16 years
or older); (2) RNFL thickness was not measured by SD-OCT;
(3) reviews, letters, case reports, and studies with important data
unavailable; and (4) studies without the healthy control group.

Data Extraction
The following information contained in all the eligible
publications was retrieved independently by two authors:
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FIGURE 1 | Flowchart of study selection.

first author, country, year of publication, study type, SD-OCT
manufacturer, glaucoma type, mean age, gender, CDR, number
of participations, IOP, and average eight quadrants of pRNFL
thickness. Discrepancies in data extraction were solved by
discussion or by consulting the third author. Projecting a circle

of 3.5mm in diameter on the retina and divided into eight
sectors totaling 360◦. The pRNFL thickness parameters evaluated
in these studies were average thickness (360◦ measurement),
superior quadrant thickness (46◦-135◦ including 45◦ superonasal
sector and 45◦ superotemporal sector), inferior quadrant
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thickness (226–315◦ including 45◦ inferonasal sector and 45◦

inferotemporal sector), nasal quadrant thickness (136–225◦),
and temporal quadrant thickness (316–45◦).

Quality Assessment
The Newcastle–Ottawa Scale (NOS) was used to assess the
methodological quality of all the included studies. The NOS is
a star system to judge quality based on three elements of a
study: selection, comparability, and outcome or exposure. The
maximum NOS score is nine and the study with a NOS score
of ≥6 was considered to be of relatively high quality. Quality was
assessed independently by the two reviewers and disagreements
were resolved via discussion.

Statistical Analysis
We used Review Manager version 5.3 to perform the meta-
analyses. The data of RNFL thickness were entered as a
continuous variable. Means and standard deviations (SDs) were
used to calculate the weighted mean differences (WMDs) for
continuous outcomes. A p < 0.05 (p < 0.05) was regarded as the
criterion for statistical significance. Substantial heterogeneity was
defined as I2 values of more than 50%. We adopted a fixed effects
model for analysis if there was no heterogeneity across studies (p
> 0.1, I2 < 50%). Otherwise, a random effects model was used
(DerSimonian and Kacker). The potential publication bias was
evaluated by funnel plot and Egger’s statistics.

RESULTS

Selection of Studies
The literature screening strategy was summarized and presented
by a flowchart (Figure 1). In total, 207 pieces of literature were
initially identified via the original search and 30 pieces were
excluded due to duplication. In addition, 18 publications were
left for further evaluation after screening titles and abstracts. Out
of these reports, eight pieces could not provide useful or available
data for meta-analysis. Thus, we excluded these publications that
did not meet the inclusion criteria. Finally, a total of 10 studies,
consisting of 311 patients with glaucoma and 444 controls, were
included in the meta-analysis.

Characteristics and Quality Assessment of
the Studies
During the enrollment period, a total of 755 participants (311 in
the glaucoma group and 444 in the control group) were included
in our meta-analysis. Six studies were performed in the USA and
the other four studies were performed in the UK, Spain, India,
and Germany. The characteristics and qualities of these studies
are shown in Table 1.

Meta-Analysis of Childhood Glaucoma
Group Compared With a Healthy Control
Group
Analysis of average pRNFL thickness between the group of
children with glaucoma and children without glaucoma in eight
studies showed significant heterogeneity (I2 = 89%). Hence,
the random effects model was used for data analysis. The

meta-analysis showed that the average pRNFL thickness in the
pediatric glaucoma group was decreased significantly than the
non-glaucomatous group (WMD = −20.75; 95% CI −27.49–
−14.01; p < 0.00001, Figure 2).

In addition, we also examined the difference in pRNFL
thickness between patients with glaucoma and healthy controls
in each quadrant and there was significant difference in pRNFL
thickness between those two groups in the superior (WMD =

−30.80; 95% CI−47.00 to−14.59; p < 0.00001), inferior (WMD
=−31.81; 95% CI−46.04 to−17.58; p < 0.00001), nasal (WMD
= −11.61; 95% CI −17.21 to −6.02; p < 0.00001), temporal
(WMD = −10.07; 95% CI −14.84 to −5.30; p < 0.00001),
superotemporal (WMD=−34.71; 95%CI−47.52 to−21.90; p=
0.03), inferotemporal (WMD=−22.44; 95%CI−43.26 to−1.61;
p = 0.002), inferonasal (WMD = −26.45; 95% CI −38.59 to
−14.30; p = 0.03), and superonasal quadrant (WMD = −24.99;
95% CI−37.04 to−12.93; p= 0.04) between the glaucoma group
and healthy control (Figure 3).

Publication Bias
Due to the few eligible studies in our meta-analysis, funnel plots
were easily seen as asymmetrical and we could not claim or deny
bias for certain. Therefore, the funnel plot and Egger’s statistics
were not interpretable (data are not shown).

DISCUSSION

To the best of our knowledge, this review and meta-
analysis are the first systematic synthesizing currently available
observational studies to investigate the pRNFL thickness in
childhood glaucoma. In this comprehensive meta-analysis, we
investigated the specific regions of reduced pRNFL thickness
in childhood glaucoma. As expected, the average pRNFL
thickness was significantly thinner in the pediatric patients
with glaucoma than in the healthy controls. There were
also significant differences in pRNFL thickness between the
groups in the superior, inferior, nasal, temporal, superotemporal,
inferotemporal, superonasal, and inferonasal quadrants. We
additionally observed the tendency of pRNFL thinning among
the different regions in pediatric glaucoma of which the nasal and
temporal quadrants demonstrated a small reduction in pRNFL
thickness. The present meta-analysis showed that childhood
glaucoma is strongly associated with changes in pRNFL thickness
in the peripapillary region.

In our view, one of the important sources of high
heterogeneity may have been the different inclusion criteria and
adjusted factors across the studies. First, there were differences
in types of childhood glaucoma and only the two pieces of
literature mentioned the severity of glaucoma. Second, the
exclusion criteria of individual studies differed greatly. For
example, one study excluded patients with juvenile open-angle
glaucoma (JOAG) that was considered an inherently progressive
disease, while others included them or did not state whether
JOAG was included. Additionally, the age range of childhood
glaucoma was large, which may be a confounding variable in
heterogeneity analysis. Third, although the pooled results of our
study showed a significant decrease in superior, inferior, and
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TABLE 1 | Characteristics of included studies.

Reference Country Study

type

SD-OCT

brand

Glaucoma No. of participants Gender (Male) Age (Y), mean ± SD CDR, mean ± SD IOP (mm Hg) Quality

scaling

(NOS)

Case Control Case Control Case Control Case Control Case Control

Lever et al.

(34)

Germany 3 Heidelberg

spectralis

PCG,

JOAG,

other

types

19 53 NA NA 11.2 ± 3.5 12.2 ± 3.5 0.8 0.6 18.7 ±

7.2

14.5 ±

2.7

7

Michelle et al.

(31)

USA 1 Heidelberg

spectralis

G/SG 39 57 22 28 5.9 ± 5.9 2.3 ± 1.5 NA NA 23 ± 8 14 ± 3 7

Perucho-

González et

al. (32)

USA 2 Heidelberg

spectralis

PCG 59 87 NA NA 9.61 ± 3.23 8.47 ± 2.99 NA NA 19.11 ±

4.23

13.95 ±

1.98

6

Pilat et al. (33) UK 2 Envisu

2,300

PCG 20 20 10 11 4.64 ± 2.79 4.73 ± 2.81 0.668 ± 0.173 0.398 ± 0.178 17.68 ±

6.52

NA 8

Xu et al. (30) USA 3 Heidelberg

spectralis

PCG 20 15 11 6 9.7 ± 3.3 11.2 ± 3.3 0.4 ± 0.2 0.7 ± 0.1 15.4 ±

3.6

16.5 ±

3.6

8

Morales-

Fernandez et

al. (27)

Spain 2 Heidelberg

spectralis

PCG 40 60 24 24 11.20 ± 3.94 10.90 ± 2.46 0.52 ± 0.29 0.24 ± 0.14 NA NA 7

Silverstein et

al. (28)

USA NA Heidelberg

spectralis

PCG/

JOAG

37 43 20 22 9.9 ± 3.3 (PCG)

13.1 ±

2.0 (JOAG)

11.1 ± 3.1

(PC)

12.3 ± 3.2 (N)

0.52 ±

0.29 (PCG)

0.83 ±

0.2 (JOAG)

0.7 ± 0.11

(PCG)

0.21 ± 0.12

NA NA 6

Ghasia et al.

(26)

USA 1 Optovue

RTVue

G/SG 12 13 6 6 11.5 ± 3.5 10 ± 2.5 0.4 ± 0.2 0.1 ± 0.1 NA NA 8

Srinivasan et

al. (29)

India 4 Heidelberg

spectralis

PCG 37 41 20 22 10.1 ± 3.6 13.6 ± 3.2 NA NA 30.2 ±

5.9

NA 8

Ghasia et al.

(25)

USA 1 Heidelberg

spectralis

MG/M-

to-SG

28 55 15 30 12 ± 1.08 (MG)

13 ±

1.6 (M-to-SG)

11 ± 0.75

(PC)

12 ± 3 (N)

0.43 ± 0.04

(MG)

0.72 ±

0.04 (M-to-SG)

0.67 ± 0.02

(PC)

0.15 ± 0.03 (N)

NA NA 7

1, Prospective cross-sectional study; 2, Observational cross-sectional study; 3, Retrospective observational case series; 4, Case–control study. OCT, optical coherence tomography; G, glaucoma; SG, suspect glaucoma; PCG, primary

congenital glaucoma; JOAG, juvenile open-angle glaucoma; MG, mild glaucoma; M-to-SG, moderate-to-severe glaucoma; PC, physiologic cupping; N, normal; NA, not available; CDR, cup-to-disc ratio; IOP, intraocular pressure.
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FIGURE 2 | Forest plots of weighted mean difference (WMD) in the glaucoma group and healthy control group for average peripapillary retinal nerve fiber layer (RNFL)

thickness. Horizontal lines are 95% CIs.

FIGURE 3 | Forest plots of weighted mean difference (WMD) in the glaucoma group and healthy control group for peripapillary RNFL thickness in eight quadrants.

Horizontal lines are 95% CIs. (A) Superior; (B) Inferior; (C) Nasal; (D) Temporal; (E) Superotemporal; (F) Inferotemporal; (G) Superonasal; and (H) Inferonasal. #,

Moderate-to-severe glaucoma vs. normal; ##, Moderate-to-severe glaucoma vs. physiologic cupping; *, Mild glaucoma vs. normal; **, Mild glaucoma vs. physiologic

cupping; 1, glaucoma suspect/preperimetric glaucoma vs. normal; 2, mild glaucoma vs. normal; 3, moderate/severe glaucoma vs. normal; a, JOAG vs. normal; b,

JOAG vs. physiologic cupping; c, PCG vs. normal; d, PCG vs. physiologic cupping. RNFL, retinal nerve fiber layer; JOAG, juvenile open-angle glaucoma; PCG,

primary congenital glaucoma.

superotemporal quadrants, we could not speculate which regions
had the most significant reduction in children with glaucoma
due to a large 95% CI, which is probably related to the severity
of glaucoma.

It is reported that the pRNFL thickness in the superior
and inferior quadrants is thicker and the temporal and nasal

quadrants are relatively thinner in healthy adults (37–39). Turk
et al. (40) evaluated 107 healthy Turkish children aged 6–16 years
using SD-OCT and found that the average pRNFL thickness was
106.45 ± 9.41µm, inferotemporal pRNFL (the thickest sector)
thickness was 144.64± 17.16µm, and nasal pRNFL (the thinnest
sector) thickness was 71.54± 10.03µm. Zhu et al. (41) examined
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2,105 12-year-old healthy students using SD-OCT and reported
that the average pRNFL thickness was 103.08 ± 1.2µm and the
pRNFL thickness was thicker with shorter axial length and higher
hyperopia. Rotruck et al. (42) reported that the mean global
pRNFL thickness of healthy children aged 0–5 years old was
107.6 ± 10.3µm and it was not dependent on age. In general,
the thickest region of pRNFL in healthy children is the inferior
quadrant, which is thicker than in adults and not dependent on
age but showed a negative relationship with axial length (41–
44). The pRNFL thickness may attenuate subsequently because
of physiologic growth in axial length during the growth and
development of children. However, this corresponding change
of normal eyes in pRNFL thickness is considerably less than
the variability compared with pathological progression and
should not be clinically significant (30, 45). Moreover, children
with large CDRs were considered as the potential hazard of a
glaucomatous process. However, the study (46) revealed that
the degree of optic nerve cupping does not correlate with the
RNFL thickness. Normal eyes and physiologic cupping showed
equivalence in the several measurement parameters between all
macular layers and pRNFL (28). Hence, the data can be analyzed
by incorporating both normal controls and physiologic cupping
simultaneously.

More attention should be given when the pRNFL thickness
thinning exceeds approximately 8µm because it is a likely
sign of the probable clinical change (30). Compared to the
other optic disc parameters, pRNFL thickness has a higher
diagnostic accuracy of glaucoma, especially in the superior and
inferior regions (27, 47). Studies have shown that RNFL thinning
commonly begins with the inferior and superior sectors and
then affects nasal and temporal regions in adult patients and
the temporal RNFL quadrant is most conserved in glaucoma
(48, 49). This phenomenon may be explained by the preservation
of central vision in patients with glaucoma, which is mainly
fed by the temporal RNFL fibers (50–52). The changes of
pRNFL thickness are meaningful in these children with less
severe glaucomatous optic nerve damage, where the damage of
visual function may be difficult to measure. Thus, the superior
and inferior pRNFL might be optimal to reflect glaucomatous
changes, which is consistent with the results of our meta-analysis.
In the adult patients with pseudoexfoliation glaucoma, one of the
subtypes of open-angle glaucoma, the temporal RNFL thickness
is not significantly different from the healthy controls. Our
results, however, showed otherwise. In our meta-analysis, the
temporal pRNFL thickness was thinning but the superonasal
sectors were not different from normal eyes (48). This indicates
that childhood glaucoma has its characteristics of RNFL thinning.
Furthermore, a larger lamina cribrosa curvature index (LCCI)
was perceived as the first indication of prognosis for faster
progressive RNFL thinning. Primary congenital glaucoma (PCG)
had significantly deeper cups than adults with primary open
angle glaucoma emphasizing the importance of measuring cup
depth besides concerning CDR (53, 54). Therefore, additional
research is needed to demonstrate these differences with the
development and preservation of visual function in childhood
glaucoma and glaucoma in adults. Our focus should be especially
on cup depth and morphology of lamina cribrosa testing

RNFL thinning by SD-OCT in pediatric patients. Some of
the included studies elucidated the stage of glaucoma (25, 26)
and others were not (27–33), which may influence our meta-
analysis of RNFL thickness. These could explain the high degree
of statistical heterogeneity between the studies in the meta-
analysis.

Spectral domain optical coherence tomography is a valuable
tool in diagnosing and monitoring visual loss, especially for
pediatric glaucoma. It provides an objective and quantitative
scan with three-dimensional images, increased speed of image
acquisition, and improved axial resolution for early diagnosis
and monitoring of disease progression. This device has proved
to be useful in the management of pediatric glaucoma as it
provides objective RNFL thickness measurements in children
(45). The advantages of SD-OCT compared to OCT devices
in the past are short exposure durations and automatic eye-
tracking systems. SD-OCT has higher sensitivity and specificity
compared to the past OCT devices in detecting RNFL thickness.
Its overall diagnostic precision of detecting and measuring
localized RNFL defects in patients with glaucoma was also
relatively higher than conventional fundus photographs (55,
56). Consequently, SD-OCT has potential clinical value in
evaluating progression and follow-up for pediatric glaucoma as
an effective means.

However, it was challenging to obtain high-quality
images for children with glaucoma in the past due to
poor cooperation, the opacity of refractive media, and
unsuitable examination equipment. Poor-quality images
often make it difficult for ophthalmologists to judge the
progression of the disease. Delaying in diagnosis and
treatment can increase the risk of irreversible optic nerve
damage and even blindness. With the technical improvement
and development of new instruments, the emergence of
handheld OCT and overhead-mounted OCT solved this
problem perfectly. The high-quality image can be acquired
and analyzed by handheld and overhead-mounted OCT
in very young patients. Updated SD-OCT has presented
benefits for improved clinical management and study of
the pathophysiology associated with childhood glaucoma
(31, 33).

To some extent, there were several limitations to this study
that need to be considered. First, the number of included studies
as well as the included pediatric patients with glaucoma in each
study was relatively small. In addition, childhood glaucoma is
rare and there are some limitations to acquire good-quality
imaging such as nystagmus or poor media opacity. Second, the
severity of glaucoma was verified to be related to the mean
pRNFL global thickness in children older than 6 years (40, 44),
but we were unable to analyze the association between pRNFL
thickness and the severity of pediatric glaucoma due to lack of
sufficient studies providing data on the severity of glaucoma.
Third, included studies of this meta-analysis were applied in
four different SD-OCT devices (8 Heidelberg, 1 Envisu, and 1
Optovue). A primary concern was the measurement differences
between manufacturers, which were statistically significant in the
past and the clinical implication of this difference is less clear
(57). However, this study believed that there were no statistically
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significant differences between devices for any particular area
imaged and no major differences were noted for any of the
parameters across OCT devices (58). Fourth, as a non-negligible
factor, axial length affects RNFL measurement in the direction
of thinner RNFL because of physiological growth or pathological
factors such as high myopia (59). Therefore, future studies
should obtain a random distribution of myopic and non-myopic
participants in both normal and glaucomatous subgroups. Fifth,
although, we had demonstrated specific regions of thinning
pRNFL in pediatric glaucoma, the lack of studies about early-
stage changes and progression in childhood glaucoma is a
current limitation.

CONCLUSION

In summary, our meta-analysis indicates that patients with
childhood glaucoma have significantly reduced average eight
quadrants RNFL thickness compared with healthy controls.
We also observed a non-uniformity in the thinning of the
pRNFL in different quadrants. Therefore, we suggest that the
segmentation of peripapillary RNFL thickness as measured by
SD-OCT can provide valuable information for the diagnosis and
follow-up of childhood glaucoma. Moreover, a standardized and
reproducible measurement technique of RNFL thickness needs to
be introduced and utilized in children. In future research, further
studies with multicenter and larger sample sizes, prospective and
longitudinal studies are required to confirm the present results of
this meta-analysis.
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