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Abstract: Chronic or acute ambient temperature change alter the gut microbiota and the metabolites,
regulating metabolic functions. Short-chain fatty acids (SCFAs) produced by gut bacteria reduce
the risk of disease. Feeding patterns and gut microbiota that are involved in SCFAs production are
controlled by the circadian clock. Hence, the effect of environmental temperature change on SCFAs
production is expected depending on the exposure timing. In addition, there is limited research on
effects of habitual cold exposure on the gut microbiota and SCFAs production compared to chronic
or acute exposure. Therefore, the aim was to examine the effect of cold or heat exposure timing on
SCFAs production. After exposing mice to 7 or 37 ◦C for 3 h a day at each point for 10 days, samples
were collected, and cecal pH, SCFA concentration, and BAT weight was measured. As a result, cold
exposure at ZT18 increased cecal pH and decreased SCFAs. Intestinal peristalsis was suppressed due
to the cold exposure at ZT18. The results reveal differing effects of intermittent cold exposure on the
gut environment depending on exposure timing. In particular, ZT18 (active phase) is the timing to be
the most detrimental to the gut environment of mice.

Keywords: cold exposure; short-chain fatty acids; exposure timing; gut microbiota

1. Introduction

Ambient temperature is closely related to human health and depends on the strength
and period of temperature. Cold exposure increases the risk of various diseases by affecting
not only trauma such as chilblains, but also metabolic and immune functions. Described
detriments include increased risk of death in patients with ischemic heart disease [1], de-
clined cognitive function [2], an induction of anti-inflammatory reaction [3], and increased
susceptibility to infection [4]. In contrast, a benefit to cold exposure is an anti-obesity effect,
with enhanced function of brown fat reported in mice by exposed to a cold environment [5].
In addition, the thermogenic response to cold is reportedly more pronounced when the
body is chronically exposed to cold [6]. Exposure to heat temperature causes heat stroke by
increasing permeability due to destruction of the intestinal mucosa [7–9]. However, thermal
acclimation due to continuous high-temperature environments improves thermoregulation
and reduces the risk of serious heat illness [10].

There are approximately 100 trillion bacteria in the intestines of mammals. This
population is termed the gut microbiota. The gut microbiota is influenced by external
factors such as diet, exercise, stress, and environmental temperature [11], and interacts
with the host physiology [12]. The gut microbiota produces short-chain fatty acids (SCFAs)
by digesting and fermenting indigestible polysaccharides [13]. SCFAs reduce the risk of
various diseases. Specifically, propionic acid induces decreased levels of serum lipids
and reduces the risk of cardiovascular disease [14], and butyric acid helps prevent colon
cancer [15]. In addition, as the amount of SCFAs increases, the cecal pH decreases because

Metabolites 2022, 12, 20. https://doi.org/10.3390/metabo12010020 https://www.mdpi.com/journal/metabolites

https://doi.org/10.3390/metabo12010020
https://doi.org/10.3390/metabo12010020
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/metabolites
https://www.mdpi.com
https://orcid.org/0000-0002-6177-1963
https://doi.org/10.3390/metabo12010020
https://www.mdpi.com/journal/metabolites
https://www.mdpi.com/article/10.3390/metabo12010020?type=check_update&version=1


Metabolites 2022, 12, 20 2 of 17

of the weak acidity of SCFAs themselves. The decrease in cecal pH prevents the aberrant
growth of pathogenic bacteria such as Enterobacteriaceae and Clostridia [16,17]. In contrast, an
increase in cecal pH and a decrease in SCFAs have been used as indicators of deterioration of
the gut environment. SCFAs also have a beneficial effect on mammalian energy metabolism,
preventing diet-induced obesity by promoting fatty acid oxidation in multiple tissues and
inducing a decrease in fat accumulation in white adipose tissue [18].

In the process of host regulation to adapt to environmental temperature changes, the
gut microbiota and metabolites, such as SCFAs, are altered [19]. The gut microbiota of mice
housed at a cold temperature at 12 ◦C for 6 days was altered, suppressing fat mass and
adiposity [20]. Ziętak et al. concluded that changes in the gut microbiota in response to the
cold exposure attenuated diet-induced obesity because transplantation of cecal material
from mice reared at 12 ◦C to germ-free recipients improved their metabolic phenotype [20].
In a high-temperature environment, heat adaptation significantly alters metabolites by
changing the composition of the gut microbiota and improving resistance to heat stress [21].
In addition, mice depleted of gut microbiota did not exhibit uncoupling protein 1 (UCP1)-
dependent thermogenesis under cold conditions [22], and mice transplanted with gut
microbiota from mice housed under cold conditions displayed promoted browning of
white fat and improved energy efficiency and cold tolerance [23]. Therefore, the importance
of the gut microbiota in adaptation to environmental temperature is clear, and some
research has addressed chronic or transient changes in ambient temperature. In real human
life, habitual environmental exposures at specific times of a day, such as air-conditioning
sickness and sauna use, are common. However, few studies have examined habitual cold
or heat exposure.

Most species have a circadian clock system, which regulates the circadian rhythm
of physiological functions in the tissues, including the brain, heart, liver, muscles, and
the intestinal tract [24,25]. The composition of the gut microbiota also has a dynamic
circadian cycle [26]. The circadian rhythm of the gut microbiota is due to clock genes and
feeding patterns [27]. In one study, in mice fed a normal diet ad libitum, the α-diversity
of the gut microbiota was high during the dark period and decreased during the light
period [27]. The body temperature of mammals, which are generally thermostatic, shows a
circadian rhythm. The body temperature of mice, a nocturnal animal, rises during the dark
(active) phase and falls during the light (inactive) phase. This body temperature pattern
is influenced by the central circadian clock, ambient temperature, feeding pattern, and
spontaneous activity [28–32].

Since these physiological functions have circadian rhythms, it is expected that the
timing of changes in environmental temperature will have different effects on SCFA pro-
duction in mice. In addition, although the effects of chronic or acute cold exposure on
metabolic functions and gut microbiota of mice have been studied, the effects of habitual
and intermittent cold or heat exposure once a day on SCFA production in mice are not
known. Therefore, the purpose of this research was to examine the effects of the timing of
exposure to cold or heat environments on SCFA production and gut microbiota change.

2. Results
2.1. Effects of Cold Exposure Timing on Gut Environment

There were no significant differences between the control and cold groups at any
time point for initial and final body weight (Figure 1B). Cold exposure for 3 h per day
did not significantly alter food intake in mice (Figure 1C). Brown adipose tissue (BAT)
weights corrected by body weight were increased during cold exposure at zeitgeber time
(ZT)0, ZT6, and ZT12 (Figure 1D). Changes in the gut environment were evaluated by
cecal pH change and the concentration of SCFA (total SCFA, acetic acid, propionic acid,
butyric acid, and lactic acid). Cecal pH in ZT18-cold group was significantly higher than
that in ZT18-control group. However, cold exposure at each timing, except ZT18, did not
significantly affect cecal pH (Figure 1E). Total SCFA and acetic acid moderately decreased
by cold exposure only at ZT18 (Figure 1F,G). Cold exposure at ZT12 resulted in a significant
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decrease in butyric acid (Figure 1G). Propionic acid and lactic acid did not change during
cold exposure at any time (Figure 1G). The experiment revealed that a 3-h on ZT18 repeated
for 10 days deteriorated the gut environment of mice. The effect of cold exposure on the
gut environment differed depending on the timing of exposure, suggesting that ZT18 (the
center of the active phase) is the timing that worsens the gut environment with an increase
in cecal pH and a decrease in SCFA.
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SCFAs (acetic acid, propionic acid, butyric acid, lactic acid) of mice were exposed to 22 or 7 °C for 3 
h at each point (ZT0, 6, 12, 18) for 10 days. Data are represented as mean ± SEM (n = 5–10). $ p < 0.05, 
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Figure 1. Effects of cold exposure timing on the gut environment. (A) The experimental design. (B) Initial
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body weight on day 1, final body weight on day 10. (C) Food intake per animal per day.
(D) BAT weight corrected by body weight. (E) Cecal pH measured on day 11. (F) Total SCFA.
(G) SCFAs (acetic acid, propionic acid, butyric acid, lactic acid) of mice were exposed to 22 or 7 ◦C
for 3 h at each point (ZT0, 6, 12, 18) for 10 days. Data are represented as mean ± SEM (n = 5–10).
$ p < 0.05, $$ p < 0.01 evaluated using the Kruskal–Wallis test with a two-stage linear step-up proce-
dure of the Benjamini, Krieger, and Yekutieli test for multiple comparisons. * p < 0.05 evaluated using
two-way ANOVA with Sidak’s post hoc analysis.

2.2. Effects of Cold or Heat Exposure Timing on Gut Environment

Mice were divided into six groups and exposed to a cold or heat environment at two
different timings (ZT6 or ZT18) to determine whether this alteration of the gut environment
is specific to cold exposure (Figure 2A). There were no significant differences in initial
body weight and final body weight between cold and control groups at both ZT6 and
ZT18 (Figure 2B). Heat exposure at ZT6 significantly decreased food intake compared to
cold group (Figure 2C). Cold exposure increased BAT weight corrected by body weight
at ZT6. However, there was no significant difference in BAT weight caused by cold or
heat exposure at ZT18 (Figure 2D). Body temperature significantly decreased during cold
exposure compared with that in control group at both ZT6 and ZT18 (Figure 2E). The body
temperature of mice exposed to cold temperature gradually decreased from the beginning
of the exposure and showed the lowest body temperature (ZT6-cold: 35.64 ± 0.16 ◦C, ZT18-
cold: 36.00 ± 0.19 ◦C) at the end of the exposure period. Compared with the control group,
the ZT6-cold group showed a significant decrease in body temperature at ZT6 and ZT7,
and ZT18-cold group showed a significant decrease in body temperature at ZT18 and ZT19,
respectively. After the exposure period, the body temperature recovered rapidly to the same
level as the control group in the ZT18-cold group, and reached a higher temperature than
the control group in the ZT6-cold group. Comparison of the difference of body temperature
between the cold group and control group revealed a decrease of 0.49 and 1.05 ◦C for the
ZT6 and ZT18 groups, respectively. Since the body temperature of mice has a circadian
rhythm that is high during the active phase and low during the inactive phase, a greater
decrease in body temperature under cold environment was observed in the ZT18 group,
which had a higher body temperature in the control group. On the other hand, body
temperature was slightly affected by heat exposure (Figure 2E). At ZT6, body temperature
exposed to heat environment increased at the beginning of the exposure and then was
maintained at the same level as the control group; however, it decreased after the exposure.
At ZT18, body temperature decreased slightly during the exposure period and further
decreased after the exposure.

Next, changes in the gut environment were examined (Figure 3). Cecal pH in the ZT18-
cold group was significantly higher than that in the control and heat groups. However,
there was no significant difference in the control, cold, and heat groups at ZT6 timing
(Figure 3A). The production of total SCFA and acetic acid were significantly decreased by
cold exposure at both timing ZT6 and ZT18 (Figure 3B). Propionic acid showed a significant
decrease in the cold group of ZT6 compared with the control group, and in the cold group
of ZT18 compared with the control and heat groups (Figure 3B). These results suggest that
cold exposure suppressed the production of the SCFA, especially acetic acid, in ZT6 and
ZT18. Moreover, when comparing the significance levels, cold exposure at ZT18 showed
a stronger effect on SCFAs in comparison with those at ZT6. By contrast, production of
SCFAs under heat exposure was the same as that under the control environment. From the
results of cecal pH and SCFAs, cold exposure at the timing of ZT18 caused the change in
gut environment compared with ZT6.
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Figure 2. Effects of cold or heat exposure on body weight, food intake, and BAT weight.
(A) Experimental design; (B) Initial body weight on day 1, final body weight on day 10. (C) Food
intake per animal per day. (D) BAT weight corrected by body weight. (E) Body temperature of mice
exposed to 22 or 7 or 37 ◦C. Data are represented as mean ± SEM (n = 7). ** p < 0.01, *** p < 0.001
evaluated using one-way ANOVA with Tukey’s post hoc test. $$ p < 0.01 evaluated using the Kruskal–
Wallis test with a two-stage linear step-up procedure of the Benjamini, Krieger, and Yekutieli test for
multiple comparisons. @@ p < 0.01 evaluated using one-way ANOVA with Tukey’s post hoc test for
control vs. cold group. # p < 0.05 evaluated using one-way ANOVA with Tukey’s post hoc test for
control vs. heat group.

As cecal pH and SCFA production differed by cold exposure for 10 days, the gut
microbiota was analyzed by metagenomic analysis using a next-generation sequencer.
From the individual sequence data, the differences in the gut microbiota were determined
as the distance from 0 to 1 (UniFrac distance). The UniFrac distances obtained among
all individuals were visualized by principal coordinate analysis (PCoA) and are shown
as β-diversity in Figure 4. There was a significant difference in β-diversity of the control
group in the ZT6 group and ZT18 group (Figure 4A), suggesting β-diversity of mice has
a circadian pattern. However, β-diversity did not differ due to cold or heat exposure at
both timings of ZT6 and ZT18 (Figure 4B,C). Comparison of the relative abundance of
microbes at the phylum level in the control group at ZT6 and ZT18 revealed that Bacteroides
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abundance significantly decreased and Firmicutes abundance significantly increased at
ZT18 (Figure 4D). Therefore, the results of β-diversity and the bacterial content at the
phylum level depended on the sampling timings, rather than cold and heat exposure.
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Figure 3. Effects of cold or heat exposure on gut environment. (A) Cecal pH; (B) SCFAs (total SCFA,
acetic acid, propionic acid, butyric acid, lactic acid) of mice were exposed to 22 or 7 or 37 ◦C for 3 h at
each point (ZT6, 18) for 10 days. Data are represented as mean ± SEM (n = 7). # p < 0.05, ## p < 0.01
evaluated using the Kruskal–Wallis test with a two-stage linear step-up procedure of the Benjamini,
Krieger, and Yekutieli test for multiple comparisons. * p < 0.05, *** p < 0.001 evaluated using two-way
ANOVA with Sidak’s post hoc analysis.

α-Diversity and the abundance ratio of gut bacteria at the genus level were analyzed
(Figure A1 in Appendix A). The obtained sequence data were used to analyze species
diversity (α-diversity) of the gut microbiota individually. Species diversity consists of
two factors, species richness and evenness, and the Simpson index is the numerical value
of the species diversity considering these two factors. The value of the Simpson index
did not differ between all groups (Figure A1A). Analysis of the gut microbiota at the
genus level revealed that there were bacteria whose abundance changed by cold or heat
exposure and that the changes were greatly affected by timing (Figure A1B–D). Clostridium
abundance was significantly increased by cold exposure at ZT18 and did not change
with heat exposure (Figure A1B). In addition, cold exposure at ZT6 significantly reduced
Coprococcus abundance (Figure A1B). Corynebacterium abundance showed a non-significant
increase at ZT6 and a significant increase at ZT18 due to heat exposure (Figure A1C).
Peptococcaceae genus sp. abundance non-significantly decreased due to heat exposure at
ZT18. The abundance of Caulobacteraceae genus sp., Clostridiaceae genus sp., Anaerostipes,
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and Anaerotruncus significantly differed in the comparison at ZT6-control group and ZT18-
control group (Figure A1D). However, this difference disappeared in the cold and heat
groups.
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Figure 4. Effects of cold or heat exposure on β-diversity and the relative abundance of microbes at the
phylum level. (A) β-diversity in comparison of ZT6 and ZT18 in the control group; (B) β-diversity in
comparison of the control, cold, and heat groups at ZT6; (C) β-diversity in comparison of the control,
cold, and heat groups at ZT18; (D) the relative abundance of microbes at the phylum level in mice
were exposed to 22 or 7 or 37 ◦C for 3 h at each point (ZT6, 18) for 10 days. Data are represented as
mean ± SEM (n = 7–12). ** p < 0.01 evaluated using two-way ANOVA with Sidak’s post hoc analysis.

2.3. Effects of Cold Exposure on Intestinal Peristalsis

In the first and second experiments, intermittent cold exposure at ZT18 resulted in gut
environmental changes with an increase in cecal pH and a decrease in SCFAs. However,
heat exposure did not alter the gut environmental. To investigate why cold exposure
showed different effects on the gut environment depending on the timing, intestinal peri-
stalsis was measured under cold exposure conditions. Suppression of intestinal peristalsis
prolongs the transit time of intestinal contents, resulting in an increase in intestinal putrefac-
tion product concentration and deterioration of the intestinal environment [33]. Therefore,
to evaluate the strength of intestinal peristalsis, the speed of colored diet transmitted
through the intestinal tract was measured (Figure 5A).

There was no significance difference between the control and cold group in intestinal
peristalsis due to ZT6 cold exposure. The value of the cold group to be non-significantly
higher than that of the control group at 6–12 cm from the stomach in the ZT18 experiment.
In addition, the value of the cold group was significantly lower than that of the control
group at the 42–48 cm. The findings suggest that cold exposure at ZT18 slows intestinal
peristalsis, while cold exposure at ZT6 did not affect intestinal peristalsis.
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Figure 5. Effects of cold exposure on intestinal peristalsis. (A) Experimental design; (B) peristal-
sis movement of mice exposed to 22 or 7 ◦C for 3 h a day for 10 days. Data are represented as
mean ± SEM (n = 5–7). * p < 0.05 evaluated using t-test.

3. Discussion

All endothermic animals regulate their metabolic functions to maintain normal body
temperature under the cold or heat exposure, and SCFA is one of important metabolites in
managing their metabolic functions. In this study, mice exposed to 7 ◦C for 3 h during the
active phase (ZT18) suppressed the production of SCFAs, especially propionic acid and
acetic acid with an increase in cecal pH (Figures 1E–G and 3A,B). However, cold exposure
during the inactive phase (ZT6) did not change the cecal pH, and a decrease in SCFAs was
smaller than that of cold exposure at an active phase (ZT18). Therefore, gut environment
changes with an increase in pH and a decrease in SCFAs may be due to cold exposure on
ZT18 in a timing-specific manner. The SCFAs, which are gut microbial metabolites, have
diverse beneficial impacts on host health [34,35]. In addition, because SCFAs are weakly
acidic, an increase in SCFAs lowers the pH of the intestinal tract and keeps the intestinal
lining weakly acidic (pH 5.0~7.0) [18]. The optimal pH for the growth of harmful bacteria
such as Clostridium perfringens, is 7.0–7.5 [36]. Hence, a decrease in cecal pH inhibits the
growth of pathogenic bacteria. Therefore, it is suggested that an increase in cecal pH and a
decrease in SCFAs caused by cold exposure on ZT18 deteriorate the gut environment. These
results are contrary to those of previous studies. Some studies have reported increased
SCFAs production and increased Lachnospiraceae abundance in response to decreased body
temperature under cold exposure [20,37]. The increase in SCFAs production under cold
environments is thought to be partly due to increased food intake to obtain energy to
maintain body temperature [22,38]. In the present study, there was no significant difference
in food intake between the control and cold groups (Figures 1C and 2C). The effect of
intermittent cold exposure for 3 h per day on SCFA production was opposite to the effect
of continuous cold exposure, as in previous reports, suggesting that cold exposure has
different effects on SCFA production depending on its intensity and length. In one study,
rats exposed to 4 ◦C for 4 h a day for 21 days displayed significantly increased brown fat
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weight and decreased isovaleric acid in cecal contents [39]. In the current study, the effect of
intermittent cold exposure was dependent on the exposure timing. Future studies related to
cold exposure will need to distinguish between intermittent and continuous cold exposure
in terms of length intensity and timing. In addition, there is room for improvement in
the measurement method of SCFA, and internal standard reagents should be selected in
the future to clarify the recovery values by the measurement of loss of target compounds
during the procedure.

Several studies have suggested that heat stress reduces Firmicutes abundance in the
intestine [40–43]. In the present study, exposure to 37 ◦C for 3 h per day did not alter
SCFA production and cecal pH, regardless of the timing of exposure. Heat exposure for 3 h
per day was not likely to be intense enough to affect the gut microbiota or its metabolites
in mice.

Under prolonged cold conditions, UCP1 activity and the number of brown adipose
cells increase, which eventually leads to the growth and hypertrophy of BAT, and the ability
to produce heat [44]. We observed that cold exposure at the ZT0, ZT6, and ZT12 time points
significantly increased BAT, with no significant difference at ZT18 (Figures 1D and 2D).
Therefore, shivering thermogenesis or activity by mice may be the response to cold exposure
during the active phase (ZT18), rather than non-shivering thermogenesis by BAT. The
activity of mice is controlled by the circadian clock. Thus, thermogenesis response to cold
exposure may be under the circadian rhythm.

When gut bacteria are depleted by antibiotic treatment, a chronic decrease in body
temperature and hypothermia in a cold environment is observed [22,23,45,46]. Hence, the
gut microbiota plays an important role in the metabolic regulation of the host under cold
exposure conditions. Chronic cold exposure alters the composition of the gut microbiota,
particularly reducing the Bacteroides/Firmicutes ratio and eradicating Verrucomicrobia abun-
dance [23]. However, contrary to expectations, we observed that 10 days of cold exposure
for 3 h per day did not dynamically change the gut microbiota in this study (Figure 4),
although in mice some individual bacteria were changed at the genus level (Figure A1).
Clostridium, which was increased in the ZT18-cold group compared with the ZT18-control
group, is one of the bacteria involved in metabolism from protein to amino acids [47]. Mice
have a feeding pattern in which they mainly eat during the active phase [26]. After eating a
meal, nutrients absorbed are broken down, and some parts of them are consumed as body
heat [48]. Under the cold exposure environment during the active phase, mice may have
tried to recover from the decrease in body temperature by diet induced thermogenesis. On
the other hand, Clostridium perfringens, which causes intestinal putrefaction, also belong
to the Clostridium genus, suggesting that an increase in Clostridium genus could have a
negative impact on intestinal health. The abundance of Anaerostipes and Corynebacterium
significantly changed with the time of sampling. Anaerostipes reportedly has the potential
to prevent colon cancer in humans by producing butyric acid [49]. Corynebacterium is a
non-pathogenic bacterium that is indigenous to the skin, mucous membranes, and gas-
trointestinal tract. These bacteria may be governed by circadian rhythms, such as feeding
patterns, and therefore may have been more affected by sampling timing than by cold or
heat exposure. In the comparison of bacteria at the phylum level, the significant differences
at ZT6 and ZT18 found between the control group disappeared after cold or heat exposure.
Thus, there were no significant differences in the cold and heat groups compared to the
control group (Figure 4B,C). These results strongly suggest that cold or heat exposure
at ZT6 or ZT18 may weaken the circadian rhythm of the abundance of Bacteroides and
Firmicutes in the gut microbiota. Therefore, maintaining a stable environmental tempera-
ture may be helpful for a robust circadian rhythm and abundance of gut microbiota. The
correlation between the bacteria with altered abundance and the SCFAs was examined, but
no significant correlation was found between them (Table A1). Hence, it is unclear how the
gut microbiota affects SCFAs production in cold or heat environments. Cold exposure to
ZT18 for 3 h per day for 10 days did not significantly change the composition of the gut
microbiota. However, SCFA production and cecal pH change may be affected by functional
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changes in the gut microbiota. More detailed studies, such as metabolomic analysis, are
needed to determine the specific changes in function.

There is a strong interaction between intestinal peristalsis and the production of
intestinal fermentation. In a rat model of constipation in which peristalsis was suppressed
by morphine administration to reduce cholinergic nerve activity, the species richness of
the gut microbiota was reduced and the number of pathogenic bacteria, such as Welsh
bacteria increased [50]. In addition, peristalsis is generally evaluated based on the intestinal
transit time of food. When peristalsis of the intestinal tract is active and the transit time of
intestinal contents is short, the growth of intestinal bacteria is promoted. On the other hand,
intestinal peristalsis is poor due to constipation and the transit time of intestinal contents
is long, intestinal putrefactive products such as ammonia and indole are produced [33].
In the present study, it was observed that cold exposure to ZT18 delayed the movement
of intestinal contents. However, there was no difference between the control and cold
groups at ZT6. A positive correlation has been reported between the length of intestinal
transit time of food and the production of intestinal spoilage products, such as indole and
phenyl sulfate [51]. The intestinal transit time of food can cause adverse effects on the
intestinal environment. Therefore, the deterioration of the intestinal environment with
cecal pH increase and the SCFAs decrease may have been caused by the suppression of
peristalsis at ZT18. In addition, peristalsis has a circadian rhythm, which is enhanced during
wakefulness and decreases before sleep [52]. When comparing peristalsis movement at
42–48 cm in the ZT6 and ZT18 control groups, movement of ZT6 group was slower than
that of ZT18 group. Therefore, during the inactive phase (ZT6), the peristalsis of the mice
was not strongly affected by cold exposure because peristalsis was set at a low level.

In conclusion, this research suggests that repeated cold exposure for 3 h a day for
10 days worsens the gut environment with an increase in cecal pH and a decrease in SCFAs
in mice. In addition, cold exposure during the active phase (ZT18) worsened the gut
environment more than that during the inactive phase (ZT6). Furthermore, the effects of
cold exposure on the peristalsis of mice differed depending on the timing of cold exposure.
Therefore, the deterioration of the gut environment caused by cold exposure during the
active phase (ZT18) may be partly due to the suppression of peristalsis and the longer
transit time of food through the intestine.

4. Materials and Methods
4.1. Animals and Housing Condition

Animals used in these experiments were the 8–10-week-old male ICR mice (Tokyo
Laboratory Animals, Tokyo, Japan). The mice were individually housed in plastic cages
and allowed free access to food (EF; Oriental Yeast Co., Tokyo, Japan) and water. The
housing room was maintained at a temperature of 22 ± 2 ◦C, humidity of 60 ± 5%, and
under 12-h light/dark condition with lights-on time defined as zeitgeber time 0 (ZT0)
and lights-off time as zeitgeber time 12 (ZT12). The cages in which mice were exposed
to cold or heat temperatures were set in a model LH-80WLED-6CT bio multi-incubator
(Nippon Medical & Chemical Instruments Co., Ltd., Osaka, Japan). The environmental
temperature was controlled at 22 ± 2 ◦C as the normal condition, 7 ± 2 ◦C as the cold
condition, and 37 ± 2 ◦C as the heat condition. These temperature conditions were based
on previous studies [20,22,23,38,53]. Mice exposed to cold or heat environments were kept
at aforementioned temperature for 3 h for 10 days centered on each indicated timing. After
the experimental period, mice were sacrificed 4.5 h after the end of the cold or heat exposure.
The animal experiment was approved by the Committee for Animal Experimentation of
the School of Science and Engineering at Waseda University (permission #2021-A056) and
following the law (No. 105) and notification (No. 6) of the Japanese Government.

4.2. Measurement of Core Body Temperature

Button-type temperature data loggers (Thermocron G typ; KN Laboratories, Os-
aka, Japan) were used to measure the core body temperature of the mice. The thermometers
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were embedded in the abdomen of mice. The mice were housed at 22 ◦C for 7 days for the
recovery period before the cold or heat experiments were conducted. Body temperature
was measured every 10 min by the thermometers. The hourly average body temperature
was calculated for statistical analysis. AT ZT6 the body temperature was an average of
ZT5.5 to ZT6.5.

4.3. Experimental Design

In the first experiment, mice were exposed to the cold environment at four different
clock times to investigate the effects of cold exposure timing on the gut environment. After
housing for 1 week to allow recovery from surgery to embed the thermometers, the mice
were divided into eight groups (Figure 1A). Mice in the four groups were exposed to 7 ◦C
for 3 h a day at ZT0, ZT6, ZT12, and ZT18. The timing of sample collection was different to
ensure that the interval from the end of cold exposure was constant. The four groups were
prepared as the control group without cold exposure at each timing. Mice were housed
under each exposure condition for 10 days and were sacrificed 4.5 h after the end of the
exposure period on day 11. At this time, cecal pH and BAT weight were measured, and
cecal contents were collected. Body weights were measured on day 1 and day 11 as initial
body weight and final body weight, respectively. Food intake was calculated using the
difference in food weight between day 1 and day 11. BAT weights were collected based on
the final body weight.

In the second experiment, mice were exposed to cold or heat environments at two
different clock times: ZT6 or ZT18. After housing for 1 week to allow recovery from surgery,
the mice were divided into six groups (Figure 2A). Groups were exposed to 22 (control
group), 7 (cold group), and 37 ◦C (heat group) for 3 h a day at ZT6 or ZT18. Mice were
housed under each exposure condition for 10 days, and they were sacrificed 4.5 h after
the end of the exposure period on day 11. At this time, cecal pH and BAT weight were
measured cecal contents and feces were collected. Body weights were measured on day
1 and day 11 as initial body weight and final body weight, respectively. Food intake was
calculated using the difference in food weight between day 1 and day 11. BAT weights
were collected based on the final body weight.

To evaluate the strength of intestinal peristalsis, the distance that food progressed
through the intestinal tract was measured (Figure 5A). Mice were exposed to a cold en-
vironment at 7 ◦C for 3 h per day for 10 days at ZT6 or ZT18. Mice were fasted for 4.5 h
prior to cold exposure on day 11 and fed 1 g of a diet colored with 3% chromium oxide
(Kojundo Chemical Co., Saitama, Japan) at the start of exposure. Mice were sacrificed 1 h
after administration of the colored diet. The intestine was cut in 6-cm increments from the
stomach and intestinal contents were collected. After the collected intestinal contents were
dissolved in 1× PBS, the concentration of the colored intestinal contents was measuring
the absorbance at 775 nm using a Power scan HT device (DS Pharma Biomedical Co.,
Osaka, Japan).

4.4. Cecal pH Measurement

Cecal pH was measured by inserting a glass tip of an electrode of a pH spear (OAKTON
Instruments, Vernon Hills, IL, USA) into the collected cecum.

4.5. Short-Chain Fatty Acid Measurement

The concentration of SCFAs were measured by gas chromatography-mass spectrometry
using model 7890B or 5977B instruments (Agilent Technologies, Inc., Santa Clara, CA, USA)
based on a previous report with some modifications [54]. Six standard solutions were
prepared for the quantification of SCFA. SCFAs were extracted from 0.05 g of cecal contents
by mixing with 0.4 mL of diethyl ether, and 0.2 mL of chloroform , and 0.05 mL of sulfuric
acid (all from FUJIFILM Wako Pure Chemical Corp., Osaka, Japan). The same reagents
were added to the standard solution, and all the following steps were applied to samples
and standard solutions in the same way. After centrifuging at 14,000 rpm at room tem-
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perature for 30 s, 0.3 mL of the supernatant was mixed with 0.1 m of trimethylsilylation
reagent (TMSI-H; GL Science Inc., Tokyo, Japan). To transform the target compound into a
volatile and thermally stable derivative, silylation was performed using TMSI, the most
reactive silylating agent. Derivatization is commonly conducted to improve sensitivity and
mitigate contamination in GC-MS, and trimethylsilyl (TMS) derivatization reagents are
most frequently used [55,56]. In our experiments, approximately 10,000 times more lactic
acid could be detected by using TMSI-H than when it was not used. The mixture was incu-
bated at 60 ◦C for 30 min, placed on ice for 10 min, and centrifuged at 14,000 rpm at room
temperature for 30 s. A total of 2 µL of the organic phase was injected into an InertCap Pure
WAX capillary column (30 m × 0.25 mm, df = 0.5 µm; GL Science Inc., Tokyo, Japan). The
initial temperature was 80 ◦C, and the final temperature was 200 ◦C, and helium was used
as the carrier gas. Quantification of the samples was conducted by preparing calibration
curves using standard solutions containing acetic acid, lactic acid, propionic acid, and
butyric acid. The high linearity (R2 > 0.99, except for lactic acid, R2 > 0.91 only for lactic
acid) of the prepared calibration curve ensures the very small of in-experimental error. For
reproducibility as error between experiments, we examined the dispersion of data obtained
from the calibration curve obtained from multiple measurements. The values were within
the range of 96–106% as acetic acid, 96–103% as propionic acid, 98–104% as butyric acid, and
94–110% as lactic acid, respectively, suggesting that sufficient reproducibility was achieved.

4.6. Fecal DNA Extraction

Fecal DNA was extracted based on a previous report with some modifications [57].
Approximately 0.2 g of fecal sample was suspended in a 50-mL Falcon tube containing
20 mL of PBS. The suspension was washed with 10 mL of PBS and debris was removed
with a 100-µm mesh nylon filter (Corning Inc., New York, NY, USA). After centrifuging
the filter at 4000 rpm for 20 min at 4 ◦C, each precipitate was suspended in 1.5 mL of
TE10 buffer composed of 10 mM Tris-HCl (FUJIFILM Wako Pure Chemicals Co., Ltd.)
and 10 mM EDTA (Dojindo, Tokyo, Japan). After the suspension was transferred to
another microtube and centrifuged at 10,000 rpm for 5 min at 4 ◦C, each precipitate was
resuspended in 0.8 mL of TE10 buffer. DNA was extracted using 1 mL of PCI (Invitrogen,
Carlsbad, CA, USA), and 0.1 mL of lysozyme (FUJIFILM Wako Pure Chemicals Co., Ltd.)
and 0.2 mL of achromopeptidase (FUJIFILM Wako Pure Chemicals Co., Ltd.) was used to
isolate the DNA. The DNA was treated with RNase (Promega Corp., Madison, WI, USA)
and then purified by precipitation with 20% polyethylene glycol (PEG) solution (Tokyo
Chemical Industry Co., Ltd., Tokyo, Japan). The DNA was rinsed with 70% ethanol and
dissolved in 50 µL of TE buffer.

4.7. 16S rDNA Gene Sequencing

Sequencing of the 16S rDNA gene was performed according to the instructions pro-
vided by Illumina, Inc. The V3-V4 variable region of the 16S rDNA gene was ampli-
fied by PCR using the following primers: Forward primer = 5′-TCGTCCGCCAGCTAG
ATGATTAAGACAGCCTACGGGNGGCWGCAG-3′, Reverse primer = 5′-GTCTCGTGGCC
TCGGAGATGTATAGACAGGACTACHVGGGTATCTAATCC-3′.

PCR amplification was performed using 2.5 µL of microbial DNA (5 ng/µL), 5 µL
of each primer (1 µmol/L), and 12.5 µL of 2× KAPA HiFi HotStart Ready Mix (Kapa
Biosystems Inc., Wilmington, MA, USA). PCR was performed using the following program:
25 cycles of 95 ◦C for 3 min, 95 ◦C for 30 s, 55 ◦C for 30 s, and 72 ◦C for 30 s, followed
by a final extension at 72 ◦C for 5 min. The PCR product was purified with AMPure XP
beads (Beckman Coulter Inc., Brea, CA, USA), and labeled by index PCR using Nextera
XT Index kit v.2 (Illumina Inc., San Diego, CA, USA). The Index PCR was performed with
5.0 µL of PCR product, 5.0 µL of each Nextera XT Index Primer, 25 µL of 2× KAPA HiFi
HotStart Ready Mix, and 10 µL of PCR-grade water. The PCR products were purified using
AMPure XP beads (Beckman Coulter Inc.). The quality of the purification was checked
using a model 2100 Bioanalyzer equipped with a DNA1000 kit (Agilent Technologies
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Inc., Santa Clara, CA, USA). Finally, the concentration of the DNA library was diluted to
4 nmol/L.

The DNA library was sequenced on an Illumina MiSeq 2 × 300 bp platform using
the Illumina MiSeq reagent kit v.3. Sequencing was performed according to the manufac-
turer’s instructions.

4.8. Analysis of 16S rDNA Gene Sequences

Quantitative insights into microbial ecology (QIIME) pipeline v.1.9.1 was used to
process 16S rDNA sequence reads [58]. Quality-filtered sequence reads were assigned
to operational classification units with 97% identity using the UCLUST algorithm. The
65 samples yielded a total of 1,044,675 reads. On average, 16,071.92 ± 514.6615 reads were
obtained per sample. QIIME was used to obtain and generate taxonomic summaries from
phylum to genus, α-diversity including the Simpson diversity index, β-diversity, and PCoA.
PCoA analysis was also performed using weighted UniFrac distance.

4.9. Statistical Analyses

The data are shown as mean ± SEM values and analyzed using GraphPad Prism
version 9.1.1 (GraphPad Software Inc., San Diego, CA, USA). All statistical tests were
two-tailed, and statistical methods were selected based on distribution and variation.
We checked whether the data showed normal or non-normal distribution and equal or
biased variation using the D’Agostino-Pearson test (sample size: n > 7), the Shapiro–
Wilk test (n < 8), and the F-value test (for two-group comparisons) or Bartlett’s test (for
comparisons between three or more groups), respectively. If the data showed a normal
distribution and equal variation, the statistical significance was determined using Student’s
t-test or one-way ANOVA with Tukey’s test or two-way ANOVA with Tukey’s post hoc
analysis if the interaction was significant. If the interaction was not significant, but the
main effect was, Sidak’s post hoc analysis was used. If the data showed a non-normal
distribution or biased variation, the statistical significance was determined using the Mann–
Whitney or Kruskal–Wallis test with a Dunn post hoc analysis and a two-stage linear
step-up procedure of the Benjamini, Krieger, and Yekutieli test for multiple comparisons.
Permutational multivariate analysis of variance (PERMANOVA) was used to assess changes
in the microbiota composition. PERMANOVA was performed using the QIIME. The
threshold for statistical significance was set at p < 0.05.

The richness and diversity of bacteria were analyzed using QIIME pipeline v.1.9.1.
described in Section 4.8. Pearson correlation was used to calculate the correlation between
OTUs and physiological parameters. The statistics were analyzed using SPSS statics
v.27.0.1.0., and a p < 0.05 indicated statistically significance.
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Figure A1. Effects of cold or heat exposure on α-diversity and the relative abundance of microbes
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at the genus level. (A) α-diversity (Simpson). (B) Changes in gut microbiota at the genus level due to
cold exposure. (C) Changes in gut microbiota at the genus level due to heat exposure, (D) Changes in
gut microbiota at the genus level due to the timing of mice exposed to 22 or 7 ◦C for 3 h a day for
10 days. Data are represented as mean ± SEM (n = 7–12). * p < 0.05 *** p < 0.001 evaluated using
two-way ANOVA with Sidak’s post hoc analysis.

Table A1. Correlation between bacteria with altered abundance and short-chain fatty acids.

p_
Bacteroidetes

p_
Firmicutes

f__
Clostridiaceae;

g__
Clostridium

f__
Lachnospiraceae;

g__
Coprococcus

f__
Corynebacteriaceae;

g__
Corynebacterium

f__
Peptococcaceae;

g__

f__
Caulobacteraceae;

g__

f__
Clostridiaceae;

g__

f__
Lachnospiraceae;

g__
Anaerostipes

f__
Ruminococcaceae;

g__
Anaerotruncus

Acetic
acid

Pearson
correlation −0.011 0.052 −0.097 0.226 0.198 0.191 0.059 0.139 0.163 −0.112

p-value 0.931 0.688 0.455 0.079 0.126 0.140 0.649 0.284 0.208 0.392

Propionic
acid

Pearson
correlation −0.063 0.101 −0.020 0.158 0.174 −0.067 −0.154 0.156 −0.020 −0.154

p-value 0.628 0.440 0.876 0.224 0.179 0.610 0.235 0.228 0.881 0.237

Butyric
acid

Pearson
correlation −0.114 0.102 −0.016 0.085 0.051 0.004 −0.159 0.177 0.083 −0.004

p-value 0.382 0.435 0.904 0.517 0.699 0.974 0.220 0.173 0.523 0.974

Lactic
acid

Pearson
correlation 0.071 −0.069 0.009 0.100 0.017 0.046 0.087 −0.039 0.020 −0.087

p-value 0.586 0.596 0.948 0.444 0.900 0.723 0.505 0.764 0.879 0.507

Total
SCFA

Pearson
correlation −0.049 0.079 −0.075 0.209 0.179 0.127 −0.025 0.171 0.137 −0.104

p-value 0.710 0.544 0.564 0.106 0.168 0.331 0.847 0.188 0.294 0.426
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