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Abstract: Antimicrobial peptides (AMPs) are short cationic amphipathic peptides with a wide range
of antimicrobial properties and play an important role in the maintenance of immune homeostasis by
modulating immune responses in the reproductive tract. As intra-amniotic infection and microbial
dysbiosis emerge as common causes of preterm births (PTBs), a better understanding of the AMPs
involved in the development of PTB is essential. The altered expression of AMPs has been reported
in PTB-related clinical presentations, such as preterm labor, intra-amniotic infection/inflammation,
premature rupture of membranes, and cervical insufficiency. Moreover, it was previously reported
that dysregulation of AMPs may affect the pregnancy prognosis. This review aims to describe the
expression of AMPs associated with PTBs and to provide new perspectives on the role of AMPs
in PTB.
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1. Introduction

Preterm birth (PTB) refers to a multi-etiological condition that occurs in more than one
out of ten child births, and approximately 1.1 million neonates die from prematurity-related
complications each year [1]. Moreover, prematurity is a huge burden on the healthcare
system because of long-term morbidities, such as neurodevelopmental disabilities and
immediate complications related to organ system immaturity [2–6]. Approximately 70%
of PTBs occur spontaneously due to preterm labor or preterm premature rupture of mem-
branes (PPROM), whereas medically indicated PTBs are often preceded by maternal or
fetal complications, including preeclampsia or intrauterine growth restriction [7–9]. Intra-
amniotic infection is thought to contribute to at least one-third of spontaneous PTBs,
and early gestational age is associated with a higher frequency of intra-amniotic infec-
tion [10–14]. The mechanism by which microorganisms enter the amniotic cavity is unclear.
However, considering that microorganisms frequently found in intra-amniotic infection
are common constituents of vaginal microbiome, intrauterine infection could often be a
result of ascending infection by lower genital tract microorganisms [15–17].

The cellular structure of the reproductive tract and various immunological functions
form a barrier against microbial pathogens during pregnancy. Uterine, vaginal, and cervical
epithelial cells build a physical barrier by expressing intercellular junctions, including tight
or occluding junctions and adherent junctions [18–21]. Furthermore, an array of immune
cells is expressed in the reproductive tract to form a mucosal barrier, and mucosal epithelial
and immune cells express pattern recognition receptors (PRRs) to sense and respond to
pathogens [19,22–27]. In particular, the mucus plug in the cervical canal not only forms
a physical barrier between the vagina (exposed to microbes) and the intrauterine space
(considered “sterile”) during pregnancy, but also contains various immune cells, cytokines,
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chemokines, and antimicrobial peptides (AMPs), thereby serving as an important antimicro-
bial barrier [28,29]. AMPs are a class of small peptides with a wide range of antimicrobial
properties and are expressed throughout the female reproductive tract, including the
cervix, vagina, uterine wall, amniotic fluid, fetal membranes, placenta, and fetus [30–32].
Recently, AMPs have been found to perform immunoregulatory functions through diverse
mechanisms and play an essential role in maintaining immune homeostasis by interacting
with the microbiome [33,34]. Several recent studies have reported an association between
alterations in AMP expression and release, and infectious and inflammatory diseases, such
as Crohn’s disease and atopic dermatitis [35–38]. Further, recent studies have reported
that alterations in AMP expression are associated with PTB. Intra-amniotic infection and
inflammation are associated with higher concentrations of AMPs, and low cervicovaginal
β-defensin levels in the mid-trimester were associated with a higher risk of spontaneous
PTB [39–41].

Considering that intrauterine infection or inflammation and vaginal dysbiosis are
some of the key triggers of PTB, AMPs may have an array of effects on PTB. Therefore,
in this review, we highlight the recent findings regarding the altered expression of PTB-
associated AMPs and their potential influences on the development of PTB.

2. AMPs in PTB
2.1. Properties and Classification of AMPs

AMPs are evolutionarily conserved molecules that are produced in all multicellular
organisms from prokaryotes to humans, and they are the first-line defense against microbial
pathogens [34,42–44]. AMPs have wide-ranging antimicrobial functions against bacteria,
yeast, fungi, and viruses [33,44–46]. In higher eukaryotic organisms, AMPs also have di-
verse immunoregulatory activities, based on which they have also been called host defense
peptides (HDPs) in recent years [34,47,48]. AMPs are comprised of 10–50 amino acids
with varying positive charges (from +2 to +9) and are amphipathic peptides with basic
amino acids on one end, and hydrophobic residues on the other end, thereby constituting a
unique structure that is water-soluble, positively charged, and hydrophobic [49–51]. Cur-
rently, more than 2600 natural AMPs with diverse sequences and structures are known [52].
AMPs can be broadly classified into α-helical, β-sheet, and extended AMPs based on their
secondary structure. Most AMPs belong to the α-helical and β-sheet categories [51,53–55].
The two main classes of AMPs are defensins and cathelicidins. Defensins have a com-
mon β-sheet core stabilized by three disulfide bonds between six conserved cysteine
residues and are classified into α-, β-, and θ-defensins based on the configuration of the
disulfide bonds [56,57]. Several human α-defensins are highly expressed in neutrophils;
thus, they are known as human neutrophil peptides 1–4 (HNP1–4). HNP1–4 are stored
in the azurophilic granules of neutrophils and account for 30–50% of the protein con-
tent in azurophilic granules [44,58]. Other α-defensins are produced by Paneth cells of
the small intestine (human α-defensin 5 and 6; HD5 and HD6) [59]. Production and
secretion of HNP1–3 can be upregulated by pro-inflammatory cytokines in immature
monocyte-derived dendritic cells, whereas HNP1 and HD5 expressions depend on the
nucleotide-binding oligomerization domain-containing protein2 (NOD2) stimulation in gut
epithelial cells [55,60–62]. Human β-defensins (HBDs) are mainly produced in epithelial
cells and have a protective function in sites that are exposed to microbes, such as the
respiratory, intestinal, and genitourinary tracts and skin [55,63]. HBD-1 is constitutively
expressed, whereas HBD-2 and HBD-3 are induced by a variety of inflammatory stim-
uli [63,64]. Cathelicidins, which are α-helical peptides, are generally produced by epithelial
cells and many immune cells. Humans have only one cathelicidin gene (CAMP) [65,66].
Cathelicidins are synthesized as a prepropeptide known as hCAP18 and can be converted
into several cathelicidine peptide variants through proteolytic cleavage by various pro-
teases, one of the most common variants being LL-37 [67]. In epithelial cells, expression of
LL-37 is modulated by inflammatory stimuli; however, vitamin D also influences LL-37
expression [65,66,68]. Vitamin D3 directly increases hCAP18 transcription and synergizes
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with lipopolysaccharide (LPS) in LL-37 production in neutrophils. In addition, vitamin D3
plays an important role in LL-37 induction through Toll-like receptor 1 (TLR1) and TLR2
pathways during bacterial infection in monocytes and keratinocytes [66,68].

2.2. Mechanism of Action of AMPs
2.2.1. Antimicrobial Actions

AMPs have direct and rapid antimicrobial activities by destroying the physical in-
tegrity of microbial membranes or by acting on intracellular targets via membrane translo-
cation [50]. Bacterial membranes are a major target of cationic AMPs, and because bacterial
membranes are negatively charged due to anionic lipids, such as phosphatidylglycerol
and phosphatidylserine, they electrostatically interact with positively charged AMPs [49].
In addition, teichoic acids in the cell walls of Gram-positive bacteria and LPS in the
outer membranes of Gram-negative bacteria further impart a negative charge to bacterial
membranes [69]. The key mechanism of the antimicrobial action of AMPs involves the
formation of an amphipathic secondary structure upon contact with cytoplasmic mem-
branes, which ultimately leads to membrane perturbation, bacterial cell content leakage,
and cell death [70,71]. To explain membrane perturbation by AMP, models that disrupt
membranes by forming barrel-stave and toroidal pores and directly destroy the membrane
by thinning and dissolving the lipid bilayer (carpet model) have been proposed. However,
these models are of limited utility, as they are based on experiments that used model
membranes [54,71,72]. Unlike bacteria, mammalian cell membranes generally consist of
zwitterionic phospholipids and thus have a neutral net charge, wherein phospholipids
with negatively charged head groups face inward [49,73,74]. This results in a relatively
weak hydrophobic interaction with AMPs, and the high cholesterol content in mammalian
cell membranes reduces AMP activity by stabilizing the phospholipid bilayer [49,75]. In
addition to the antimicrobial action through membrane perturbation described above,
AMPs may also exhibit antimicrobial effects by acting on intracellular targets, such as
nucleic acids and proteins, through membrane translocation. Although the exact mecha-
nism of membrane translocation by AMPs remains unknown, the involvement of inner
membrane transporters or transient pores has been proposed. In addition, AMPs exhibit
antiviral activity by destabilizing the viral envelope and damaging the virions, or inhibiting
the viral replication of non-enveloped viruses to prevent the nuclear entry of the viral
genome [76–78].

2.2.2. Immunoregulatory Functions of AMPs

Recent studies have demonstrated that AMPs perform a broad range of immunomod-
ulatory functions beyond their antimicrobial activity [33]. The molecular mechanism by
which AMPs regulate immune responses is highly complex, and immunomodulatory
activity varies depending on the environmental stimuli, cell type, and peptide concentra-
tion [33,48]. Immunomodulatory activities of AMPs include stimulating chemotaxis of
immune cells, modulating neutrophil function, and influencing adaptive immunity by
recruiting antigen-presenting cells to infection sites. AMPs function as chemoattractants
to stimulate chemotaxis of leukocytes by secreting chemokines [55,63,79,80]. In addition,
AMPs regulate neutrophil functions by stimulating the release of neutrophil chemokines or
increasing neutrophil influx through chemotactic functions [81,82]. AMPs are also present
in neutrophil extracellular traps (NETs) and are involved in NET-mediated antibacterial
effects [83]. Upon infection, AMPs recruit antigen-presenting cells, such as monocytes,
macrophages, and dendritic cells, and mediate innate and adaptive immunity. AMPs exert
both pro- and anti-inflammatory properties depending on the cell type and inflammatory
stimuli, thereby establishing a balance of inflammation. The anti-inflammatory functions of
AMPs are highlighted in studies on the association between low α-defensin expression and
ileal Crohn’s disease, and in a report that a cathelicidin-knockout mouse model showed
more severe inflammatory responses than the wild type [84–87]. On the other hand, cathe-
licidin can also promote inflammation through the induction of proinflammatory cytokines
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and chemokines or DNA- and RNA-mediated TLR activation [88–90]. Thus, overproduc-
tion of AMPs can directly trigger inflammatory diseases such as psoriasis, which highly
express AMPs such as cathelicidin, β-defensins, and S100 proteins in their lesions [91].

2.2.3. AMP-Microbiome Interaction

There is mounting recent evidence supporting that the commensal microbiota in the
body plays a pivotal role in host defense through colonization resistance and development
of the mucosal immune system; thus, the balance of commensal microbiota has an impact
on health and the state of disease. AMPs have both antimicrobial and immunomodulatory
properties, which directly and indirectly affect the composition of commensal microbiota.
A recent report showed that intestinal commensal species increase resistance to antimi-
crobial activities of AMPs by up to four times by reducing the overall negative charge on
cell surfaces via LPS modification [92]. Moreover, it has been reported that alterations in
α-defensin expression can have a substantial impact on microbiota composition and that
it manifests in association with changes in the IL-17A+CD4+ T cell count [93]. There is
ongoing research on the association between vaginal dysbiosis and PTB. Although there
may be variations across races, it is well known that Lactobacillus spp. (esp. Lactobacillus
crispatus) dominance is associated with term birth, whereas Lactobacillus depletion, high
diversity compositions, and the presence of bacterial vaginosis (BV)-associated bacteria in-
crease the risk of PTB [94–97]. According to a recent study that investigated cervicovaginal
microbiota and AMP expression, the risk of PTB can be lowered even with Mobiluncus
curtsii or M. mulieris if Lactobacillus spp. relative abundance tertiles are present, but the
risk of PTB is high even in the presence of Lactobacillus-spp.-dominated cervicovaginal
microbiota if the β-defensin expression is low [39]. These results suggest that not only
microbiome composition, but also innate immunity, including AMP action, can have a com-
plex effect on the development of PTB. However, research on the role of AMP-microbiota
interaction in PTB is still in its infancy, and further studies are needed.

3. Expression of AMPs in Pregnancy

AMPs, which are distributed throughout the female reproductive tract during preg-
nancy, play a role in preventing infection through their antimicrobial activities and modu-
lating immune responses. HNP 1–3 were reported to be expressed in the vernix caseosa,
chorion, placental trophoblasts, and amniotic fluid [41,98–102]. The levels of HNP 1–3 in
the amniotic fluid are not markedly altered during pregnancy, but significantly increase
during normal term parturition triggered by spontaneous labor [41]. β-defensin is widely
expressed in pregnant uteri. HBD1–3 were reported to be expressed in the placenta and
chorion trophoblast, amnion epithelium, and decidua, while HBD-1 and HBD-2 mRNA
were expressed in the chorion, villus, and placental tissues [101–104]. The concentration of
HBD-2 was not altered during pregnancy, whereas HBD-1 concentration was significantly
higher in mid-pregnancy than in term [105,106]. High cathelicidin expression was observed
in the fetal skin and vernix caseosa and within the amniotic fluid, with no marked changes
in expression throughout pregnancy [107,108]. Lactoferrin expression has been reported
in the amniotic fluid, amnion, cervix, mucus plug, and placenta [32,109]. Intra-amniotic
lactoferrin concentration increased throughout pregnancy, and the lactoferrin concentration
decreased in the amniotic fluid, whereas it increased in the umbilical cord plasma during
spontaneous labor at term parturition. In addition, intra-amniotic infection is associated
with an increased level of lactoferrin in the amniotic fluid [109,110].

4. AMPs Associated with PTB

In various clinical presentations related to PTB, such as preterm labor, PPROM, and
cervical insufficiency, alterations in the expression of AMPs and their association with
PTB have been reported. The lower female genital tract generally harbors Lactobacillus-
dominant commensal bacteria, which prevent the attachment and invasion of microbial
pathogens [94,111]. Recent metagenomic studies have identified a unique microbiome in
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the upper female reproductive tract, including the placenta, which was previously consid-
ered sterile [112]. The cervicovaginal microbial community is classified into six community
state types (CSTs), four of which are dominated by a Lactobacillus spp. (Lactobacillus crispatus
(CST I), Lactobacillus gasseri (CST II), Lactobacillus iners (CST III), or Lactobacillus jensenii
(CST V)). The other two (CST IV-A and CST IV-B) lack a substantial number of Lactobacillus
spp. and comprise a diverse array of anaerobic bacteria [113,114]. A healthy pregnancy
is characterized by a shift to a less diverse and more Lactobacillus dominant CST [113].
Recent studies have shown that Lactobacillus iners-dominant vaginal communities (CST
III) are associated with PTB, and vaginal dysbiosis characterized by lower levels of Lacto-
bacillus spp. and high species diversity, as in BV, has been associated with increased risk of
PPROM, PTB, and histologic chorioamnionitis [39,94,115,116]. BV and other reproductive
tract infections are common during pregnancy, but PTB occurs only in certain subgroups,
implying that PTB is affected by various factors, such as host defense mechanisms, in
addition to the microbial pathogen. Balu et al. reported that women with intermediate BV
at 24–29 weeks’ gestation were more likely to have higher vaginal fluid neutrophil defensin
concentration, and women with elevated vaginal fluid neutrophil defensin concentration
during mid-pregnancy had an increased risk for delivery before 32 weeks. However, ele-
vated vaginal fluid neutrophil defensin concentration was not associated with PTB before
37 weeks [117]. Further, BV at <16 weeks’ gestation was associated with lower vaginal
β-defensin 3 concentrations, but not HBD-2 or HNP 1–3 in African American-majority
participants [118]. The association of HNP 3 levels and BV with PTB differed by race
group: high vaginal HNP 1–3 levels at mid-pregnancy were associated with PTB in African
American women, but vaginal HNP 1–3 levels were not related to PTB in non-Hispanic
Whites [119]. In addition, a recent study reported that concentrations of cervicovaginal
fluid cathelicidin and human neutrophil elastase at 10–24 weeks’ gestation were increased
in women with cervical shortening and were predictive of PTB before 37 weeks, whereas
another study demonstrated that higher vaginal β-defensin 2 levels were associated with
a lower risk of PTB [39,120]. Moreover, in this study, even in Lactobacillus spp.-dominant
cervicovaginal microbiota, low β-defensin 2 levels were associated with a higher risk of
PTB [39]. In addition, a study on the association of maternal stress during pregnancy
and PTB found that high stress was related to low cervicovaginal β-defensin 2 levels, and
high stress and low cervicovaginal β-defensin 2 levels were risk factors for PTB [121]. The
results of studies on alterations in the vaginal fluid AMP expression according to BV or
the association between the AMP expression and the risk of PTB are inconsistent, which
is attributable to differences in the type of AMPs, gestational weeks of sample collection,
clinical features related to PTB, and ethnicity.

The HNP1–3 concentration in the amniotic fluid significantly increased in women
with preterm labor with intra-amniotic infection, and HNP1–3 expression was markedly
upregulated in women with PPROM [41]. In addition, the concentration of amniotic
fluid HNP1–3 increased during both term parturition and PTB, and high concentration of
amniotic fluid HNP1–3 was associated with intra-amniotic inflammation and histological
chorioamnionitis in women with preterm labor, leading to PTB [41]. Moreover, amniotic
fluid HNP1–3 levels increased markedly in women with subclinical intrauterine infection
and exponentially according to the severity of histologic chorioamnionitis [98]. Several
recent studies have revealed amniotic fluid β-defensin expression during normal pregnancy
and changes in expression when intra-amniotic infection/inflammation or PPROM occurs.
HBD-1 expression in the amniotic fluid is higher in the mid-trimester than in term, and
HBD-1 expression is increased in women with intra-amniotic inflammation compared to
those without intra-amniotic inflammation [106]. The HBD-2 concentration in the amniotic
fluid did not change throughout the pregnancy and was markedly increased in women with
intra-amniotic infection. Patients with preterm labor who delivered preterm had higher
amniotic fluid HBD-2 concentrations than those who delivered at term. Further, HBD-2
expression was higher in women with intra-amniotic inflammation than in those without
intra-amniotic inflammation [105]. Similar to HBD-2, the intra-amniotic concentration
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of HBD-3 also did not change throughout pregnancy, and women with spontaneous
labor at term showed higher HBD-3 expression than those without labor. Moreover,
HBD-3 levels were higher in women with intra-amniotic infection who delivered preterm
due to preterm labor than in those who did not have an intra-amniotic infection. In
women with PPROM, amniotic fluid HBD-3 concentrations were higher in women with
PPROM and intra-amniotic infection than in those without intra-amniotic infection [40]. In
addition, it was reported that cathelicidin may be used as a candidate marker to identify the
presence of intra-amniotic infection in women with PPROM, since the level of cathelicidin
in the amniotic fluid increases in the presence of intra-amniotic infection in PPROM
patients [122]. In an experimental study using amnion epithelial cells, treating cells with
LPS led to a marked upregulation of HBD-3 mRNA expression, and the HBD-3 protein in
the amnion sections was intensively positive in women with histological chorioamnionitis
who delivered preterm compared to the control patients who delivered at term [123].
Moreover, exposure of the amniotic membrane to IL-1β leads to increased secretion of
AMPs, including HBD-2, HBD-3, cathelicidin, and elafin [124,125]. These results indicate
that amnion epithelial cells can produce defensins in the amniotic fluid in response to
infection or inflammatory stimuli and contribute to the innate immunity of the intra-
amniotic cavity. The previously described alterations in the expression of AMPs associated
with PTB are summarized in Table 1.

Table 1. Summary of the expression of AMPs associated with preterm birth.

AMPs Gene Site of Expression
Gestational

Weeks of Sample
Collection

Expression Associated
with PTB References

HNP 1-3 DEFA1,3 Vagina 24–29 PTB <32 weeks ↑ [117]
PTB <37 weeks ↔

Mid-pregnancy PTB ↑ in African American [119]
PTB ↔ in non-Hispanic

Whites

Amniotic fluid 19–33 Intra-amniotic infection ↑ [41]
PPROM ↑

Preterm parturition ↑

24–34 Subclinical intrauterine
infection ↑ [98]

Fetal membranes 23–33 Histologic chorioamnionitis ↑ [126]
PPROM ↑

Beta-defensins

HBD-1 DEFB1 Amniotic fluid 20–32 IAI ↑ [106]

HBD-2 DEFB2 Vagina 16–28 PTB < 37 weeks ↓ [39]

Amniotic fluid 20–32 Intra-amniotic infection ↑ [105]
IAI ↑

Preterm delivery ↑
HBD-3 DEFB3 Amniotic fluid 20–32 Intra-amniotic infection ↑ [40]

Cathelicidin CAMP Vagina 10–24 Cervical shortening ↑ [120]
PTB < 37 weeks ↑

Amniotic fluid 24–34 PPROM with Intra-amniotic
infection ↑ [122]

Abbreviations: HNP, human neutrophil peptides; PTB, preterm birth; PPROM, preterm premature rupture of membranes; HBD, human
β-defensin; IAI, intra-amniotic inflammation; ↑, increased; ↔, not changed; ↓, decreased.

In fetal membranes, α-defensin 1 mRNA expression was markedly upregulated in the
presence of histologic chorioamnionitis, and among those with histologic chorioamnionitis,
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α-defensin 1 mRNA expression was significantly higher in those with preterm labor with
intact membranes than in those with PPROM [126]. In addition, HBD1–3 and elafin were
present in the placenta and fetal membranes, and HBD-2 and elafin mRNA expressions
were increased by proinflammatory cytokines in primary trophoblast cells [127]. These
results suggest that AMPs in the placenta and fetal membranes also act as an immunologic
barrier against infection by regulating their expression during pregnancy.

A recent whole-exome sequencing study identified rare mutations in genes encoding
antimicrobial peptides/proteins (β-defensin 1 [DEFB1] and mannose-binding lectin [MBL2])
that were more frequent in neonates born to pregnancies complicated by PPROM [128,129].
Moreover, these genes have been previously linked to inflammatory bowel diseases and
periodontal diseases. These inflammatory conditions have been reported to be associated
with PTB, and alterations in AMP expression have been found to play an important role
in the development of these inflammatory diseases. Therefore, these results suggest that
mutations and damaging missense variants in the innate immunity or host defense genes
may be associated with an increased risk of PTB. In addition, a recent RNA sequencing
analysis revealed that women with cervical dilation at mid-pregnancy have markedly
higher α-defensin 3 (DEFA3) gene and α-defensin 3 protein expression in blood compared
to the normal group [130]. These findings suggest that α-defensin plays an important
role in preventing microbial infection and inflammation in cervical insufficiency, where
the mechanical and immunologic barrier of the cervix is disrupted. Moreover, among
women with cervical dilation, downregulated DEFA3 gene expression at mid-pregnancy
was prospectively associated with PTB. These findings seemed to contradict the results
of previous studies that intra-amniotic inflammation/infection and preterm labor are
associated with high defensin levels. However, considering that defensin deficiency is
involved in the development of Crohn’s disease, and defensin functions as an immune
response modulator through both pro-and anti-inflammatory properties, it is suggested
that the differential expression of defensins, according to the severity of the infection and
inflammatory response, can affect the pregnancy prognosis. Moreover, this tendency has
also been observed in other recent studies. Low levels of β-defensin 2 were associated
with an increased risk of PTB, and high maternal stress lowered β-defensin 2 levels,
each of which increased the risk of PTB [39,121]. Taken together, these results suggested
that the expression of AMPs increases when an inflammatory response such as intra-
amniotic infection, PPROM, or cervical dilation occurs, but the expression of AMPs before
the onset of symptoms may prospectively affect the development and progression of
preterm parturition.

5. Conclusions and Future Perspectives

Several studies on significant alterations in the expression of AMPs in PTB-associated
clinical presentations and correlation of the level of AMP expression with pregnancy
prognosis suggest that AMPs play an important role in the development of PTB.

In view of the complex host defense properties of AMPs, such as antimicrobial and
immunomodulatory properties and shaping of the composition of the commensal micro-
biota, many AMP-based therapeutic agents have recently been investigated, not only as
new anti-infectives that can overcome the limitations of antibiotics related to drug-resistant
pathogens, but also as immunomodulatory agents in a variety of indications, such as
chronic inflammatory disorders and wound healing. As infections and microbial dysbio-
sis emerge as common causes of PTB, further research on functions and mechanisms of
action of AMPs may enhance our understanding of the pathogenesis of PTB and provide
promising treatment options.
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