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Aberrant emotion networks in early major depressive
disorder patients: an eigenvector centrality mapping study
Z Song1,2, M Zhang3 and P Huang3

Major depressive disorder (MDD) is a serious mental disorder that negatively affects the quality of life of many individuals, and is a
heavy economic burden to society. In recent years it was thought that depression is a ‘disconnection syndrome’. Disorganized brain
activity and un-modulated emotion responses were considered the key neuropathologies underlying depression. In the present
study, we investigated the alteration of whole brain network connectivity in 28 first-episode, drug-naive patients, using
resting-state functional magnetic resonance imaging and a new analytical method called voxel-based eigenvector centrality
mapping. We found that compared with normal controls, MDD patients had lower functional connectivity in the bilateral middle
frontal gyrus, insula, hippocampus, amygdala and cerebellum, and higher functional connectivity in the medial prefrontal cortex.
The functional connectivity strength at the right hippocampus (r=− 0.413, P= 0.032) and the right insula (r=− 0.372, P= 0.041)
negatively correlated with the severity of the disease. We further examined coordination among these regions, and found that
frontal–subcortical connection was reduced and insula–mPFC connection was increased. These results are consistent with
previous hypotheses on the neural mechanism of MDD, and provide further evidence that emotion networks are already
interrupted in early stages of depression.
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INTRODUCTION
Major depressive disorder (MDD) is a serious psychiatric mood
disorder, which typically presents as persistent dysthymia, anhedo-
nia and occasional suicidal ideation and behaviors.1 The lifetime
prevalence of MDD ranges from 1.52 to 16.2%3 across various
studies. MDD exerts a heavy socioeconomic burden because of
increased disability and suicide rates.4 The neuropathology under-
lying MDD is still unclear. Therefore, even at present, the diagnosis
and treatment of depression can be challenging.
In recent years, it has been suggested that depression is not

localized to a single brain area and that a network perspective is
necessary to explain its complex etiology. Based on the fact that
widespread brain areas were found abnormal in MDD patients,5,6

constituting an ‘emotion network’, more and more researchers
have begun to believe that depression is a ‘disconnection
syndrome’.7,8 Alteration in important nodes of the emotion
network may induce aberrant function of the whole network,
causing depression. Specifically, it has been suggested that
frontal–subcortical neural circuits play an important role in the
pathogenesis of MDD.9 Interrupted coordination within and
among large-scale functional networks were also implicated.10,11

Both gray matter and white matter deficits in these populations
might be the reason for disrupted network functions.12–14 Indeed,
a network perspective supports the high heterogeneity of
depression, and explains how different treatment methods might
take effect.15

Although these hypotheses have found support from
neuroimaging-based network studies, inconsistency still exists,
possibly due to the different methods used in these studies. In the

past, seed-based functional connectivity had been extensively
used to explore the coordination between a specific region of
interest (ROI) and the whole brain, or among several pre-specified
ROIs. While it is useful to test a particular hypothesis, the selection
of ROIs is quite subjective. As different researchers use different
ROIs, it is difficult to make direct comparisons across studies.16,17

In addition, the selected ROIs may not be truly representative of
the designated region because of segmentation problems18 or
template bias19 or high heterogeneity within them. Different ROI
selection methods may greatly influence the result of network
connectivity analysis.20 This problem also exists in ROI-based
whole brain graph theory analysis.21 Despite the fact that some
data-driven methods were used, such as independent component
analysis, they usually explain sub-network connectivity10 or
interaction among large-scale functional networks.22 Therefore, a
simple voxel-based, bias-free method is desirable for future
studies and clinical applications assessing brain network changes
in MDD patients.
In the present study, we aimed to assess the brain network

alterations in MDD patients, using resting-state functional
magnetic resonance imaging and a new graph-based method
called eigenvector centrality mapping (ECM). This method can
objectively detect all the brain areas serving as communication
hubs, which have greater connectivity with other parts of the
brain. It can be performed in a voxel-wise manner and does not
require manual selection of the seed regions, therefore it is free of
researcher selection bias. We hypothesize that emotion-related
networks may have already been interrupted in early MDD
patients, and these alterations can be detected using ECM.
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MATERIALS AND METHODS
Subjects
We recruited 28 MDD patients in the present study. Unipolar depression
was diagnosed according to DSM-IV criteria by an experienced psychiatrist.
Scores of the Hamilton Rating Scale for Depression (HRSD), Beck
Depression Index (BDI) and the Mini-Mental State Examination (MMSE)
were obtained from all subjects. Twenty-seven normal controls (NC)
without any history of neurologic or psychiatric disorders, or brain trauma
at any time of their lives, were also enrolled. Table 1 shows detailed
characteristics of the two groups. All patients were first-episode, drug-
naive patients with short disease durations. All the subjects signed written
informed consent before taking part in the study. This research was
approved by the Medical Ethic Committee of the Second Affiliated
Hospital, Zhejiang University School of Medicine.

fMRI data acquisition
Scanning was carried out on a 3.0 T magnetic resonance scanner (Siemens
3.0T Trio Tim, Munich, Germany). Participants were fitted with soft
earplugs, positioned comfortably in the coil, and instructed to relax and
remain still. Head motion was minimized with foam pads. Participants were
excluded if they had excessive head motion with 42 mm of translation or
2° of rotation, which was confirmed on a workstation immediately after the
scanning. High-resolution three-dimensional T1-weighted images were
acquired with a three-dimensional magnetization-prepared rapid acquisi-
tion gradient echo sequence with the following parameters: repetition
time 8.5 ms, echo time 3.4 ms, flip angle 12°, 156 axial slices with 1 mm
thickness, axial field of view 24 × 24 cm2 and matrix 256× 256. Blood
oxygen level-dependent images were acquired using an echo planar
imaging sequence. The acquisition parameters were: time of
repetition= 2000 ms, time of echo= 30 ms, flip angle = 90°, 30 interleaved
descending slices and voxel size = 3.8 × 3.8 × 5.0 mm3. Several other
sequences were also scanned and the total duration for each subject
lasted about 40 min.

Preprocessing
Preprocessing was performed using the Data Processing Assistant for
Resting-State fMRI (http://www.restfmri.net) and the Resting-State fMRI
Data Analysis Toolkit (Rest, V1.8, http://www.restfmri.net), based on
statistical parametric mapping-8 (SPM8, www.fil.ion.ucl.ac.uk/spm/) and
Matlab R2010 (www.mathworks.com). The first 10 images were excluded
from the analysis. The remaining images were corrected for slice timing
with the middle slice used as a reference, realigned to remove head
motion, normalized into the standard space, and resampled to a
3× 3× 3 mm3 voxel size. The resulting images were then smoothed using
a 4-mm Gaussian kernel before proceeding to the next step.

Functional connectivity analysis
The human brain is organized as a complex network with small world
properties.23 Therefore, graph-based analysis could provide valuable
information for elucidating the brain's network structures. Eigenvector
centrality is a particular type of graph-based method that identifies
important nodes in the network. It does so by counting both the number
and the quality of connections so that a node with few connections to
some other high-ranking nodes may outrank one with a larger number of
low-ranking connections.24 Google’s ‘PageRank’ algorithm25 is a variant of
eigenvector centrality. Like its success in the web search engine,
eigenvector centrality has also been proven to be valuable in analyzing
human brain networks.26,27

Here, the ECM of the pre-processed image data was performed using
the fast ECM tool (https://code.google.com/p/bias/source/browse/matlab/
fastECM), which yielded a voxel-wise measure of relevance to the
functional brain network. Compared with the traditional ECM calculation
method, the fast ECM tool is faster and computationally more efficient
because it computes matrix-vector products without having to compute or
store the connectivity matrix.28 Detailed analysis procedures can be seen in
the study by Wink et al.28

By using ECM, we successfully identified several brain regions where
there was a significant difference of nodal centrality. To further explore the
relationship among these areas, and to test whether these findings were
consistent with previous theories of the neural mechanism of depression,
we calculated the functional connectivity among them. Blood oxygen
level-dependent signals were extracted from all significant clusters, and
Pearson correlation was calculated in a pair-wise manner. The correlation
coefficients were transformed into z distribution using Fisher r-to-z
transformation.

Statistical analysis
Age was compared between the two groups using a two-sample t-test. A
Χ2 test was performed to compare the sex differences. For image data,
motion correction was assessed using frame wise displacement (FD), which
measures the motion of each brain volume compared with the previous
volume.29 Mean FD was compared between the two groups using an
independent two-sample t-test. Eigenvector centrality differences between
the two groups were compared using a two-sample t-test performed in
SPM8, during which age and sex were included as covariates. The
threshold for ECM analysis was set at Po0.001, voxel size 410, corrected
using the false discovery rate method. Significant clusters were used to
extract connectivity values from the two groups and to calculate
correlation with scale scores. For connectivities among significant clusters,
a two-sample t-test was used to examine the difference between the two
groups. Multiple comparison correction was performed using the
Bonferroni method.

RESULTS
Statistical analysis showed no significant differences in age and
sex between the two groups. Analysis of mean FD demonstrated
no significant differences between groups. ECM analysis showed
that compared with NCs, the patients groups had lower functional
connectivity in the bilateral middle frontal gyrus (MFG), insula,
hippocampus, amygdala and cerebellum (Figure 1, Table 2).
Meanwhile, the patients had increased functional connectivity in
the mPFC. The effect size of this comparison was quite high,
ranging from 1.33 to 1.69 for each significant cluster. Furthermore,
functional connectivity strength at the right hippocampus

Table 1. Demographic characteristics

Patients Controls P

Age (years) 30.9± 9.5 27.5± 6.4 0.124
M/F 11/17 13/14 0.591
Duration (m) 5.5± 3.5 — —

HRSD 29.1± 4.9 — —

BDI 32.9± 8.3 — —

Abbreviations: BDI, Beck depression index; F, female; HRSD, Hamilton rating
scale for depression; M, male.

Figure 1. Functional connectivity strength differences between the
MDD patients and normal controls. Warm colors indicate areas with
higher functional connectivity in normal controls. Cold colors
indicate higher functional connectivity in patients. MDD, major
depressive disorder.
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(r=− 0.413, P= 0.032) and the right insula (r=− 0.372, P= 0.041)
negatively correlated with the severity of the disease (HRSD). To
test whether these alterations were in line with previous
hypotheses about depression, we explored the frontal–subcortical
connectivity and insula–mPFC connectivity. Six connections were
calculated and compared between the two groups. As shown in
Figure 2, we found that frontal–subcortical connections were
significantly reduced in the patient group (Table 3). In contrast, the
connection between left insula and mPFC was significantly
increased in the patients group (P= 0.003).

DISCUSSION
To the best of our knowledge, this is the first study using the
voxel-based ECM method to assess the whole brain network
connectivity of MDD patients. Compared with NCs, depressed
patients showed decreased functional connectivity in the frontal
lobes, amygdala, hippocampus and cerebellum, and increased
functional connectivity in the mPFC. Correlation between func-
tional connectivity strength and HRSD scores was found in the
right hippocampus and right insula. Furthermore, we verified
aberrant frontal–subcortical coordination and insula–default
mode network (DMN) connection in the patient group, which is
consistent with previous theories about the mechanism of
depression. These results suggest that without choosing ROIs
subjectively, we can still detect important emotion network

changes in depressed patients using the ECM method, which may
have great potential in future studies on network changes of MDD.
First, we found decreased functional connectivity in the bilateral

MFG; part of the dorsolateral prefrontal cortex (DLPFC). The DLPFC
is primarily responsible for cognitive and executive functions,
though it also plays important roles in regulating emotions
through reappraisal/suppression strategies.30 Abnormal DLPFC
structures and functions have been consistently reported in early
MDD patients31,32 and those with familial risk for MDD.33,34 It is
believed that deficits in the DLPFC may confer vulnerability to
depression.35 Here the decreased functional connectivity in the
DLPFC implies that its interaction with other brain areas is
weakened. The disruption of DLPFC connections has also been
documented in several previous studies36,37 using ROI-based
functional connectivity method.
Second, we found decreased functional connectivity in the

limbic regions, including amygdala and hippocampus. Limbic
structures are very important for spontaneous response to
external emotional information. However, the reappraisal and
regulation of spontaneous activities in these areas rely on
cognitive analysis in higher cortices. Depressed patients often
have chaotic and disorganized limbic activities,38,39 which may be
why they more often show uncategorized, biased responses than
normal subjects when facing emotional stimuli.40 Besides, there
were negative correlations between the functional connectivity
strength of the amygdala, hippocampus and HRSD scores,
suggesting that the more disorganized they were, the greater
the chance the disease would become worse.
Taken together, the decreased frontal–subcortical functional

connectivity is consistent with the previous hypothesis about theTable 2. Areas showing significant difference of functional
connectivity strength between the two groups

Contrast Voxels Brain regions MNI coordinate Peak t

NC4MDD 145 Left cerebellum − 21 − 63 − 30 7.18
79 Right cerebellum 27 − 63 − 33 6.47
35 Right hippocampus

Right parahippocampal
gyrus

21 − 27 − 9 5.60

51 Left hippocampus
Left parahippocampal
gyrus
Left amygdala

− 30 − 12 − 15 5.23

65 Right insula 30 18 − 3 5.39
22 Left insula − 33 3 − 3 5.47
12 Left middle frontal

gyrus
− 27 − 6 42 5.21

10 Right middle frontal
gyrus

42 0 42 5.19

NCoMDD 241 Medial frontal gyrus 3 63 3 6.41

Abbreviations: NC, normal control; MDD, major depressive disorder.

Figure 2. Frontal–subcortical and mPFC–insula functional connectivities of the two groups. Frontal–subcortical connections were significantly
reduced in the patient group. The connection between left insula and mPFC significantly increased in the patients group. hippo_amyg,
hippocampus and amygdala; l, left; mfg, left middle frontal gyrus; mPFC, medial prefrontal cortex; r, right.

Table 3. Frontal–subcortical connectivity and insula–mPFC
connectivity in the two groups

NC Depression P-value

l_middle_frontal_gyrus
l_hippocampus_amygdala 0.69± 0.29 0.34± 0.22 0.000
r_hippocampus_amygdala 0.61± 0.26 0.28± 0.17 0.000

r_middle_frontal_gyrus
l_hippocampus_amygdala 0.62± 0.26 0.35± 0.14 0.000
r_hippocampus_amygdala 0.57± 0.23 0.25± 0.18 0.000

medial prefrontal cortex
l_insula 0.02± 0.26 0.25± 0.22 0.003
r_insula 0.05± 0.28 0.14±0.22 0.15

Abbreviation: NC, normal control. Ten comparisons had been made, and
the threshold for significance is set at P= 0.005.
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frontal–subcortical uncoupling in depressed patients.41,42 When
the higher cognitive functions of the DLPFC were damaged, or
frontal–subcortical connections were interrupted, activities in
subcortical areas were no longer constrained, and became chaotic
and blunted. This hypothesis is quite popular and has been tested
in several studies using functional imaging methods to study the
mechanism of MDD.37,43,44 A recent effective connectivity study
showed that top–down regulation from the DLPFC to the
amygdala was greatly impaired in depressed patients and
bottom–up connections were increased.37 To explore whether
the changes we found were in line with this hypothesis, we tested
the connectivity among bilateral MFG and subcortical structures.
The result showed significantly decreased connectivity between
the frontal clusters and subcortical areas in depressed patients,
confirming frontal–subcortical uncoupling.
Insula connectivity was found to be reduced. The insula also has

a well-established role in processing affect and emotion, and has
been frequently found to be abnormal in depressed patients.45,46

Specifically, the anterior insula has rich connections with limbic
and cortical regions. Together with the anterior cingulate gyrus,
they form an important network called the salience network (SN).
The SN is of specific importance for the processing of a stimulus
salience47 and regulating balance between the DMN and
executive control network,48 drawing much attention from
researchers worldwide. As part of the SN, disturbance in the
insula may greatly impair its ability in coordinating the patient’s
attention being directed either toward the external world or the
internal perception of self-related processes, resulting in depres-
sive symptoms. A previous study also found decreased anterior
insula connectivity, which negatively correlated with disease
severity.49

Interestingly, besides decreased functional connectivity, we also
found increased functional connectivity in the medial prefrontal
cortex of the depressed patients.50 The medial prefrontal cortex is
a central hub of the DMN, which has an important role in
introspection. The increased functional connectivity strength
within the DMN has been consistently reported in studies on
depression,51,52 which could lead to the patient’s clinical
symptoms, such as rumination.53 Sheline et al.54 reported that
depressed patients were characterized by the inability to reduce
DMN activity when facing negative stimuli. Using independent
component analysis, Zhu et al.55 also revealed increased functional
connectivity in anterior medial regions of the depressed patients.
Furthermore, after antidepressant treatment, the elevated DMN
connectivity in MDD patients could be normalized.56 In general,
previous studies mostly agreed that depressed patients had
hyper-connectivity in the DMN.51,53

DMN hyper-connectivity has been ascribed to SN dysfunctions
in several previous studies on MDD patients.49,51 Increased
communication between DMN and SN may have helped to form
an aberrant circuit causing biased self-referential processes. To
further test this theory, we extracted signals from the bilateral
insula and mPFC, and calculated their correlations. The results
showed that the coordination between the left insula and mPFC
was significantly increased in the patient groups, despite that the
overall connectivity strength was reduced. Therefore, our results
support the theory that biased SN modulation on DMN contribute
to depression.
There are several limitations in the present study. First, due to

the heavy work load in our hospital, all of our patients were
evaluated by only one psychiatrist, instead of two or more,
through structured interviewing to diagnose MDD using the SCID
(Structured Clinical Interview for DSM Disorders). Hence, some
subjective bias might have been introduced during the diagnosis
and scale evaluation procedure. Second, although our study had
revealed brain network alterations in the patients group, the
results were limited to the resting-state brain activities. How these
brain areas activate and interact during emotional processing is

important and need task-based fMRI investigations. The third
limitation is the relatively small sample size. The findings of the
present study still need further validation in a larger patient
cohort.
In general, our study revealed reduced functional connectivity

within several important nodes of emotional networks. These
results are consistent with two main theories about brain network
disruptions in MDD patients, and suggest that functional brain
network had already been interrupted in the early stages of MDD.
The ECM method has proven to be a powerful tool in detecting
brain network changes, and is of great potential in studying the
neuropathology underlying MDD, without the introduction of
subjective ROI bias. Therefore, future studies using the ECM
method to observe the brain network dynamics related to the
development and treatment of MDD are warranted.
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