
METHODS
published: 29 May 2018

doi: 10.3389/fgene.2018.00185

Frontiers in Genetics | www.frontiersin.org 1 May 2018 | Volume 9 | Article 185

Edited by:

Mariza De Andrade,

Mayo Clinic, United States

Reviewed by:

Jian Li,

Tulane University, United States

Kui Zhang,

Michigan Technological University,

United States

*Correspondence:

Vinzent Boerner

vboerner@une.edu.au

Specialty section:

This article was submitted to

Statistical Genetics and Methodology,

a section of the journal

Frontiers in Genetics

Received: 01 February 2018

Accepted: 07 May 2018

Published: 29 May 2018

Citation:

Boerner V and Wittenburg D (2018)

On Estimation of Genome

Composition in Genetically Admixed

Individuals Using Constrained

Genomic Regression.

Front. Genet. 9:185.

doi: 10.3389/fgene.2018.00185

On Estimation of Genome
Composition in Genetically Admixed
Individuals Using Constrained
Genomic Regression

Vinzent Boerner 1* and Dörte Wittenburg 2

1 Animal Genetics and Breeding Unit, University of New England, Armidale, NSW, Australia, 2 Institute of Genetics and

Biometry, Leibniz Institute for Farm Animal Biology, Dummerstorf, Germany

Quantifying the population stratification in genotype samples has become a standard

procedure for data manipulation before conducting genome wide association studies,

as well as for tracing patterns of migration in humans and animals, and for inference

about extinct founder populations. The most widely used approach capable of providing

biologically interpretable results is a likelihood formulation which allows for estimation of

founder genome proportions and founder allele frequency conditional on the observed

genotypes. However, if founder allele frequencies are known and samples are dominated

by admixed genotypes this approach may lead to biased inference. In addition,

processing time increases drastically with the number of genetic markers. This article

describes a simplified approach for obtaining biologically meaningful measures of

population stratification at the genotype level conditional on known founder allele

frequencies. It was tested on cattle and human data sets with 4,022 and 150,000

genetic markers, respectively, and proved to be very accurate in situations where

founder poplations were correctly specified, or under-, over-, and miss-specified.

Moreover, processing time was only marginally affected by an increase in the number of

markers.
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INTRODUCTION

The quantification of population stratification in samples of genotypes is of relevance because if
not accounted for it may obscure results from genome wide association studies (GWAS) (Marchini
et al., 2004; Price et al., 2010). Further, it allows reconstruction of patterns of ancient migration,
population segregation, and inheritance (Rasmussen et al., 2010; Kijas et al., 2012; Patterson et al.,
2012; Reich et al., 2012; Skoglund et al., 2012; Hellenthal et al., 2014).

Two major approaches are used. The first approach, described by Alexander et al.
(2009) as “model-based ancestry estimation,” estimates genome proportions of sampled
genotypes conditional on a predefined number of ancestral populations, and is embedded
in software like STRUCTURE (Pritchard et al., 2000; Falush et al., 2003; Raj et al., 2014),
FRAPPE (Tang et al., 2005), and ADMIXTURE (Alexander et al., 2009). This approach yields
biologically meaningful results at the individual and population levels. However, results
from this algorithm still need to be appropriately incorporated into a followup GWAS
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(Corneveaux et al., 2010; Huson et al., 2014; Hwang et al.,
2014). The second approach, classified in Alexander et al. (2009)
as “algorithmic ancestry estimation,” assumes that the major
structural variation among marker genotypes in samples from
different populations is caused by differences in allele frequencies
between populations, which can be detected and visualized by a
singular value decomposition of the matrix of genetic markers.
This approach, embedded in the software EIGENSTRAT (Price
et al., 2006) performs GWAS within the Eigen-space on residuals
formed by regressing the phenotype and the marker genotype
on a predetermined number of principal components, thus
removing any bias due to population stratification. However, it
is not obvious how to interpret principal components in terms
of ancestral population allele frequencies and individual genome
proportions.

Since in many cases the population allele frequencies can be
estimated from individuals of known genetic origin, Alexander
and Lange (2011) provided a “supervised” mode for their method
to facilitate faster genome proportion estimation for admixed
individuals. However, the likelihood formulation underlying
ADMIXTURE has three major disadvantages: (1) it assumes
linkage equilibrium (LE) between markers, (2) it makes rather
strong assumptions about the underlying distribution of genetic
markers, and (3) the processing time becomes an obstacle if the
number of markers is very large.

This article describes a non-linear optimisation method,
called constrained genomic regression (CGR), for the estimation
of founder genome proportions in marker genotypes of
admixed individuals which overcomes the speed limitation and
distributional assumption of the likelihood based method and
proved to be robust against the violation of the LE assumption.
Similar to the likelihood based method, CGR results have a
biologically meaningful interpretation even if the number of
possible founder populations is very large. The algorithm was
tested on two data sets, a cattle data set and a human data set,
and results were compared to ADMIXTURE results when the
“supervised” mode was used.

METHODS

Model
Assume that N populations may have contributed to an
individual’s genotype which can be observed at M bi-allelic
genetic markers. Let pi,k be the frequency of the minor allele of
marker i = 1, ..,M in population k = 1, ..,N. Then, the expected
count of the minor allele at marker locus i in individual j = 1, .., L
is given as:

E(yi,j) =

N∑

k= 1

2pi,kbk,j (1)

where bk,j denotes the probability of contribution of population
k to individual j; this parameter is typically unknown. Hence,
regarding all markers jointly, the vector of allele contents yj =

(y1,j, y2,j, yi,j, .., yM,j) of individual j can be modelled using a linear

regression approach:

yj = Xbj + ej (2)

where bj = (b1,j, .., bk,j, .., bN,j) is a vector of regression
coefficients unique to individual j, X is a column matrix of
dimension M × N with column k containing vector X:,k =

(2p1,k, .., 2pi,k, .., 2pM,k), and ej = (e1,j, .., ei,j, .., eM,j) are the
random error terms assumed to be independent and identically
distributed with expectation 0. As independence between
admixed individuals is assumed, model 2 is applied to each
individual separately to estimate its regression coefficients.

Minimizing (yj−Xbj)
′(yj−Xbj) would yield an ordinary least

square solution for bj. Since the parameter space of values in bj is
un-constrained in model 2, regression coefficients may become
negative. To ensure that the coefficients can be interpreted as
proportions the parameter space of bj must be constrained to the
interval between 0 and 1, and the sum over bj to be equal to 1.
Thus, the regression coefficients have to fulfill:

b̂j = argmin
bj

(yj − Xbj)
′(yj − Xbj) (3)

s.t.

bk,j ≥ 0 for k = 1, ..,N (4)

N∑

k

bk,j = 1 (5)

Due to the constraints, particularly 4, a solution for 3 cannot
be found by inverting the X′X. Instead, an iterative non-linear
optimisation solver may be used.

Note that constraint 5 can be changed to:

N∑

k

bk,j ≤ 1, (6)

which provides greater flexibility in situations where the number
of founder populations in the model is lower than the number
of founder populations which may have possibly contributed
to an admixed individual, or where the allele frequency vector
of a putative founder population is miss-specified (e.g., due to
genotyping errors or genotype sampling).

Data
The above algorithm was tested with two different data sets,
a commercial Australian beef cattle data set, and the publicly
available human data set (Gibbs et al., 2003).

Cattle Data
The cattle data set consisted of 11,639 individuals from
11 different breed populations (breeds):“Brahman” (1,492),
“Angus” (1,473), “Murray Grey” (316), “Limousin” (1,395),
“Charolais” (899), “Hereford” (1,500), “Simmental” (337),
“Shorthorn” (1,126), “Wagyu” (1,497), “Droughtmaster” (130),
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and “Santa Gertrudis” (1,474). Breeds can be grouped to
European Continental Bos Taurus breeds (“Limousin,”
“Charolais,” and “Simmental”), British Bos Taurus
breeds (“Angus,” “Murray Grey,”, “Hereford,” and “Shorthorn”),
Asian Bos Taurus breeds (“Wagyu”), composite breeds with
predominantly Bos Indicus genome (“Brahman”), and composite
breeds with varying proportions of Bos Indicus and Bos
Taurus (“Santa Gertrudis” and “Droughtmaster”).

Because genotypes of these animals were from different single
nucleotide polymorphism (SNP) panels, 4,022 SNP were selected
which were in common across panels. The SNP genotypes
were randomly phased to obtain haplotypes, and admixed
individuals were generated over five rounds. In round one the
sex was randomly assigned to the 11,639 pure-bred animals
and 1,000 males and 1,000 females were randomly chosen (with
replacement) to serve as parents. From each pair of parents one
offspring was generated from simulated gametes generated from
haplotypes assuming 5 or 25 randomly located cross-overs. In the
subsequent four rounds the 2,000 parents were selected among

the previous 1,000 offspring, implying more than one offspring
per parent. Thus, the total number of artificial admixed offspring
was 5,000 (see Table 1 for a summary statistic of their genome
constitution, and Figure 1 for a plot of the first three principal
components obtained from a singular value decomposition of the
marker matrix).

Human Data
The human data set was obtained from the International Hapmap
Project (Gibbs et al., 2003), where the hapmap3_r3 consensus
data set in plink format was used. This data set consisted
of 1,397 persons from 11 different ethnicities: 87 persons of
African ancestry in Southwest USA (ASW), 165 Utah residents
with Northern and Western European ancestry from the CEPH
collection (CEU), 137 Han Chinese in Beijing, China (CHB), 109
Chinese in Metropolitan Denver, Colorado (CHD), 101 Gujarati
Indians in Houston, Texas (GIH), 113 Japanese in Tokyo,
Japan (JPT), 110 Luhya in Webuye, Kenya (LWK), 86 persons of
Mexican ancestry in Los Angeles, California (MEX), 184 Maasai

TABLE 1 | Summary of number of admixed animals with genome proportions of 1 to 11 original populations.

Number of cross-overs Number of original populations contributing to an admixed genome

1 2 3 4 5 6 7 8 9 10 11

5 121 970 465 594 424 529 584 618 477 205 13

25 120 968 453 610 394 478 465 559 576 312 65

Note that table rows sum up to 5,000, which is the number of admixed individuals.

FIGURE 1 | First three principal components of artificially admixed (black spheres) and non-admixed (colored spheres) animals of the cattle data set obtained from a

singular value decomposition of a genetic marker matrix of dimension 16,639 (number of genotypes) by 4,022 (number of markers). The genotype sample consisted

of 5,000 artificially admixed and 11,639 original genotypes.

Frontiers in Genetics | www.frontiersin.org 3 May 2018 | Volume 9 | Article 185

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Boerner and Wittenburg On Estimation of Genome Composition

in Kinyawa, Kenya (MKK), 102 Tuscan in Italy (TSI), and 203
Yoruban in Ibadan, Nigeria (West Africa) (YRI). The data set
was re-formatted excluding all SNPs not coded as “A,” “C,” “T,”
or “G.” Of the remaining SNPs only those which had an across
ethnicities allele frequency ≤ 0.99 and ≥0.01 were kept, of which
finally 150,000 were randomly selected to be used. To generate
admixed individuals the sex was randomly assigned to the
1,397 genotypes and 200 males and 200 females were randomly
chosen (with replacement) to serve as parents. Haplotypes of
these parents were obtained by random phasing. From each pair
of parents one offspring was generated by combining gametes
which had been generated from their haplotypes assuming 5
or 25 randomly located cross-overs. This process was repeated
till generation 5 using the offspring as parents (thus generating
F1 to F5), with the number of expected progeny per parent
increasing from one to two in subsequent generations. The
final number of artificially generated admixed individuals was
1,000 (see Table 2 for a summary statistic of their genome
constitution and Figure 2 for a plot of the first three principal
components obtained from a singular value decomposition of the
marker matrix).

Performance Trials
Fully Specified Founder Populations
Trials were conducted with the 25 and 5 cross-over human and
cattle data sets where matrix X contained the expected allele
content vectors of all 11 populations. The within population
expected allele contents were calculated from individuals of
known genetic background. Note that from Tables 1, 2 it can be
inferred that this also included over-specifiedmodels wheremore
populations were fitted than actually contributed to the admixed
individual. These trials were run with CGR and ADMIXTURE
in its “supervised”mode, where CGR was tested using either
constraint 5 or constraint 6.

Under-specified Founder Populations
Two types of trials were conducted to evaluate the robustness
of CGR in the situation where the number of specified
founder populations was less than the number of founder
populations which had actually contributed to an admixed
individual.

In the first set of trials (type-1 trials) the vector of
expected allele content of a single population was excluded

TABLE 2 | Summary of number of admixed persons with genome proportions of 1 to 11 original populations.

Number of cross-overs Number of original populations contributing to an admixed genome

1 2 3 4 5 6 7 8 9 10 11

5 25 194 90 113 72 92 87 105 106 94 22

25 24 192 73 128 60 93 63 81 87 112 87

Note that table rows sum up to 1,000, which is the number of admixed individuals.

FIGURE 2 | First three principal components of artificially admixed (black spheres) and non-admixed (colored spheres) individuals of the Human data set obtained

from a singular value decomposition of a genetic marker matrix of dimension 2,397 (number of genotypes) by 150,000 (number of markers). The genotype sample

consisted of 1,000 artificially admixed and 1,397 original genotypes. The original genotypes of non-admixed individuals were obtained from the International Hapmap

Project.
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from matrix X. These trials were run on the 25 cross-
over cattle data set only, using the CGR algorithm with
constraint 6. For ADMIXTURE run in its “supervised mode,”
the number of founder populations was set to 10. Populations
alternatively excluded were the Brahman breed, the Wagyu
breed, and the Angus breed. As shown in Figure 1, these
breeds were chosen because the first two are very distinctive
whereas the last represents the cloud of European Bos Taurus
breeds.

The second set of trials (type-2 trials) modeled a situation
where a single contributing founder is known and specified (in
terms of allele frequencies) but little knowledge exists about
all other populations which may have contributed to that
individual. The purpose was to evaluate how accurately CGR
and ADMIXTURE can estimated the genome proportion of
the known founder. These trials can also be regarded as miss-
specification trials. For CGR the matrix X was reduced to two
columns. The first column contained the expected allele content
of a founder population which had contributed to the true
genome composition of an artificially admixed individual with
a proportion >0%. The second column contained a vector of
expected allele content calculated from 500 genotypes sampled
randomly from all true founder genotypes but excluding those
of the population already represented in the first column of
X. As an example, if an admixed individual in the cattle data
set had a true genome proportion of the Brahman breed >0%,
the first column in X contained the vector of expected allele
content of the Brahman breed. The second column contained a
vector of expected allele contents calculated from 500 genotypes
sampled randomly from the set of 11,639 true genotypes reduced
by the genotypes of the Brahman breed. For ADMIXTURE the
respective data files contained only the haplotypes of the known
founder, labeled as population 1, the haplotypes of the 500
randomly sampled true individuals, labeled a population 2, and
the haplotypes of those artificially admixed individuals of which
genome contained a proportion of the founder breed > 0%.
These trials were conducted for artificially admixed individuals of
the 25 cross-over cattle data set containing genome proportions
of the Brahman, Wagyu, or Angus breed where the known
founder was one of the latter breeds. For CGR constraint 6
was used. ADMIXTURE was run in its supervised mode with a
population parameter set to 2.

Result Evaluation
Fully Specified Founder Populations
Results were evaluated with the maximum estimation
error (MAX) calculated as:

max(|bk,j − b̂k,j|), j = 1, .., L; k = 1, ..,N, (7)

with the bias calculated as:

1

LN

L∑

j= 1

N∑

k= 1

(bk,j − b̂k,j), (8)

the mean squared error (MSE) calculated as:

1

LN

L∑

j= 1

N∑

k= 1

(bk,j − b̂k,j)
2, (9)

and the correlation between the true and estimated genome
proportions calculated as:

∑L
j= 1

∑N
k= 1(bk,j − b)(̂bk,j − b̂)

√∑L
j= 1

∑N
k= 1(bk,j − b)2

√∑L
j= 1

∑N
k= 1 (̂bk,j − b̂)2

. (10)

Further, differences between CGR results using constraint 5
or constraint 6 were evaluated by the correlation between the
estimation errors.

Under-specified Founder Populations
Results from type-1 trials were evaluated by the correlation
between the true and estimated genome proportion and with the
mean absolute estimation error calculated as:

1

LN

L∑

j=1

N∑

k=1

|(bk,j − b̂k,j)|, (11)

where the latter parameter was preferred to the MSE because it
was more suitable for graphical result representation. Note that
to calculate both parameters the differences between the true and
the estimated genome proportion for the excluded population
were not regarded. This allowed inference of whether the
absence of one founder population had an effect on estimating
the true genome portions of the remaining populations in X.
Further, the correlation was calculated separately for six different
categories of admixed individuals conditional on the true
genome proportion of the excluded population these individuals
inherited: 0%, >0%−≤25% , >25%−≤50% , >50%−≤75% ,
>75%−<100%, and 100%.

Type-2 trials were evaluated as the trials for the fully specified
founder populations, but the parameters were calculated only
for the estimated genome proportions inherited from the known
founder (the population in the first column of matrix X). In
addition, a correlation between the estimation errors from CGR
and ADMIXTURE was calculated.

Software
CGR was implemented in a FORTRAN wrapper executable
which called the NLopt library (Johnson, 2011). The optimization
solver used the augmented Lagrangian algorithm (Conn et al.,
1991) as global solver and the method of moving asymptotes
(Svanberg, 2002) as a local solver. All computations were carried
out on a desktop computer with an Intel(R) Core(TM) i7-3770
processor and 32 GB of memory. The interested reader may
either download a Linux executable from the author’s webpage, or
implement the approach in R (R Development Core Team, 2011)
where the NLopt library is available as a package.

For comparison the above data sets were analyzed
with the likelihood based approach using the software
ADMIXTURE (Alexander et al., 2009) in its “supervised”
mode.
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RESULTS

Fully Specified Founder Populations
Cattle Data
Table 3 and Figure 3 summarize the results for the admixed
animals when the number of cross-overs during gametogenesis
was 5 and 25, respectively. Estimates from ADMIXTURE
were generally much less accurate than those from CGR. The
maximum absolute estimation error produced by ADMIXTURE
was 0.85 and 0.67 for the 5 and 25-crossover data set, respectively.
By comparison, the same parameter for CGR reduced to 0.25
and 0.28. The same pattern was observed for the mean squared
estimation error, which was for the 5-crossover data set 0.001
for CGR and 0.015 for ADMIXTURE, different by a factor
of 15. While the mean squared estimation error produced by
ADMIXTURE for the 25-crossover data set decreased to 1/3
of that of the 5-crossover data set, it was still five times larger
than that produced by CGR. The differences in accuracy were
also reflected by the correlation between the true and estimated
genome proportions which were 0.63 and 0.84 for the 5 and
25-crossover data set when ADMIXTURE was used. In sharp
contrast, CGR achieved a correlation of 0.97 for both data sets.

When constraint 5 was used, which is also used by
ADMIXTURE, both methods showed no bias (results not
shown). Changing to constraint 6 produced only a marginal
bias of −0.00246 and −0.0014 for the 5 and 25 cross-over data
set respectively. Although constraint 6 did not affect the results
statistics it changed the distribution of errors as can be seen in
Figure 5, where the effect was bigger for the 5 cross-over data set.

CGR needed 5.2 real time seconds to estimate the pure
breed proportions of all 5,000 cross-bred animals, whereas
ADMIXTURE needed 270 and 227 real time seconds for the 5
and 25-cross-over data set respectively, which is an increase in
processing time by a factor of 50.

Human Data
Table 4 and Figure 4 summarize the results for the artificially
admixed individuals when the number of cross-overs during
gamogenesis was 5 and 25, respectively. Similar to the cattle
data analysis, results from ADMIXTURE were generally much
less accurate than those from CGR, but the differences increased
substantially. The maximum absolute estimation error produced
by ADMIXTURE was 0.99, independent of the number of

TABLE 3 | Statistic of the genome proportion estimation error for the cattle data set subject to the number of cross-overs when generating admixed animals for CGR and

ADMIXTURE.

Cross-overs CGR ADMIXTURE

MAX= MAX<= MSE= MSE<= R= R<= MAX MSE R

5 0.24691 0.24738 0.00103 0.00106 0.97481 0.97455 0.85393 0.01578 0.62853

25 0.28220 0.28219 0.00107 0.00106 0.97063 0.97103 0.67077 0.00566 0.84150

MAX, maximum absolute estimation errors; MSE, mean of the squared estimation errors; R, correlation between the true and the estimated genome composition; =, CGR was run with

an equality constraint; <=, CGR was run with an smaller/equality constraint. MAX and MSE were obtained across all artificially admixed individuals and all possible populations of origin.

FIGURE 3 | Distribution of the absolute estimation error from CGR (red) and ADMIXTURE (blue) for the cattle data set generated using 5 and 25 cross-overs and

4,022 genetic markers.
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TABLE 4 | Statistic of the genome proportion estimation error for the human data set subject to the number of cross-overs when generating admixed individuals for CGR

and ADMIXTURE.

Cross-overs CGR ADMIXTURE

MAX= MAX<= MSE= MSE<= R= R<= MAX MSE R

5 0.33489 0.33583 0.00070 0.00071 0.98245 0.98245 0.99999 0.02968 0.40357

25 0.32694 0.33060 0.00054 0.00054 0.98478 0.98468 0.99990 0.01608 0.64841

MAX, maximum absolute estimation errors; MSE, mean of the squared estimation errors; R, the correlation between the true and the estimated genome composition; =, CGR was run

with an equality constraint; <=, CGR was run with an smaller/equality constraint. MAX and MSE were obtained across all artificially admixed individuals and all possible populations of

origin.

FIGURE 4 | Distribution of the absolute estimation error from CGR (red) and ADMIXTURE (blue) for the human data set generated using 5 and 25 cross-overs and

150 k genetic markers.

cross-overs, whereas for CGR this parameter was 0.33 for both
data sets. The pattern for the mean squared estimation error was
similar. For ADMIXTURE the error decreased from 0.03 to 0.016
when using the 5 and 25-crossover data set respectively. However,
for CGR this parameter was always much lower with 0.0007
and 0.00054 for the 5 and 25-crossover data set respectively.
Thus, compared to CGR the mean squared estimation error
produced by ADMIXTURE was approximately 30 times higher.
As with the cattle data set, differences in accuracy were also
reflected by the correlation between the true and estimated
genome proportions which were 0.4 and 0.65 for the 5 and
25-crossover data set when ADMIXTURE was used, whereas
CGR achieved a correlation of 0.98 independent of the data
set.

As for the cattle data set, both methods showed not
bias (results not shown) when CGR was used with constraint 5.
Running CGR with constraint 6 produced only a marginal bias
of −0.00124 and −0.00078 for the 5 and 25 cross-over data set
respectively. By contrast to the cattle data set, constraint 6 had
almost no effect on the distribution of errors (see Figure 5) for
both data sets.

CGR required 26 real time seconds to estimate the founder
genome proportions of all 1,000 admixed individuals. In contrast,
ADMIXTURE needed 3,638 and 7,390 real time seconds for the
5 and 25-crossover data set, with the 25-crossover data set taking
twice the number of iterations to converge. Thus, compared to
CGR, ADMIXTURE’s processing time for the 25-crossover data
set was increased by factor 284.

Under-specified Founder Populations
Type-1 Trials
For type-1 trials a single founder population was omitted from
matrix X and genome compositions were estimated for all
artificially admixed individuals in the cattle data set. Results are
summarized in Figures 6–8. As expected, admixed individuals
which did not contain portions of the omitted founder
population genome were not affected by its exclusion from the
model when CGR was used. For ADMIXTURE the exclusion
had a small deceasing effect on the mean absolute estimation
error where the initial error level was higher than for CGR.
For both algorithms, and invariant to the excluded breed, the
correlation between the true and estimated genome proportion
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FIGURE 5 | Correlation between genome composition estimation errors when CGR was used either with constraint 5 (x-axis) or 6 (y-axis).

deteriorated with an increasing true genome proportion of the
excluded population in the admixed individuals. However, result
accuracy deteriorated much quicker for ADMIXTURE than
for CGR, where this was most obvious when the Wagyu and
Angus breed were omitted (see Figures 6, 8). For example in the
category “true genome %:>25–≤50” CGR achieved a correlation
of 0.94 and 0.87, when the Wagyu and Angus breed was omitted,
respectively. In contrast, the same results from ADMIXTURE
were 0.32 and 0.55 only. The difference in the rate of deterioration
was less prominent when the Brahman breed was omitted (see
Figure 7).

When the Wagyu breed was omitted CGR allocated the
genome proportions of this breed to the Simmental breed,
which is the most related breed in terms of population
allele frequency (see Figure 8). In sharp contrast, ADMIXTURE

allocated the genome proportions to the Droughtmaster
breed which has an allele frequency correlation to the
Wagyu breed slightly lower than that of the Simmental
breed.

The same pattern was observed when the Angus breed was
excluded. Again CGR assigned the genome proportions to its
next relative, the Murray Grey breed, whereas ADMIXTURE
allocated the huge genome proportions to both, the Murray Grey
breed and Droughtmaster breed.

Only when the Brahman breed was excluded, results from
both algorithms showed a similar pattern assigning genome
proportions to the Droughmaster breed. However, for CGR this
was consistent with the observations that the Droughtmaster
breed is the closest relative of the Brahman breed in terms of allele
frequencies (see Figure 9).
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FIGURE 6 | Distribution of the average absolute estimation error within possible founder breeds for the 25 cross-over cattle data set from a model using all 11 breeds

(blue) and a model excluding the Wagyu breed (red). Results are shown for categories of artificially admixed animals having 0%, >0%–≤25%, >25%–≤50%,

>50%–≤75%, >75%–<100%, and 100% genome of the excluded breed. The graphs in the upper two rows show the results from CGR the lower two rows those

from ADMIXTURE. R, correlation between the true and the estimated genome proportion when the Wagyu breed was excluded; N, number of used admixed

individuals for calculating R.
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FIGURE 7 | Distribution of the average absolute estimation error within possible founder breeds for the 25 cross-over cattle data set from a model using all 11 breeds

(blue) and a model excluding the Brahman breed (red). Results are shown for categories of artificially admixed animals having 0%, >0%–≤25%, >25%−≤50%,

>50%–≤75%, >75%–<100%, and 100% genome of the excluded breed. The graphs in the upper two rows show the results from CGR the lower two rows those

from ADMIXTURE. R, correlation between the true and the estimated genome proportion when the Brahman breed was excluded; N, number of used admixed

individuals for calculating R.
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FIGURE 8 | Distribution of the average absolute estimation error within possible founder breeds for the 25 cross-over cattle data set from a model using all 11 breeds

(blue) and a model excluding the Angus breed (red). Results are shown for categories of artificially admixed animals having 0%, >0%–≤25%, >25%−≤50%,

>50%–≤75%, > 75%–<100%, and 100% genome of the excluded breed. The graphs in the upper two rows show the results from CGR the lower two rows those

from ADMIXTURE. R, correlation between the true and the estimated genome proportion when the Angus breed was excluded; N, number of used admixed

individuals for calculating R.
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Type-2 Trials
Result from these trials are summarized in Table 5. For
the correlation between the true and the estimated genome
proportions CGR and ADMIXTURE achieved very similar
results. For both algorithms the correlation was very high at
0.98, 0.95, and 0.86 for the Wagyu, Brahman, or Angus breed
respectively. For CGR the mean and maximum estimation errors
for the Wagyu and Brahman breed were equal to or lower
than those for the fully specified model, whereas for the Angus
breed these parameters were higher. For ADMIXTURE the mean
squared error and maximum absolute estimation error were
drastically reduced compared to fully specified model. Moreover,
the very high correlation between estimation errors from CGR
and ADMIXTURE shows that estimates of individual genome
proportions from both algorithms were very similar.

DISCUSSION

The modeling approach of CGR can be regarded as rather simple
compared to the elaborate likelihood formulation underlying
ADMIXTURE. However, results given here show that CGR
outperforms ADMIXTURE in its supervised mode in terms of
result accuracy and speed.

Unlike the maximum likelihood approach of Alexander et al.
(2009) which searches for the parameter values making the
observed allele content most likely, CGR aims at the parameter
values minimizing the difference between the expected and
observed allele content. The major difference between the two
approaches is that the population-specific allele frequencies are
assumed to be known in CGR. Thus, the dimensions of the
parameter space reduce from N(M + L) to NL. This huge
reduction (e.g., by 99.3% in the human data set) leads to
the computational benefit of CGR. With CGR, the number
of parameters to be estimated is typically smaller than the
number of observations (NL < ML), which is not necessarily
the case for ADMIXTURE (N(M + L) > ML). Thus, due
to the high model complexity, not all parameters can be
identified from the likelihood and the error of parameter
estimates is increased. Further, CGR requires less severe
assumptions than ADMIXTURE, which may have also improved
the precision of estimation as seen from the comparison of
estimation errors. ADMIXTURE assumes that the distribution
of the minor allele is binomial whereas CGR makes no
assumptions about the underlying distribution. In addition,
the likelihood calculation of ADMIXTURE explicitly requires
marker independence (linkage equilibrium) which is relaxed in
CGR because linear dependencies may occur in the row space of

FIGURE 9 | Heatmap of correlations between cattle populations calculated from their allele frequency vector.
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TABLE 5 | Statistic of the genome proportion estimation errors from type-2 robustness trials for the cattle data set when CGR or ADMIXTURE was used.

Breed (N) CGR ADMIXTURE Rerr

MSE MAX R MSE MAX R

Wagyu (3105) 0.00079 0.13434 0.98187 0.00083 0.13921 0.98300 0.95

Brahman (3257) 0.00237 0.23922 0.95150 0.00277 0.22622 0.94926 0.99

Angus (3366) 0.00664 0.41495 0.86223 0.00719 0.39024 0.85383 0.99

For CGR the model matrix X for each artificially admixed individual which contained a proportion of genome of the founder breed in column “breed (N)” >0% had only 2 columns:

one containing the expected allele content vector of the breed given in column “breed (N),” and one containing the expected allele content vector constructed from 500 genotypes

randomly sampled from the true genotypes of the remaining 10 cattle breeds. For ADMIXTURE the respective data files contained only the haplotypes of the breed in column “breed (N),”

labeled as population 1, the haplotypes of the 500 randomly sampled individuals, labelled a population 2, and the haplotypes of those artificially admixed individuals which contained a

proportion of the founder breed genome in column “breed (N)”>0%. Thus, CGR and ADMIXTURE estimated genome proportions only for artificially admixed individuals which contained

a proportion of the founder breed genome in column “breed (N)” >0%. breed (N): the modeled breed and the number of artificially admixed individuals which contained a proportion

of the genome of that breed >0%. All subsequent parameters were calculated using only the estimated genome proportion of the breed given in column “breed (N).” MAX, maximum

absolute estimation errors; MSE, mean of the squared estimation errors; R, the correlation between the true and the estimated genome composition; Rerr, the correlation between the

estimation error from CGR and from ADMIXTURE.

the design matrix X. To let CGR explicitly accounting for linkage
disequilibrium it must be extended to a generalized least square
formulation which allows for a non-diagonal co-variance matrix
between residuals. Omitting this matrix affects the efficiency
of the estimator but not the unbiasedness. This might be one
reason for the accurate CGR results for the 5 cross-over data sets.
However, both approaches assumeHardy-Weinberg equilibrium,
ADMIXTURE for obtaining genotype frequencies based on the
binomial distribution and CGR for deriving the expected allele
content.

Another factor contributing to the inferior performance of
ADMIXTURE in these examples may be due to ADMIXTURE
re-estimating pi,k frequencies in every single iteration using
yj vectors with known founder populations, as well as yj
vectors weighted by their respective bk,j, whereas CGR regards
p:,k vectors as constant. Omitting the iterative procedure of
re-estimated allele frequencies in its supervised mode, the
dimensionality of ADMIXTURE’s parameter space would have
been equal to that of CGR, and ADMIXTURE might have
performed similar to CGR. However, with likelihoods being
demanding to compute the difference in speed may have
remained.

The method of constrained genomic regression has already
been used for parentage verification (Boerner, 2017), where it
was found that an additional variable of sufficient correlation
to y must be fitted to account for an insufficient model fit.
That is, it cannot be assumed that a poorer model fit will
automatically result in decreased coefficients in b when CGR is
run with constraint 6. A similar pattern was found for type-
1 trials where the number of founder populations was under-
specified. CGR almost always exploited the upper boundary of
1 for

∑N
k bk,j even when the genome of admixed individual

contained large proportions of the genome of the excluded
population (results not shown). One possible explanation is the
phylogeny of cattle populations which is also expressed by the
correlation between their allele frequency vectors (see Figure 9).
For example, the Simmental breed is able to explain a certain
proportion of the Wagyu breed because there was a substantial
importation of Simmental cattle into Japan in the early 1900s.
The Drougthmaster breed is the main attractor for Brahman
genome proportions if the Brahman breed is excluded because

Droughtmaster was developed from various breeds where Bos
inidcus had a major influence. This is also reflected by their very
high allele frequency correlation of >0.8. The same holds for
the Angus breed where the Murray Grey breed is the closest
relative. Because of the between population correlation patterns,
an additionally fitted variable could not prevent CGR from
moving genome proportions to the closest relative, where the
additionally fitted variable was a vector of ones or a vector
of randomly sampled allele frequencies expressing the lack of
knowledge about the missing population.

The type-1 under-specification trials were also conducted
with ADMIXTURE, were the accuracy of the ADMIXTURE
results was inferior to the accuracy of CGR results. While
this was consistent with the pattern observed in trials with
fully specified founder populations, the ADMIXTURE genome
allocation in type-1 trials deserves attention. Contrarily to
CGR, ADMIXTURE assigned huge genome proportions to the
Droughtmaster breed almost invariant of whether the Wagyu,
Brahman, or Angus breed was excluded from X. Figures 6–8 also
reveal that this was the case for fully specified trials as well. As
pointed out above, ADMIXTURE re-estimates allele frequencies
in every single iteration. In combination with the fact that the
Droughtmaster breed had the smallest number of individuals
in the sample and is located in the center of the singular value
plot (see Figure 1), its allele frequencies derived from the true
genotypes have very little weight when allele frequencies are
re-estimated using founder and admixed individuals. Thus, re-
estimating allele frequencies in an attempt to minimize a goal
function is not always desirable, and for the trials presented
here might be the reason for the inferior performance of
ADMIXTURE.

Results from type-2 robustness trials reveal that a mean allele
content vector calculated from 500 genotypes sampled from
all possible contributing founder populations but excluding the
focused founder population was sufficient to estimate the genome
proportions inherited from focused founder populations with
high accuracy. This holds for both CGR and ADMIXTURE.
However, both algorithms failed when the mean vector was
replaced by a vector of ones or a vector of randomly drawn
allele contents, where using CGR with constraint 6 had no effect
(results not shown). An interesting aspect of these results is
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that the maximum absolute estimation error and mean squared
estimation error generated by ADMIXTURE were drastically
reduced compared to the fully specified model which might be
a result of the reduced parameter space in type-2 trials. The
results from type-2 trials are of particular relevance for settings
where a researcher or an animal or plant breeding organization
is only interested in the genome proportion of a particular
founder population which is precisely specified in terms of allele
frequencies. If a mean allele frequency of all other possible
contributing founder populations or their close phylogenetic
relatives can be specified, the thought after genome proportion
can be estimated with high precision.

CGR can be efficiently applied to dense marker sets but
a sufficiently large training set consisting of individuals with
known origin is required to estimate the allele frequencies in
advance.

In addition to the superior speed and accuracy of CGR, results
given here support that the algorithm is robust against over-,

under-, and miss-specification of founder populations. Thus
genome proportions of present or correctly specified founder
populations are estimated with high precision when the missing

population is not dominating the genome. Moreover, CGR
also provides highly accurate results when only one founder
population is available and a mean allele frequency is specified
for all other potentially contributing populations.
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