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The durability of immunity against reinfection by 
SARS-CoV-2: a comparative evolutionary study
Jeffrey P Townsend, Hayley B Hassler, Zheng Wang, Sayaka Miura, Jaiveer Singh, Sudhir Kumar, Nancy H Ruddle, Alison P Galvani, Alex Dornburg

Summary
Background Among the most consequential unknowns of the devastating COVID-19 pandemic are the durability of 
immunity and time to likely reinfection. There are limited direct data on SARS-CoV-2 long-term immune responses 
and reinfection. The aim of this study is to use data on the durability of immunity among evolutionarily close 
coronavirus relatives of SARS-CoV-2 to estimate times to reinfection by a comparative evolutionary analysis of related 
viruses SARS-CoV, MERS-CoV, human coronavirus (HCoV)-229E, HCoV-OC43, and HCoV-NL63.

Methods We conducted phylogenetic analyses of the S, M, and ORF1b genes to reconstruct a maximum-likelihood 
molecular phylogeny of human-infecting coronaviruses. This phylogeny enabled comparative analyses of 
peak-normalised nucleocapsid protein, spike protein, and whole-virus lysate IgG antibody optical density levels, in 
conjunction with reinfection data on endemic human-infecting coronaviruses. We performed ancestral and 
descendent states analyses to estimate the expected declines in antibody levels over time, the probabilities of 
reinfection based on antibody level, and the anticipated times to reinfection after recovery under conditions of 
endemic transmission for SARS-CoV-2, as well as the other human-infecting coronaviruses.

Findings We obtained antibody optical density data for six human-infecting coronaviruses, extending from 128 days to 
28 years after infection between 1984 and 2020. These data provided a means to estimate profiles of the typical 
antibody decline and probabilities of reinfection over time under endemic conditions. Reinfection by SARS-CoV-2 
under endemic conditions would likely occur between 3 months and 5·1 years after peak antibody response, with a 
median of 16 months. This protection is less than half the duration revealed for the endemic coronaviruses circulating 
among humans (5–95% quantiles 15 months to 10 years for HCoV-OC43, 31 months to 12 years for HCoV-NL63, and 
16 months to 12 years for HCoV-229E). For SARS-CoV, the 5–95% quantiles were 4 months to 6 years, whereas the 
95% quantiles for MERS-CoV were inconsistent by dataset.

Interpretation The timeframe for reinfection is fundamental to numerous aspects of public health decision making. 
As the COVID-19 pandemic continues, reinfection is likely to become increasingly common. Maintaining public 
health measures that curb transmission—including among individuals who were previously infected with 
SARS-CoV-2—coupled with persistent efforts to accelerate vaccination worldwide is critical to the prevention of 
COVID-19 morbidity and mortality.
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Introduction
The ongoing COVID-19 pandemic has resulted in over 
4∙5 million deaths worldwide. Approaches to control 
COVID-19 depend on the durability of immunity conferred 
by recovery and by vaccination. However, predicting 
the durability of immunity against the virus causing 
COVID-19, SARS-CoV-2, remains challenging amid a 
pandemic. During the rapid expansion of the pandemic, 
there have been few documented reinfections relative to 
the overall incidence. Short-term longitudinal studies of 
the levels of SARS-CoV-2 neutralising antibodies1,2 at best 
provide lower bounds for the durability of immunity. By 
contrast, the long-term waning of antibody levels following 
infection has been assessed among close coronavirus 
relatives of SARS-CoV-2, including SARS-CoV, MERS-CoV, 
human coronavirus (HCoV)-OC43, HCoV-229E, and 

HCoV-NL63.3–7 Extensive reinfection data over time 
have been collected for seasonal endemic coronaviruses 
(HCoV-OC43, HCoV-229E, and HCoV-NL63).7 The 
zoonotic coronavirus SARS-CoV-2 is unlikely to have 
evolved an especially divergent interaction with the 
mammalian immune system compared with its close 
coronavirus relatives.7 Therefore, the waning of humoral 
immunity against SARS-CoV-2, the observed rates of 
antibody decline after infection, and the probability of 
reinfection given antibody levels for multiple close relatives 
of SARS-CoV-2 can be estimated from a phylogenetic 
analysis of the ancestral and descendent states8 that fills in 
critical gaps in our knowledge of SARS-CoV-2. This well 
established phylogenetic approach that weights the effect 
of estimates from close relatives inversely by their 
evolutionary divergence and the speed at which the trait 

http://crossmark.crossref.org/dialog/?doi=10.1016/S2666-5247(21)00219-6&domain=pdf


Articles

e667	 www.thelancet.com/microbe   Vol 2 December 2021

See Online for appendix 1 evolves can then provide estimates of the probabilities 
of reinfection. The aim of this study is to estimate 
these probabilities and the corresponding likely times of 
reinfection associated with the human-infecting corona
viruses SARS-CoV, MERS-CoV, HCoV-229E, HCoV-OC43, 
HCoV-NL63, and especially SARS-CoV-2.

Methods
Study design
We conducted phylogenetic analyses of the S, M, and 
ORF1b genes to reconstruct a maximum-likelihood 
molecular phylogeny of human-infecting coronaviruses. 
This phylogeny enabled comparative analyses of nucleo
capsid protein, spike protein, and whole-virus lysate post-
infection IgG antibody optical density data in response to 
human-infecting coronaviruses, and of the corresponding 
probabilities of reinfection. Ancestral and descendent 
states analyses provided estimates of the expected 
declines in antibody levels over time, as well as inferred 
parameters for linear logistic models relating the 
probabilities of reinfection to antibody level and quanti
fying the anticipated times to reinfection after recovery 
under conditions of endemic transmission.

Data acquisition
Alphacoronavirus, betacoronavirus, deltacoronavirus, 
and gammacoronavirus whole-genome sequences were 
obtained from the GenBank genome database at NCBI 

(appendix 1 p 1). The Markov Clustering (MCL) algorithm 
implemented in MCLBlastLINE9 was used to identify 
homologous genes for all coronavirus genomes. We 
specified an inflation parameter of 1∙8 that has frequently 
been effective in other contexts10 and that accurately 
predicted homologues for all single-copy genes within 
these genomes. Three core genes (S, M, and ORF1b) 
were present as single copies in all viral genomes 
(appendix 1 p 2) and were chosen for further analysis. 
Sequences of S, M, and ORF1b were aligned with 
TranslatorX,11 then concatenated.

To find data on waning antibody levels we used PubMed 
and Google Scholar search for terms related to human-
infecting coronavirus and antibody optical density or 
titre. Searches were performed between Oct 1, 2020, and 
June 30, 2021, using each coronavirus name “SARS-
CoV-2”, “HCoV-NL63”, “SARS-CoV”, “SARS-CoV-1”, 
“MERS-CoV”, “HCoV-229E”, “HCoV-OC43”, and “HCoV-
HKU1” in combination with “antibodies”, “antibody 
response”, “coronavirus”, “ELISA”, “IgG”, “immunity”, 
“immune response”, “longitudinal monitoring”, 
“N protein”, “Nucleocapsid”, “neutralising antibodies”, 
“optical density”, “S protein”, “Spike protein”, “reinfection”, 
“serological”, and “titer”. There were no language 
restrictions imposed on this search.

ELISA-based optical density measures of IgG antibody 
levels over time consequent to infection by each of the six 
human-infecting coronaviruses were extracted from 

Research in context

Evidence before this study
We searched PubMed and Google Scholar for articles containing 
information on antibody levels after recovery from infection 
by the coronaviruses SARS-CoV-2, SARS-CoV, MERS-CoV, 
human coronavirus (HCoV)-OC43, HCoV-HKU1, HCoV-NL63, 
and HCoV-229E, and corresponding times of reinfection. 
We applied no language restriction and included articles 
published from database inception up until June 30, 2021. 
Full search details are described in the Methods. We found 
one or more studies on each of these viral species providing 
data on the waning of IgG antibodies to spike protein, 
nucleocapsid protein, or whole-virus lysate following infection. 
Additionally, one study provided distributions of times to 
reinfection for coronaviruses. However, no studies provided 
estimates of the typical time to reinfection for SARS-CoV-2, 
SARS-CoV, or MERS-CoV.

We then searched PubMed and Google Scholar using the terms 
“phylogeny”, “phylogenetics”, “ancestral state estimation”, 
“evolution”, and “phylogenomics” in conjunction with the 
terms from our previous search for articles containing 
information on the phylogenetic relatedness of these 
coronaviruses, published from database inception until 
June 30, 2021. No language restrictions were applied to this 
search. We found extensive sequence data on these species 
and well resolved phylogenies of their relationships. However, 

no analysis made explicit use of the resolved phylogenetic 
relationships to perform rigorous estimation of durability of 
immunity against reinfection by SARS-CoV-2.

Added value of this study
We provide the first estimates of the expected probability of 
infection given IgG antibody levels to the spike protein for 
SARS-CoV-2, as well as for SARS-CoV, MERS-CoV, and the 
endemic coronaviruses HCoV-229E, HCoV-HKU1, HCoV-OC43, 
and HCoV-NL63, under endemic conditions. Characterising the 
typical waning profile over time for IgG antibody levels to the 
spike protein, nucleocapsid protein, and to whole viral lysate, 
we derive the corresponding probabilities of SARS-CoV-2 
reinfection that provide a timeframe crucial to numerous 
aspects of public health decision making.

Implications of all the available evidence
Reports of eventual reinfection by SARS-CoV-2 are mounting, 
but they have not reached proportions within well surveilled 
cohorts that would enable a quantitative epidemiological study. 
As a pioneering estimate, our findings are consistent with the 
mounting reports of eventual reinfection by SARS-CoV-2, 
and indicate that reinfection after natural recovery from 
COVID-19 will become increasingly common as the 
pandemic progresses.
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published, peer-reviewed research papers. Studies were 
deemed sufficient for inclusion when they reported 
ELISA optical density data for anti-N IgG, anti-S IgG, or 
anti-whole virus lysate IgG antibody levels that extended 
more than 3 months after the peak of the respective IgG 
antibody response to infection.

Phylogenetic analyses
We analysed the concatenated alignment of the S, M, and 
ORF1b genes to reconstruct a maximum-likelihood 
molecular phylogeny of the four coronavirus genera, 
specifying a general time-reversible model of nucleotide 
substitution incorporating discretised gamma-distributed 
rate variation across sites and a proportion of invariable 
sites (GTR + I + Γ4 model). To assess the effect of the 
likelihood search algorithm on our inference, we used 
two maximum-likelihood methods, IQ-TREE v2.0.612 
and RAxML v7.2.8.13 with 1000 non-parametric bootstrap 
replicates to assess node support. We time-calibrated 
maximum-likelihood phylogenies using least-squares 
dating (LSD2)14 in IQ-TREE v2.0.6,12 then two additional 
methods to assess consistency: Relative Times (RelTime)15 
in MEGA X v10.1.9,16 and TreeTime v0.7.6. For the RelTime 
analysis, we provided the RAxML-derived and IQ-TREE-
derived maximum-likelihood phylogeny with estimated 
branch lengths as the input phylogeny with the 
deltacoronavirus clade designated as the outgroup as 
indicated by Chan and colleagues.17 Divergence times 
were calibrated using the earliest time each virus was 
sampled. The TreeTime analysis was performed by 
providing the same information that was provided to 
RelTime, including branch lengths and the root 
specification. Tips that did not follow a loose clock were 
not ignored in the analysis. To assess the effect of our 
choice of outgroup lineage, we repeated the TreeTime 
analysis with an unrooted input phylogeny, and used the 
option to estimate a root, with other parameter settings 
unchanged from those already specified. Because some 
areas of the SARS-CoV-2 genome have been suggested to 
recombine,18 phylogenetic analyses were repeated using 
non-recombining blocks of sequence18 that were realigned 
and analysed using the methods already identified. This 
additional analysis enabled us to ascertain whether a 
history of recombination among or within the S, M, and 
ORF1b genes had any discernible effect on our estimates. 
For all analyses, divergence times were scaled pro
portionally to the most recent common ancestor.

Waning antibody profiles and baselines
To construct profiles of antibody waning through time, we 
first extracted antibody levels after peak infection for 
SARS-CoV-2, SARS-CoV, HCoV-OC43, HCoV-HKU1, 
HCoV-NL63, and HCoV-229E from published studies 
identified in PubMed and Google Scholar searches. We 
normalised all optical density quantiles to ensure that 
the post-infection peak optical density was 1∙0 for each 
virus. This normalisation accounts for arbitrary scaling 

associated with assay-specific optical density measure
ments from ELISAs, ensuring a consistent scale relative to 
peak when analysing optical density data between studies. 
The normalised optical density data were analysed using 
Mathematica v12.0.0.6206964 to calculate the average rate 
of antibody decline at 0∙05 intervals between 0 and 1. 
A typical antibody waning profile was then calculated by 
decreasing antibody levels each day from 1∙0 (the peak) by 
the average rate of decline attributed to the 0∙05 bracket 
enclosing the previous daily value, to the point whereby 
the decline rates for lesser brackets were no longer 
available (because of the absence of long-term antibody 
waning data for that virus) or until the empirical 
baseline was reached. For endemic coronaviruses, the 
baseline coronavirus IgG antibody level to nucleocapsid 
(N) protein was directly quantified as the lowest level 
observed in an extensive longitudinal study by Edridge 
and colleagues.7 In the absence of long-term longitudinal 
studies of endemic infections by MERS-CoV, SARS-CoV, 
and SARS-CoV-2, the baseline IgG antibody levels for 
these viruses could not be estimated by such empirical 
observation. Instead, we estimated the baseline antibody 
levels for MERS-CoV, SARS-CoV, and SARS-CoV-2 using 
phylogenetic ancestral and descendent states analysis via 
Rphylopars v0.2.12.8 This approach applies a Brownian 
model of trait evolution along a phylogenetic tree to 
estimate unobserved trait values for a taxon or taxa, 
providing best linear unbiased predictions that are 
mathematically equivalent to universal kriging (Gaussian 
process regression).8 Using Mathematica, we next 
computed the best least-squares fit of an augmented 
exponential function

to each typical antibody waning profile, in which ω was 
the observed (in the case of endemic coronaviruses) or 
phylogenetically informed baseline antibody level, 
and λ was the corresponding exponential decline to the 
baseline specific to the virus and antibody under 
consideration. With this phylogenetically informed 
function, we projected the time-course for each typical 
antibody waning profile beyond the extant dataset to the 
duration of the longest full typical antibody waning 
profile inferred (HCoV-229E, 4393 days after peak 
infection).

To place this projection of antibody waning into a 
probabilistic framework for infection, we performed a 
linear logistic regression of daily probability of infection 
against antibody level based on the data from Edridge 
and colleagues,7 yielding an infection function

with parameters a (intercept) and b (slope) for each 
endemic coronavirus, dependent on g, the peak-
normalised antibody level. Using Rphylopars v0.2.12, we 

ω + (1 – ω) × e–λ

[1 + e–(a + b × g)]–1
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then performed ancestral and descendent states analysis 
to estimate the a and b parameters for the zoonotic 
viruses, specifying as coevolving and correlated traits our 
quantifications of λ and their phylogenetically informed 
baseline antibody levels. In Mathematica, we used the 
typical plus projected antibody waning time courses for 
each virus and the logistic infection function inferred for 
each virus to calculate the probability of infection on each 
day, and finally calculated how many days it took for the 
probability of infection by a given day to accumulate 
to 0∙05, 0∙5, and 0∙95. These quantiles correspond to 
the times by which 5%, 50%, and 95% of individuals 
would be expected to become reinfected under endemic 
conditions. Comprehensive custom Mathematica note
books illustrating our approach and used to perform the 
analyses are available on Zenodo. To assess the effect of 
method of phylogenetic inference on our phylogenetic 
trait estimation of the baseline antibody level ω and the 
linear logistic infection function parameters a and b, we 
repeated phylogenetic ancestral and descendent states 
analysis via Rphylopars8 using resulting molecular 
phylogenies from IQ-TREE and RAxML and the relative 
phylogenetic chronograms estimated using RelTime and 
TreeTime, as well as the phylogenies produced using the 
non-recombinant alignment. The resulting parameter 
estimates for linear logistic infection function parameters 
a and b and the baseline antibody level ω were compared 
with the results conditioned on the relative phylogenetic 
chronogram estimated in IQ-TREE.

To assess the effect of using alternate sources of 
IgG antibody data on our analyses, we performed five 
additional analyses, designated 2–6. (2) We substituted 
an alternate anti-N IgG optical density dataset for 
SARS-CoV,19 and performed an analysis that was 
otherwise identical to the original analysis (analysis 1). 
(3–4) We inferred a linear model in Mathematica 
relating anti-S IgG antibody levels to anti-N IgG 
antibody levels based on a SARS-CoV-2 cohort,20 and 
applied it to anti-N IgG antibody data for the endemic 
coronaviruses to specify putative anti-S IgG antibody 
waning. We paired these putative anti-S IgG antibody 
level data for the endemic coronaviruses with direct 
anti-S IgG antibody level data for SARS-CoV-2 along 
with two distinct datasets on anti-S IgG antibody level 
in response to infection by MERS-CoV,3,21 constituting 
two analyses (3 and 4) without SARS-CoV, each yielding 
a distinct result. (5) We inferred a linear model relating 
anti-virus IgG antibodies to anti-N IgG antibody levels 
based on a SARS-CoV cohort in which both were 
measured19 and applied it to anti-N IgG antibody data 
for the endemic coronaviruses to specify putative 
anti-virus IgG antibody waning for the endemic 
coronaviruses. We paired these putative anti-virus 
IgG antibody levels for the endemic coronaviruses 
with directly measured anti-virus IgG antibodies for 
SARS-CoV-2 and performed an analysis without 
MERS-CoV. (6) We conducted an analysis that was 

otherwise identical to analysis 5, except that we used 
alternate anti-virus IgG antibody levels in response to 
infection by SARS-CoV.5

Role of the funding source
The funders of the study had no role in study design, 
data collection, data analysis, data interpretation, or 
writing of the report.

Results
Between Feb 12 and June 15, 2020, we accessed 
58 alphacoronavirus, 105 betacoronavirus, 11 deltacorona
virus, and three gammacoronavirus genome sequences 
for analysis (appendix 1 p 1). Our phylogenetic analyses 
generated a topology of the evolutionary relationships 
for the seven human-infecting coronaviruses, SARS-CoV-2, 
SARS-CoV, MERS-CoV, HCoV-OC43, HCoV-NL63, 
HCoV-229E, and HCoV-HKU1 (figure 1A; appendix 2 p 3). 
We excluded the human-infecting endemic coronavirus 
HCoV-HKU1 from figure 1A and from subsequent 
analyses because there were only two data points for 
infections by this virus, within just one individual from 
Edridge and colleagues.7 Our phylogenetic analysis shows 
that SARS-CoV and SARS-CoV-2 are closely related, 
MERS-CoV is the sibling lineage to this SARS-CoV clade, 
with other endemic coronaviruses representing more 
distant outgroups (figure 1A). Our estimates of these 
phylogenetic relationships were congruent across multiple 
methods of inference with strong (100% bootstrap) support 
for all nodes (appendix 2 p 4), consistent with previous 
hypotheses of evolutionary relationships among corona
viruses (figure 1A; appendix 2 pp 5–6).23

Our literature search for antibody data subsequent to 
infection identified seven studies that met the criteria of 
having sufficient ELISA optical density data on anti-N 
IgG, anti-S IgG, or anti-whole virus lysate IgG antibody 
levels for comparative analysis.3,5,7,19–21,22 These studies 
yielded six comparative datasets that provided insight 
into the durability of immunity as well as into the 

Figure 1: Evolutionary divergences, peak-normalised coronavirus anti-spike 
protein IgG antibody levels, daily probabilities of infection given antibody 

level, and probabilities of reinfection for human-infecting coronaviruses 
SARS-CoV-2, SARS-CoV, MERS-CoV, HCoV-OC43, 

HCoV-NL63, and HCoV-229E
(A) Phylogenetic chronogram of the evolutionary divergence of human-

infecting coronaviruses relative to the most recent common ancestor. Bootstrap 
support was 100% for all nodes on this phylogeny. Peak-normalised antibody 

levels with fitted exponential waning (B–G) to a phylogenetically informed (B–D) 
or empirically determined baseline (E–G), in days from peak antibody level at 

3 months. Daily probabilities of infection given peak-normalised S IgG antibody 
levels (H–M) from phylogenetically informed estimates (H–J) or from a 

maximum-likelihood fit of a linear-logistic model of probability of infection 
given antibody level (K–M). (N–S) Daily probability (curve with relative gradient 

from grey [low], to red [moderate], to yellow [high] for each virus) of reinfection 
over time, and central 90% interval of the reinfection day (black dashed vertical 

lines). Curves each correspond to parameters estimated from 
datasets 1–6.3,5,7,19–21,22 HCoV=human coronavirus.

For the Mathematica notebooks 
please see https://doi.

org/10.5281/zenodo.5146327

See Online for appendix 2

https://doi.org/10.5281/zenodo.5146327
https://doi.org/10.5281/zenodo.5146327
https://doi.org/10.5281/zenodo.5146327
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robustness of our findings to data selection (figure 1B–S). 
Dataset 1 comprised anti-N IgG antibody data over 
240 days post-onset of symptoms from 20 individuals 
who had SARS-CoV infection-associated pneumonia;22 
from a population sample of 1797 individuals extending 
over 125 days after diagnosis of infection by SARS-CoV-2,20 
and from ten men aged 27–75 years who were assayed 
for antibody response to infection by HCoV-OC43, 
HCoV-NL63, and HCoV-229E over 28 years spanning the 
periods 1984–97 and 2003–20 (appendix 1 p 3).7 Dataset 2 
included alternate SARS-CoV data on 30 individuals 
(13 male and 17 female; mean age 37 years [SD 
11]) monitored over 2 years after onset of symptoms.19 

Datasets 3 and 4 included putative endemic coronavirus 
anti-S IgG antibody waning data from our linear model 

relating anti-N and anti-S IgG (appendix 1 p 4) and 
MERS-CoV data from two sources (dataset 3 containing 
nine individuals [five male and four female; aged 
27–54 years] with symptoms ranging from asymptomatic 
to severe, monitored up to 18 months,3 and dataset 4 
containing 11 individuals [five with severe disease and six 
with mild disease]) monitored over 1 year after symptom 
onset.21 Datasets 5 and 6 included putative endemic anti-
virus IgG antibody waning data from our linear model 
relating anti-N and anti-virus IgG (appendix 1 p 5) 
and alternate SARS-CoV data. Dataset 5 included 
30 individuals monitored for over 2 years19 and dataset 6 
included 176 individuals monitored for more than 3 years 
after onset of symptoms5 (appendix 1 p 3).

Comparison of the waning antibody levels in response 
to infection revealed that infections by all coronaviruses 
were followed by similar rates of antibody decline 
(figure 1B–G) and half-lives to baseline (figure 2). The rates 
of decline of antibody levels following infection 
by SARS-CoV-2 (148–185 days half-life to baseline; 
figures 1B, 2) and endemic coronaviruses HCoV-OC43 
(109–164 days; figures 1E, 2) and HCov-229E (109–144 days; 
figures 1G, 2) were similar. The decline following infection 
by HCoV-NL63 was notably longer, with estimates of half-
life to baseline being 207–386 days. Estimates for 
SARS-CoV also indicate a longer half-life to baseline; 
however, the degree of that longer half-life is variable 
between anti-N IgG datasets.19,22 Estimates for half-life to 
baseline following MERS-CoV infection are inconsistent 
between anti-S IgG antibody datasets,3,21 leading to 
considerable uncertainty regarding the typical rate 
following infection by this virus across the range of declines 
exhibited by other human-infecting coronaviruses. All of 
these results were consistent regardless of whether a 
chronogram or a molecular evolutionary tree was used, 
and regardless of which method of phylogenetic inference 
was used (appendix 2 pp 7–8).

Our ancestral and descendent states analysis of the 
logistic regression parameters for the time-dependent 
probabilities of reinfection revealed the relationships 
between the antibody waning profile (figure 1B–G) and 
the probabilities of reinfection given antibody levels 
across human-infecting coronaviruses (figures 1H–M, 
3A–F). SARS-CoV-2 exhibited the comparatively lowest 
probabilities of remaining reinfection-free through time 
(figure 3A). This low probability of remaining reinfection-
free for SARS-CoV-2 arises jointly from the moderately fast 
rate of antibody decline (figure 1B) and a higher probability 
of infection given a specified antibody level (figure 1H). All 
of these results were again consistent regardless of 
whether a chronogram or a molecular evolutionary tree 
was used, and regardless of which method of phylogenetic 
inference was used (appendix 2 pp 9–10). The estimated 
median time to reinfection following peak antibody 
response for SARS-CoV-2 is 16 months (figure 3A), with 
alternate compositions of the antibody waning datasets 
producing estimates ranging from 16 to 21 months 

Figure 2: Evolutionary divergences of human-infecting coronaviruses and 
estimated half-lives of antibody decline to baseline 3 months after infection 
by human-infecting coronaviruses.
Estimated half-life to baseline for SARS-CoV-2 and other human-infecting 
coronaviruses are colour coded by dataset. The estimated half-lives resulting 
from analyses of datasets 1–6 are plotted in comparison to the mean half-life to 
baseline across all coronaviruses (dashed vertical line). HCoV=human coronavirus.
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(appendix 2 p 11). The consistency of median reinfection 
time estimates across antibody datasets reflects a strong 
correlation between post-peak infection levels of anti-N 
IgG and anti-S IgG antibodies (r²=0∙998; p<0·0001) and 
levels of anti-N and anti-virus IgG antibodies (r²=0∙904; 
p=0∙0006; appendix 1 p 4–5; appendix 2 p 12).

Collectively, there is substantial heterogeneity in 
antibody decline and reinfection probabilities through 
time among human-infecting coronaviruses. Never
theless, all viral lineages exhibited substantial overlap in 
their probabilities of reinfection over time (figure 1 N–S), 
revealing the evolutionary conservation of the immuno
logical relationship between coronaviruses and humans. 
For SARS-CoV-2, our primary analysis yielded 5–95% 
quantiles of 3 months to 5∙1 years after peak antibody 
response (figure 1N). Quantiles for other viruses spanned 
a typically later and distinctly wider range with 4 months 
to 6 years for SARS-CoV, 15 months to 10 years for HCoV-
OC43, 31 months to 12 years for HCoV-NL63, and 
16 months to 12 years for HCoV-229E (figure 1O, Q–S). 
The 5–95% quantiles for SARS-CoV-2, HCoV-OC43, 
HCoV-NL63, and HCoV-229E were very similar across 
datasets 1–6. For SARS-CoV and MERS-CoV, there was 
greater sensitivity to the dataset employed (figure 1N; 
appendix 2 p 11).

Discussion
In this study we have inferred phylogenetic relationships 
among the human-infecting coronaviruses, demonstrating 
that a phylogenetic analysis of the ancestral and 
descendent states can inform our understanding of 
virus-specific waning of antibodies post-infection, the 
probability of infection at a given antibody level, and the 
distribution of likely times to reinfection. Our analyses 
show that both the waning antibody profiles and the 

probabilities of infection at a given antibody level are 
heterogeneous among human-infecting coronaviruses. 
Quantifying both of these parameters by ancestral and 
descendent states analysis enabled us to infer a timescale 
to likely reinfection for each coronavirus. Reinfection by 
SARS-CoV-2 under endemic conditions would likely occur 
between 3 and 63 months after peak antibody response, 
with a median of 16 months. This protection is of less than 
half the duration revealed for the endemic coronaviruses 
circulating among humans.

Our estimated times to reinfection are consistent 
with the low numbers of validated cases of reinfection. 
However, our results caution that reinfection will become 
increasingly common as pandemic disease transitions 
into endemic disease. Our estimated timing of the waning 
of immunity can facilitate quantitative analyses of all 
policy decision making about individuals who have 
recovered from COVID-19 and who might be viewed as 
temporarily immune to reinfection. In particular, our 
estimate argues strongly against the claim that a long-
standing resolution of the epidemic could arise due to 
herd immunity from natural infection or that mitigation 
of the long-term risks of morbidity and mortality can be 
achieved without vaccination. Relying on herd immunity 
without widespread vaccination jeopardises millions of 
lives, entailing high rates of reinfection, morbidity, and 
death. In areas with low vaccination, our data-driven 
analysis reinforces the need for continued safety practices 
such as social distancing, proper indoor ventilation, and 
mask wearing to avoid reinfection as pandemic conditions 
continue. These estimates of the likely time course of 
SARS-CoV-2 reinfection also have implications for travel 
restrictions, decisions regarding how students obtain 
their education, as well as the opening and closing of 
economic sectors in response to predictive models of the 

Figure 3: Probability of remaining free of reinfection over time and median times to reinfection for human-infecting coronaviruses SARS-CoV-2, SARS-CoV, 
MERS-CoV, HCoV-OC43, HCoV-NL63, and HCoV-229E.
Probability of remaining free of reinfection (curves) and median times to reinfection (black dashed vertical line) resulting from analyses of datasets 1–6, in days from 
peak antibody level at 3 months. HCoV=human coronavirus.
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epidemic.24 Epidemiological modelling, which has served 
a crucial role in public health policy and disease 
management in the time of COVID-19, has been restricted 
in time scale and vague in long-term implications because 
of the absence of any previous rigorous base-case estimate 
of the time of waning of immunity for SARS-CoV-2.24,25 
Further modelling in light of our results is warranted.

Our estimates should be understood as a prediction 
of probabilistic immunity through time, underscoring 
a concept in which there is no fixed durability of 
immunity or absolute protection from infection. This 
approach contrasts with other approaches that classify 
reinfection risk for an individual based on a specific 
threshold antibody level.26 Such a binary distinction 
forces an artificial categorisation of risk that could 
provide unintentionally misleading scientific and 
public health messaging. The probabilistic framework 
for reinfection enables the adoption of quantitative 
modelling that accounts for individual low-probability 
events such as short-term reinfections. For an 
individual, such a reinfection is extremely unlikely. 
However, during a pandemic with hundreds of 
thousands of individuals being infected, occurrence of 
these rare events at quantifiable frequencies is highly 
probable and might have substantial public health 
implications.

Our study has several limitations. First, our study was 
limited by the absence of longitudinal data gathered on 
anti-S IgG and anti-virus IgG antibody response to 
endemic coronavirus infection, which obligated us to 
rely for some of our analyses on imputation based on the 
high correlations among antibodies to some targets 
(anti-N and anti-S, and anti-virus and anti-S). Moreover, 
the antibody declines and infection probabilities deter
mined by long-term studies of SARS-CoV, MERS-CoV, 
HCoV-229E, HCoV-OC43, and HCoV-NL63 that we used 
in our analyses are averaged among an unfortunately 
small number of infected individuals; any one individual 
might have longer or shorter durations of immunity. For 
an individual, reinfection risks depend on immune 
status, infection severity, cross-immunity, age, and other 
immunological factors such as T-cell and B-cell memory 
or lack of antibody neutralising capacity.27–29 The 
probabilistic framework of our analysis does not capture 
these aspects, their interactions, and other aspects of 
SARS-CoV-2 infection that merit special attention. 
For example, asymptomatic infection by SARS-CoV-2 
can induce a weaker immune response than sympto
matic infection,2 which in turn would result in lower 
production of antibodies, and consequently shorter-term 
resistance against reinfection over time. This observation 
is of particular importance as reinfection can lead to 
lower infection severity than primary infection.30 For 
predictive modelling of epidemiology that is dependent 
on the consequences of natural infections, it might be 
important to recognise lower waning times of immunity 
depending on symptomaticity.25

An additional limitation is that protective immunity 
consists of both humoral (antibody based) immunity and 
cell-mediated immunity conferred by cooperation 
between B and CD4+ and CD8+ T cells.28 The identification 
of B-cell and T-cell populations—including their quantity, 
subsets, effector or memory phenotype, or persistence—
could be more directly causal of immunity or better 
indicators of the durability of immunity than antibody 
level alone. Although antibody levels have been shown to 
correlate with protection from SARS-CoV-2 in humans in 
specific high attack rate settings27 and for severe disease,31 
emerging studies have shown the action of memory 
B cells and memory and effector T cells and their 
cytokines after infection with the various coronaviruses.32,33 
It would be worthwhile to collect longitudinal data 
on these immunological traits for the various endemic 
human-infecting coronaviruses and for historical 
zoonotic human-infecting coronaviruses, so that their 
potentially higher explanatory power regarding immunity 
could be incorporated into a correlated-trait ancestral and 
descendent states analysis.8 Regardless of the nature of 
the components of the immune response that are most 
immediately causal of immunity, the inferential basis of 
our analysis relies only on the correlation between 
antibody level and reinfection in endemic human 
coronaviruses. Given the close evolutionary relationships 
of human-infecting coronaviruses, it is probable that 
immunological correlates are similar among the human-
infecting endemic and zoonotic coronaviruses.

Undue public confidence in the long-term durability of 
immunity following natural infection by SARS-CoV-2 has 
been shown to contribute to vaccine hesitancy,34 perhaps 
because of a false equivalence with the long-term 
immunity after natural recovery from evolutionarily 
divergent viruses causing diseases such as measles, 
mumps, and rubella. By contrast, numerous respiratory 
viruses such as influenza, human rhinoviruses, or 
coronaviruses can overcome the immunity conferred by 
previous infections by evolving new variants in the protein 
domains most frequently surveilled and targeted by the 
human immune system. Just over a year into the 
COVID-19 pandemic, novel SARS-CoV-2 variants that can 
vary in severity of infection and evoke differential immune 
system responses and that can thwart the durability of 
immunity started arising.35 Such novel variants probably 
play a similar evolutionary role in the persistence of lower-
severity, endemic human coronaviruses.4 Mitigation of the 
potential evolution of immune-evading SARS-CoV-2 
variants in the near-future might depend crucially on a 
rapid global deployment of vaccination, which can induce 
higher immunogenicity than natural infection.36

The hallmark of the modern world is going to be the 
evolution of new threats to human health. Evolutionary 
biology, which provided the theoretical foundations for 
these analyses, is traditionally considered a historical 
discipline. However, our findings underscore its 
important role in informing decision making. Our results 
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provide a crucial stepping stone toward robust knowledge 
of our prospects of resistance to SARS-CoV-2 reinfection. 
These prospects can guide myriad public health decisions 
until a long-term cohort study comprehensively and 
definitively quantifying SARS-CoV-2 reinfection risks 
becomes feasible. When more data become available on 
antibody declines following vaccination, our approach 
could be extended to assess which vaccines provide longer 
immunity than natural infection and stronger protection 
against emerging variants. Moreover, evolutionary 
immunological inference can be deployed on future 
emerging diseases, rapidly informing critical gaps in 
knowledge necessary for effective pandemic response.
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