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Predation is a fundamental ecological process that shapes communities and
drives evolutionary dynamics. As the world rapidly urbanizes, it is critical to
understand how human perturbations alter predation and meat consump-
tion across taxa. We conducted a meta-analysis to quantify the effects of
urban environments on three components of trophic ecology in predators:
dietary species richness, dietary evenness and stable isotopic ratios (IRs)
(δ13C and δ15N IR). We evaluated whether the intensity of anthropogenic
pressure, using the human footprint index (HFI), explained variation in
effect sizes of dietary attributes using a meta-regression. We calculated
Hedges’ g effect sizes from 44 studies including 11 986 samples across 40
predatory species in 39 cities globally. The direction and magnitude of
effect sizes varied among predator taxa with reptilian diets exhibiting the
most sensitivity to urbanization. Effect sizes revealed that predators in
cities had comparable diet richness, evenness and nitrogen ratios, though
carbon IRs were more enriched in cities. We found that neither the 1993
nor 2009 HFI editions explained effect size variation. Our study provides,
to our knowledge, the first assessment of how urbanization has perturbed
predator–prey interactions for multiple taxa at a global scale. We conclude
that the functional role of predators is conserved in cities and urbanization
does not inherently relax predation, despite diets broadening to include
anthropogenic food sources such as sugar, wheat and corn.
1. Introduction
Predation is a process that underpins ecological and evolutionary dynamics at
various scales, from the individual to the ecosystem. Predation can increase
regional species richness and diversity by mediating competition in prey species
[1,2].Moreover, predators alter ecosystem-level processes such as nutrient cycling
by provisioning carcasses and enriching soil or water columns [3]. Apart from
consumptive effects, predation can structure communities indirectly through
trophic cascades [4]. The fear of predation itself can engender non-consumptive
effects that alter space use and aggregation of prey, subsequently driving
vegetation patterns [5,6]. While the theoretical and empirical literature is rich
with studies quantifying the effects of predation in natural systems, our under-
standing of how urban environments affect predation remains limited, even
contradictory. For example, predation rates on human landscapes can be ampli-
fied by increased prey densities or relaxed because of an abundance of easily
accessible anthropogenic subsidies, creating an urban predation paradox [7,8].

Cities are an emerging socio-ecological ecosystem inducing novel inter-
actions, behavioural shifts and evolutionary trajectories [9–11]. By 2030, more
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than 60% of the world’s human population is projected to live
in an urban area [12]. The effects on the landscape from such
rapid urbanization are profound; globally, urban land cover is
projected to increase by 1.2 million km2 by 2030, decimating
available habitat for wildlife and reducing agricultural land
by 550 000 km2, an area roughly the size of France [13,14].
Urbanization can decrease prey species richness and genetic
diversity and modify community composition; thus, altering
resource availability and diet selection for secondary and ter-
tiary consumers [15–17]. Regional species pools are further
filtered by urban form and history, novel urban species inter-
actions and disparate distributions of natural resources in the
urban landscape because of systemic racism and historical
stratification of resources and environmental amenities
based on race and class in urban areas [18,19]. Pollutants
can concentrate in urban areas, making their way into the
food web to potentially disrupt biochemical pathways in
wildlife and cause disease as they do in humans [20].
Additionally, human food subsidies increase trophic niche
overlap in terrestrial carnivores, potentially resulting in
greater interspecific competition [21]. Carbon and nitrogen
isotopic ratios (IRs) present in scat, hair and vibrissae allow
researchers to assess individual heterogeneity in the trophic
niche space [22,23]. Higher δ13C IR reflects consumption of
plants with C4 photosynthetic pathways such as corn (Zea
mays) and sugarcane (Saccharum spp.), which are common
in anthropogenic food sources, in contrast to lower values
associated with C3 plants found in rural or wildland habitat
[24]. High δ15N IR indicates consumption of protein-rich
animal prey, denoting trophic status and degree of carnivory
[25,26]. Cities also modify wildlife behaviour, influencing
vulnerability to predation or access to food, by disrupting
diel patterns and vigilance behaviours [27,28].

Urbanization is a complex anthropogenic process that can
alter predator–prey interactions through mechanisms associ-
ated with changes to food availability, habitat connectivity,
vegetation density, and microclimate [29,30]. Anthropogenic
infrastructures bisect habitat, increase the cost and mortality
risk of movement and create novel temperature gradients,
driving changes to population and community-level pro-
cesses including predation [31–33]. Urban ecosystems are
often a mosaic patchwork of suitable habitat, with both natu-
ral and managed greenspaces, which can bolster the
persistence of some urban-dwelling species [34]. However,
habitat fragmentation can reduce prey abundance broadly
or disproportionately increase abundance for a small
number of prey species, affecting predator diet selection
and evenness [7,35]. In particular, roads cause a significant
proportion of wildlife mortality, upwards of 49% of all
adult and juvenile mortality for some species, underlying
the trend of negative population growth in urban areas
[36]. In North America, road-related mammal mortality
increased up to 12% over the past 50 years [37]. The decline
in prey species richness in cities could increase dietary over-
lap for interspecific competitors, resulting in competitive
exclusion [21,38]. In addition to fragmentation, extensive
homogenization of urban vegetation structure can reduce
overall cover and affect prey behaviour and space use [39].

The effects induced from urbanization manifest differently
among taxa with wildlife responses being scale-dependent
[40]. For example, cities exhibit extreme temperature gradi-
ents, resulting in varied consumptive patterns, as low
temperatures increased attack rate in Daphnia [41], while
higher temperatures increased the prey consumption rate in
fishes [42] and reptiles [43]. Herpetofauna are more susceptible
to higher disease prevalence and pollution in urbanized ecosys-
tems than mammalian fauna [44]. In some cases, urbanization
can even hamper the spread of disease because of reduced
host densities in cities compared to rural areas [45,46]. While
patterns of species richness and population density vary signifi-
cantly across taxa, urban birds and arthropods tend towards
reduced diversity and increased abundance [47,48].

Despite the recent surge of urban ecology studies employ-
ing comparative urban versus non-urban frameworks, broad-
scale predation patterns across taxa remain largely unknown.
Studies often focus on a single species or city, limiting infer-
ence at a broad scale. Additionally, a lack of a standardized
definition of ‘urban’ has made cross-city comparisons chal-
lenging, coupled with varied experimental designs, sample
sizes, and bias towards readily observable study organisms.
Thus, we lack a systematic understanding of how the urban
environment affects predator diet, how it varies across taxa,
and how these effects scale with the intensity of human
impact on the landscape. Further, assumptions regarding
the relaxation of predation in urban spaces remain untested
across multiple taxa. Here, we conducted, to our knowledge,
the first global meta-analysis of how urban environments
affect three aspects of predator trophic ecology: dietary
species richness (DSR, hereafter ‘richness’), dietary evenness
(DEV, hereafter ‘evenness’) and trophic niche using δ13C
and δ15N IRs (figure 1). We used the human footprint
index (HFI), a globally available metric quantifying
anthropogenic pressures on the landscape [49], to explain
the variability of observed effect sizes. Our aim was to
inform urban ecology theory as well as guide future
research, natural resource management efforts and urban
planning, particularly in newly urbanizing regions.
Specifically, we addressed the following questions:

(i) how does urbanization affect predator diet compo-
sition? We expected a decrease in dietary richness,
given documented reductions in species richness
owing to anthropogenic perturbations in urban
environments [50,51]. If species richness in cities
declines, the relative abundance of some common
urban prey species can increase significantly. There-
fore, we expected DEV to decrease in urban areas
[52]. We expected the urban predator trophic niche
to reflect lower δ15N and greater δ13C ratios relative
to their rural counterparts because of a shift towards
anthropogenic food sources rich in corn, wheat, and
sugar [21,53,54];

(ii) how do the effect sizes of urbanization on dietary attri-
butes differ across predator taxa? We expected trophic
responses to urbanization to differ significantly among
predator taxa, owing to implicit differences in diet
plasticity, behaviour and natural history as well as
biased representation of taxa in urban ecology litera-
ture [55,56]. Such variation in sensitivity to
perturbations in urban ecosystems may ultimately
drive heterogeneity in the direction and significance
of effect sizes among wildlife taxa [57,58]; and

(iii) how do urban effects on predation relate to the HFI?
We expected the effect sizes to positively correlate
with the HFI, indicating that as the intensity of anthro-
pogenic pressure increased, the magnitude of change
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Figure 1. Conceptual diagram illustrating how cities can influence three com-
ponents of predator trophic ecology: (a) dietary species richness (DSR), (b)
dietary evenness (DEV) and (c) δ13C and δ15N isotopic ratios. Green (left)
column represents rural and wildland habitat, while grey (right) denotes
urban habitat. (Online version in colour.)
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to predation would increase. Predator diversity and
density, and thus predation rates and prey selection,
are correlated with the components used to calculate
the HFI, such as human population density and
land-use conversion, underpinning our expectation
that the degree of urbanization would explain vari-
ation in predator diet effect sizes [59,60].

2. Material and methods
(a) Literature search
We completed a comprehensive literature search of empirical
studies that provided estimates on aspects of predation rate,
prey availability versus selection or prey diversity in the context
of a predator of any taxa and compared these dietary metrics in
an urban versus rural or wildland framework (discrete or gradi-
ent). Firstly, we conducted a broad topic search using the Web of
Science publication database with the following terms: ‘predat*
AND urban’, ‘prey AND urban’, ‘prey AND urban AND
rural’. We then conducted a second, stricter search by filtering
results by topic ‘Ecology’, ‘Zoology’, ‘Biodiversity Conservation’,
‘Environmental Sciences’ or ‘Ornithology’, using the keywords:
‘resource AND use AND urban’, ‘predat* AND urban AND
wildland’ and ‘carniv* AND urban AND diet’. We performed
a subsequent targeted search to improve representation for
amphibians and reptiles. Web of Science lists publications from
both United States-based and international journals, although
an English language abstract or title is needed to appear in the
search results. We did not limit the inclusion of studies based
on year of publication or whether urban and rural samples
were collected in the same year if they satisfied our other selec-
tion criteria. All vertebrate taxa were considered for inclusion.
Searches were conducted iteratively (electronic supplementary
material, figure S1); we recorded the number of results for each
search iteration following the Preferred Reporting Items for
Systematic Reviews and Meta-Analyses guidelines [61].

How studies define urban and rural varies considerably [62].
Some studies used a categorical approach, while others used a
continuous gradient of urbanization based on an index such as
per cent impervious surface, human population or distance to
the urban core. Without a unified definition of ‘urban’ or use
of standardized response variables in the urban ecology litera-
ture, we defined the selection criteria for inclusion in the
analysis in that prospective studies needed: (i) direct measures
of diet composition through observation, scat, pellets or
necropsy, and (ii) summary data of diet metrics for both urban
and rural categories to calculate effect sizes. In studies that
sampled urban versus rural in a discrete fashion, we extracted
values for each category. We extracted predation and prey com-
position values from the two extremes for studies that used a
gradient approach. The term ‘rural’ is used broadly in the litera-
ture to describe non-urban habitat and implies a lack of built
infrastructure. However, agricultural landscapes have some
degree of anthropogenic influence via roads, buildings (e.g.
barns), crop, and livestock production. To address this, we cate-
gorized the control site type as either ‘wildland’ or ‘rural’ to
distinguish agricultural landscapes from less disturbed, natural
habitat. We did not perform an additional subgroup analysis
using control site type because of sample size limitations.

(b) Predation consumption metrics
We explored three metrics of trophic ecology in our analyses to
capitalize on the multiple methods presented in the literature.
We extracted DSR data by counting each prey taxon observed
in the predator’s stomach contents, pellets or through direct pre-
dation observations. Species richness in a predator’s diet reflects
dietary breadth. We also quantified DEV by calculating the stan-
dardized niche breadth (equation 1) for urban and rural samples
in each study [63]. Evenness contrasts with species richness in
that the relative frequency and representation of each prey type
is considered [64,65]. We recorded sample sizes and sample stan-
dard deviations where possible. However, approximately 90% of
included studies had no associated measure of within-study var-
iance. To address this limitation, we used a maximum-likelihood
estimation (MLE) approach following Sangnawakij et al. [66] to
estimate heterogeneity for each study’s observed mean differ-
ence, enabling us to fill in missing variance values. Additional
detail on estimating within-study variation when these values
were not provided are described in the next section.

b ¼ ��
S
�
1=Prey2ij

�� 1
�
=(n� 1)

�
, ð2:1Þ

where:
β, niche breadth; Preyij, fraction of items i in diet that are in food
category j and n, number of possible resources.

Because studies generally depict δ13C and δ15N IR values
graphically in a two-dimensional iso-scape, we extracted data
of urban and rural samples from figures using the program WEB-

PLOTDIGITIZER [67]. We used all three components of trophic
ecology—DSR, DEV and IR—as distinct response variables in
our meta-analysis to isolate predator species-level responses
changes in urbanization.

(c) Statistical analysis
Because dietary metrics were calculated post hoc for each study,
and measures such as variance and sample standard deviation
were not reported for all studies; we estimated within-study vari-
ation using MLE and identifiability. Briefly, this entails assuming
each effect size is a random variable with a probability density
function (PDF) comprised of an overall mean difference par-
ameter (μ), between-study variance (τ2) and within-study
variance (σ2) [66]. If sample sizes are not identical across studies,
the PDF is considered identifiable, and the parameters of interest
can be derived by taking the log-likelihood of the probability
function. It is important to note that once the within-study
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variance (σ2) is calculated, it is assumed equal for all studies and
used to calculate the effect sizes in the meta-analysis. This
approach has previously been used in biomedical research; how-
ever, Sangnawakij et al. [66] used data simulation to demonstrate
the broad applicability of this statistical technique given its
efficacy in estimating within-study heterogeneity [66].

We calculated the effect size of each study using the Hedges’
g, metric which includes a correction term for small sample sizes
to determine the consequences of urbanization on predation
metrics [68,69]. Positive effect sizes indicate an increase in the
response variable in urban environments compared to the
rural/wildland control. Between-group heterogeneity τ² was esti-
mated using the Sidik–Jonkman method and assumed to be
equal for all predator taxa; larger τ² values indicate greater var-
iance of observed effect sizes between taxa [70]. Effect sizes
were derived for each study, for grouped predator taxa and
across all studies. Because some studies used a wildland control
while others used a rural (e.g. agricultural) location to compare
to the urban site, we calculated the mean Hedges’ g richness
and evenness effect size values for these two groups (mean
richnessRural: −0.19, 95% confidence interval (CI): −1.29 to 0.91;
richnessWildland: −0.16, 95% CI: −0.69 to 0.55; evennessRural: 0.01,
95% CI: −0.12 to 0.20; and evennessWildland: −0.01, 95% CI: −2.52
to 0.224). The overlapping confidence intervals indicated a lack of
difference in effect sizes between the two control types and thus
justified the subgroup analysis at the taxonomic level. Sample
sizes for δ13C and δ15N IR values were insufficient to compare
average effect size differences between control types.

We quantified the degree of anthropogenic impact by first
collecting latitude and longitude coordinates from each study’s
urban and rural/wildland sampling sites. For studies where
exact points were not reported, we extracted coordinates based
on the centroid of the discrete study areas. For studies where
urban-rural gradient transects were employed, we assigned coor-
dinates at the extreme points of the study transects (e.g. urban
core versus most peripheral sampling point). We then extracted
HFI values for urban and rural locations for each study using
ARCMAP (ArcGIS Desktop v. 10.7). Urbanization is a complex
process, influenced by multiple pathways of human alterations;
therefore, a composite metric such as the HFI is most appropriate
to capture these processes [71]. The HFI, whose values range
from 0 to 50, is an effort to quantify anthropogenic pressures
on the landscape by incorporating built environments, human
population density, electric infrastructure, crop lands, pasture,
roads, railways and navigable waterways into a single metric at
a global scale [49].
We used mixed effect meta-regression models to determine
how predator taxa and ΔHFI explain the variability of observed
effect sizes [72]. We calculated ΔHFI as HFIURBAN−HFIRURAL,
where positive values indicate greater anthropogenic pressures
in the urban site as expected. We derived two versions of ΔHFI
using the metric calculated in 1993 and later in 2009 [49].
Given the range in publication dates among papers included in
our study (1986–2020), we repeated the meta-regression for
both versions of ΔHFI to determine whether results were
robust to when the metric was calculated. We derived a
regression coefficient (β) and 95% CIs for each taxa to determine
whether ΔHFI explained variation in effect sizes. Significance
was determined based on whether the β and its CI overlapped
zero. To test for publication bias (e.g. asymmetry between the
precision and the statistical significance of the effect sizes) in
the studies included in the analysis, we built a funnel plot to
visualize the overall spread of effect sizes and their correspond-
ing error estimates (electronic supplementary material, figure S2).
Finally, we performed Kendall’s Rank test to quantitatively
assess the correlation between effect size and error estimates.
The meta-analyses were carried out in program R (v. 3.6.3)
using the ‘metafor’ and ‘meta’ packages [73].
3. Results
(a) Data summary
Our initial search yielded 358 studies related to predation in
urban versus rural or wildland systems. Based on our selec-
tion criteria, 32 of the studies from the initial search were
included in our analysis. After a subsequent search to
broaden taxonomic representation, a total of 62 potential
studies were found, of which nine satisfied the criteria for
inclusion. Our final analyses represented a total of 44 studies
with 57 effect sizes that spanned across 39 cities in six conti-
nents (figure 2; electronic supplementary material, table S1).
The year of publication for included studies ranged from
1986 to 2020, with 72% (n = 32) of studies published after
2010. Of the 44 studies, 33 compared urban wildlife diet to
that of rural (e.g. agricultural) areas while 11 a wildland (e.g.
protected or wilderness area) as the reference site. One study
reported diet for two species and another study reported both
diet content and stable isotope ratios. In total, our meta-analysis
was based on 11 986 samples of predator stomach contents, pre-
dation events, hair, and pellets across 40 species from five
predatory taxa. Mammalian (n= 19) and avian (n = 15) studies
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had the greatest representation in our analysis, with 43.2% and
34.1%, respectively. Fishes (n = 4) and reptiles (n = 4) each com-
prised 9% of represented studies, while amphibians (n = 2)
made up 4.5%. Terrestrial and aquatic systems comprised
88.6% and 11.4% of included studies, respectively.

(b) Predation consumption metrics
We investigated consequences of urbanization on three differ-
ent predation consumption metrics that represent a species’
trophic ecology. Contrary to our expectations, overall DSR
was not significantly lower in urban environments when
studies were aggregated for all taxa (Hedges’ g: −1.74, τ2 =
149.08, 95% CI: −6.08 to 2.60). The direction of the effect
varied between taxa subgroups, though the effect size and
respective 95% CI overlapped zero for all taxa (figure 3a).
Fish, bird, and reptilian DSR decreased in response to urban-
ization, indicating a more specialized foraging strategy. By
contrast, most mammals and amphibians consumed a greater
number of prey species and adopted a more generalist
foraging strategy in urban environments.

Contrary to expectations, overall DSR was also not signifi-
cantly lower in cities compared to rural or wildland areas
(Hedges’ g: −0.02, τ2 = 0.02, 95% CI: −0.08 to 0.04). Reptiles,
mammals, and amphibians showed greater DEV (i.e.
comparable representation of individual prey items) in cities
(figure 3b). Conversely, bird and fish diets were skewed in
urban environments, meaning a relatively small number of
prey types dominated consumptive patterns. However, effect
sizes and 95% CIs overlapped zero for all taxonomic subgroups.

We found evidence that diets of urban predators were
more carbon-enriched, as evident by significantly a higher
δ13C IR compared to rural predators (figure 3c,d; Hedges’ g:
1.12 τ2 = 0.65, 95% CI: 0.41 to 1.84). By contrast, urban δ15N
ratios were not significantly different than rural or wildland
predators (Hedges’ g: 0.67 τ2 = 8.42, 95% CI: −1.76 to 3.10).
Overall, urbanization had a stronger influence on the δ13C
ratio, signalling that predators have adopted a strategy of
consuming vast quantities of anthropogenic food sources in
cities, rich in sugar, corn, and wheat.

(c) Human footprint index
Values of HFI varied greatly, even among urban sites, high-
lighting the breadth of intensity of anthropogenic pressures
across ‘urban’ areas. The average HFI for urban sites was
28.7 (range = 17.3–49.4), while only 17.8 (range = 1.1–48.4)
for rural sites in 1993. In comparison, anthropogenic influ-
ences estimates were higher in 2009: the average HFI for
urban sites increased 1.5% (mean = 29.1; range= 18–49.4),
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while the average HFI for rural sites increased 13% (mean =
20.1; range = 1.3–48.4).

When effect sizes were pooled for all predator taxa,
ΔHFI2009 did not significantly affect consumption metrics
(DSR: β = 0.029, 95% CI =−0.02 to 0.08; DEV: β =−0.002,
95% CI =−0.19 to 0.15; δ13C: β =−0.003, 95% CI =−0.31 to
0.29; δ15N: β =−0.002, 95% CI =−2.1 to 2.18). Effect size
responses to HFI were not distinct between studies with a
rural versus a wildland control site (electronic supplementary
material, figure S2). Considering how evenness varied
by taxa, we found that bird evenness had a significant, nega-
tive response to ΔHFI2009 (β =−0.004, 95% CI =−0.008 to
−0.00008). Conversely, fish DEV had a significant, positive
response to ΔHFI2009 (β = 0.007, 95% CI = 0.003 to 0.01),
though overall evenness effect size response to ΔHFI2009
was non-significant. Hedges’ g effect sizes for carbon were
greater as the difference in HFI increased, however this was
not the case for the other diet metrics (figure 4a–d). Therefore,
we found little evidence that the degree of anthropogenic
change on the landscape significantly influenced the
magnitude of effect sizes of urbanization on predation.

4. Discussion
As urbanization alters landscapes worldwide, it is critically
important to understand and anticipate the ecological
consequences to wildlife living within the built environment
[74,75]. Our global meta-analysis revealed that predator
trophic ecology changed significantly in carbon consumption
but was conserved for other diet metrics. Taxa such as amphi-
bians face disproportionately higher extinction rates;
therefore, global regions with high amphibian species
richness coupled with rapid urbanization are particularly
at risk of extensive changes to their faunal community com-
position, underscoring the importance of comparative
urban-rural studies on poorly studied taxa [76].

Broad-scale shifts to DSR and DEV in predator diet owing
to urbanization could have profound ecological implications
for predator–prey relationships, population regulation, and
disease transmission. Yet our results show that urban preda-
tors are maintaining their functional role and consuming a
comparably diverse diet, even if they expanded their diet to
include anthropogenic food sources. Studies used in our
meta-analysis did not assess overall prey availability, which
paired with predator diet could provide deeper insight into
the relationship between urbanization, prey abundance, and
prey selection. Further, prey population densities can in
turn drive predator population increases, potentially fuelling
human–wildlife conflict [52,77,78].

Urban wildlife diets are not necessarily ‘protein poor’
compared to rural and wildland areas, as evidenced by com-
parable levels of nitrogen detected in isotopic signatures.
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However, consumption of carbon-based food items increased
in cities, probably because of direct and indirect consumption
of corn, wheat, and sugar-rich anthropogenic refuse [36]
characteristic of urban habitats. Our results highlight that
the ecological role of predators is not inherently relaxed in
cities. Abundant prey species associated with urban environ-
ments such as brown rats (Rattus norvegicus), rock pigeons
(Columba livia) and house mice (Mus musculus) could poten-
tially be driving predation rates and protein (e.g. nitrogen)
consumption, at least for mammalian and avian predators
[52,54,79,80]. Our findings are contrary to an emerging
hypothesis of relaxed predation phenomenon in urban
areas, described by a meta-analysis of 25 studies that found
predation rates on bird nests were reduced in urban areas
[59]. Of course, relative abundance of both predators and
prey in urban areas would affect predation rates and prey
switching [81], and therefore experiments are necessary to
fully understand the mechanisms affecting predation and
meat consumption in urban and rural habitats. Additionally,
consumption of meat through opportunistic pathways such
as scavenging of refuse is distinct from predation, yet this
process would still result in similar δ15N isotope values
[82]. Further experimental work is needed to disentangle
these two pathways of protein enrichment.

Effect sizes did not correlate with the difference in HFI
between urban and ‘rural’ sites, meaning the intensity of
anthropogenic alterations to the landscape did not signifi-
cantly amplify observed changes to predator diet. These
results were robust to the year when HFI was calculated, sig-
nifying those perturbations to predator trophic ecology had
probably already occurred by the time HFI was first
measured in 1993 and did not change drastically after the
2009 HFI census. A possible explanation for this result is
that while urban ecosystems do induce changes to predator
diet, these effects occur early in the urbanization process
and do not continue to amplify as cities become denser and
more developed. Many cities reported low ΔHFI values,
meaning the difference in their urban core and rural site
was low or close to zero. Importantly, HFI values for some
‘rural’ sites were as high as those designated ‘urban’ in
other studies, underscoring a fundamental challenge in
urban ecology for comparative works. Moreover, such over-
lap in HFI between rural and urban sites demonstrates that
‘rural’ does not equate to ‘natural’ or habitats devoid of
anthropogenic perturbations. Rural areas encompass agricul-
tural production of crops and livestock, each known to alter
vegetation and animal communities [83,84]. Historically,
‘urban–rural’ comparative studies have framed these categor-
izations as dichotomous spaces and carried an implicit
assumption about the relatively intact character of ‘rural’
areas, which is not necessarily consistent at large spatial
and temporal scales [62]. Further, the HFI metric is a compo-
site indicator of human pressures and includes both the built
environment and agricultural activities. Such an approach to
creating a single metric to capture the effects of urbanization
could contribute to low ΔHFI values in comparisons between
rural and urban sites.

While our results provide key insights on predation in
urban environments, we recognize limitations that require
future work. We found bias in taxonomic representation
with more studies on predation across urban–rural gradients
for birds and mammals, particularly in North America where
a small pool of species is over-represented in urban diet
studies. Taxonomic bias is a well-known trend in the conser-
vation ecology field, where charismatic vertebrate species
have been historically over-represented in published studies
[85]. We also found bias in the distribution of sample sizes
across taxa. Molecular techniques in predation studies com-
monly use pellets or scat, requiring additional analysis to
identify individuals in the population. Fewer than 10% of
included studies identified individual host identity, poten-
tially skewing our interpretation of the effect of
urbanization on predation and limiting our inference at
broad ecological scales [86]. The geographical representation
of biomes in published studies was largely skewed to terres-
trial ecosystems, highlighting the urgent need to study
aquatic systems in proximity to urban areas. Regarding
regional representation in the meta-analysis, Africa and
Asia are particularly under-represented relative to their land-
mass and number of major cities. Such regional bias in the
urban ecology literature is not indicative of a lack of research
produced in these continents, but could reflect a lack of
language translation tools in Western publication databases
[87]. Additionally, we acknowledge that some species exhibit
dietary plasticity, shifting their foraging strategies, and that
this behavioural heterogeneity was not captured by our
study [88]. Though we did not include considerations of
omnivory versus strict carnivory in our analysis, such work
would provide important insight into variation in urbanized
diets. Finally, given inconsistencies in studies reporting
sample variances, we highlight the need for such estimates
to facilitate future cross-taxa and cross-site comparisons of
urban ecology.

Wildlife must increasingly adapt to city living and our
synthesis underscores how the built environment modifies
a fundamental ecological process. In a rapidly urbanizing
world, perturbations to predator–prey relationships can dras-
tically change human–wildlife interactions, ecosystem
processes and species extinctions; it is therefore critically
important to understand these changes to inform future
efforts to mitigate them. We recommend future studies aim
to obtain long-term diet data at multiple sites for predatory
species including at the individual level, as quantifying diet-
ary changes over time with growing infrastructures can guide
coexistence strategies for humans and wildlife [89,90]. The
inclusion of stable isotopes in future urban–rural diet ana-
lyses would fill critical information gaps to couple trophic
and urban ecology, as these data capture a crucial dimension
of niche space at a broader trophic level. Recent work has
demonstrated variation in dietary niche and trophic position
for urban versus rural coyotes using stable isotopes [22]. To
conclude, we provide, to our knowledge, the first quantifi-
cation of predator diets in a comparative urban versus rural
or wildland framework for multiple predator taxa at a
global multi-city scale and reveal that urbanization enriches
predator diets with carbon but does not inherently relax
predation.
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