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Abstract

The Goldblatt’s 2 kidney 1 clip (2K1C) rat animal model of renovascular hypertension is characterized by ischemic
nephropathy of the clipped kidney. 2K1C rats were treated with a specific peroxisome proliferator-activated receptor d
(PPARd) agonist, HPP593. Clipped kidneys from untreated rats developed tubular and glomerular necrosis and massive
interstitial, periglomerular and perivascular fibrosis. HPP593 kidneys did not exhibit any histochemical features of necrosis;
fibrotic lesions were present only in perivascular areas. Necrosis in the untreated clipped kidneys was associated with an
increased oxidative stress, up regulation and mitochondrial translocation of the pro-death protein BNIP3 specifically in
tubules. In the kidneys of HPP593-treated rats oxidative stress was attenuated and BNIP3 protein decreased notably in the
mitochondrial fraction when compared to untreated animals. In untreated clipped kidneys, mitochondria were
dysfunctional as revealed by perturbations in the levels of MCAD, COXIV, TFAM, and Parkin proteins and AMPK activation,
while in HPP593-treated rats these proteins remained at the physiological levels. Nuclear amounts of oxidative stress-
responsive proteins, NRF1 and NRF2 were below physiological levels in treated kidneys. Mitochondrial biogenesis and
autophagy were inhibited similarly in both treated and untreated 2K1C kidneys as indicated by a decrease in PGC1-a and
deficiency of the autophagy-essential proteins LC3-II and ATG5. However, HPP593 treatment resulted in increased
accumulation of p62 protein, an autophagic substrate and an enhancer of NRF2 activity. Therefore, inhibition of BNIP3
activation by the preservation of mitochondrial function and control of oxidative stress by PPARd is the most likely
mechanism to account for the prevention of necrotic death in the kidney under conditions of persistent ischemia.
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Introduction

Renal artery stenosis (RAS) is a leading cause of renovascular

hypertension and ischemic nephropathy eventually developing to

end-stage renal disease. In a commonly used animal model for RAS,

the Goldblatt’s 2-kidney-1-clip (2K1C), the effects of ischemia can be

examined in the clipped kidney and the effects of hypertension in the

collateral kidney [1]. Hypoperfusion of the clipped kidney coupled

with systemic activation of the renin-angiotensin system results in

progressive atrophy of the kidney in the 2K1C model [2]. The exact

mechanisms and signaling pathways which trigger renal cell death in

stenotic kidneys remain unclear. However, clinical and animal

studies demonstrated a critical involvement of oxidants and hypoxia

in the genesis of renal atrophy [3,4].

Under conditions of oxidative stress and hypoxia, programmed

cell death pathways are under control of an atypical BH3-only

protein BNIP3 (Bcl2 and adenovirus E1B 19 kDa interacting

protein 3) [5,6,7,8,9]. BNIP3 expression is up-regulated in settings

of chronic ischemic injury of the heart, brain, liver and neurons

[10,11,12,13,14]. The activity of BNIP3 is dependent upon

cellular pH and redox status [15,16,17]. Upon activation, BNIP3

is integrated into the mitochondrial membrane and induces

permeabilization of the mitochondria and loss of membranous

potential, thus activating the mitochondrial cell death pathways

[18,19,20,21,22]. Mitochondria-anchored BNIP3 can also con-

tribute to mitochondria-quality control by triggering proteolytic

degradation of mitochondrial proteins and clearance of damaged

mitochondria by activation of autophagy [6,20,23,24,25,26,27].

Therapeutic activation of peroxisome proliferator-activated

receptors (PPARs), members of the nuclear receptor superfamily

of ligand-activating transcriptional regulators, is widely used for

management of metabolic and inflammatory diseases. In the

kidney, PPARc activation has a protective effect in diabetic and

non-diabetic chronic renal disease [28,29]. PPARa activation

protects kidney from ischemic injuries and renal fibrosis

[30,31,32,33,34]. While PPARd is essential for protection of the

kidney from ischemic acute renal failure and apoptosis [35,36], the

effect of PPARd activation on the progress of chronic ischemic

nephropathy remains unknown.
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We examined in the present study whether prolonged treatment

of 2K1C rats with the PPARd agonist, HPP593, has a

renoprotective effect on the clipped kidney. Specifically, we

studied the effect of HPP593 on the levels of BNIP3 expression,

oxidative stress and activation of nuclear respiratory factor 1

(NRF1) and nuclear factor erythroid-derived 2-related factor 2

(NRF2), the main regulatory factors of the intracellular redox

balance. In addition, we analyzed expression of mitochondrial

proteins, as well as proteins involved in the control of mitochon-

drial autophagy – Beclin 1, ATG5, LC3 - and biogenesis–PPARs

co-activator PGC-1a. We show that HPP593 treatment is

cytoprotective in this rat model of ischemic nephropathy and, as

such, therapies that activate PPARd offer a potential approach for

the treatment of this disease.

Materials and Methods

Antibodies and Reagents
HPP593, the PPARd agonist (http://www.ttpharma.com/

TherapeuticAreas/MetabolicDisorders/Dyslipidemia/HPP593/

tabid/118/Default.aspx), was a gift from Transfech Pharmaceu-

ticals (High Point, NC). The following rabbit polyclonal antibodies

were used: 1) from Abcam (Cambridge, MA): anti-8 hydroxyqua-

nosine antibody (8-HOG), anti-BNIP3, anti-Keap1, anti-NRF1,

anti-NRF2, anti-VDAC1; 2) from Cell Signaling Technology

(Beverly, MA): anti-pAMPK/AMPK, anti-Beclin 1, anti-p62; 3)

from Novus Biologicals (Littleton, CO): anti-PGC-1a, anti-ATG5;

4) and anti-TFAM antibody (Biovision, Milpitas, CA), anti-LC3

antibody (LifeSpan BioSciences, Seattle, WA). Mouse monoclonal

antibodies were: anti-MCAD antibody (Invitrogen, Grand Island,

NY), anti-cytochrome c oxidase complex IV antibody (MitoS-

ciences, Eugene, OR), anti-VEGF (Novus Biologicals), and anti-

actin antibody (Sigma-Aldrich, Saint-Louis, MO). For lamin

detection goat polyclonal antibody was used (Santa-Cruz Biotech-

nology, Santa-Cruz, CA). Western blot bands were detected with

IRDye secondary antibodies (LI-COR Bioscience, Lincoln, NE).

Plasma creatinine levels were measured using Creatinine Assay Kit

(Cell Biolabs, San Diego, CA).

Animal Treatment
This study was carried out in strict accordance with the

recommendations in the Guide for the Care and Use of

Laboratory Animals of the National Institutes of Health. All

animal experiments were approved by the Institutional Animal

Care and Use Committee of the University of Toledo (Permit

number 106706). Male Sprague-Dawley rats (200–250 g body

weight; Charles River Lab., Wilmington, MA, USA) were allowed

to acclimatize for 4 to 5 days prior to beginning the study. Animals

were anesthetized with pentobarbital, and a U-shaped silver clip

with an internal gap of 0.25 mm was placed around the left renal

artery. All efforts were made to minimize animal suffering. Three

groups of rats were studied: sham operated control, 2K1C treated

with vehicle (PBS), and 2K1C treated daily with the HPP593

(5 mg/kg body weight) intraperitoneally for four weeks started

next day post-surgery. Prior and during the treatment rats were

housed, one per a cage, in a temperature-controlled environment

(22–24uC) using a 12 hr light/12 hour dark cycle with standard

chow (4% fat mouse/rat diet#7001, Harlan-Teklad, Madison,

Figure 1. Necrosis of the renal cortex in 2K1C rats and preservation of the renal tissue in HPP593-treated 2K1C rats (H&E and PAS
staining). In 2K1C rats, renal architecture is preserved, in some cortical areas where injury has progressed dystrophic calcifications are present
(asterisk). Necrotic tubular cells retain their cellular outlines, however their nuclei are lost due to ongoing karyolysis. In the clipped kidneys of HPP593-
treated 2K1C rats some renal tubules appear to be intact (arrow). In tubules with dedifferentiated epithelium the lumen is narrowed and basement
membranes are multilayered (arrowhead). Other tubules are dilated and filled with proteinaceous cast. Interstitium contains lymphoid infiltrate (star).
doi:10.1371/journal.pone.0064436.g001
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WI) and water provided ad libitum. Blood pressure was measured at

days 5 and 15 after surgery using the tail cuff method as previously

described [37]. Rats were sacrificed on day 30 after the surgery by

CO2 narcosis. The blood samples were centrifuged at 1,000 g for

10 min 4uC and the plasma was collected and stored at 280uC.

Renal Morphology and Immunohistochemistry
Formalin-fixed, paraffin- embedded kidney sections were cut

5 mm thick, deparaffinazed and rehydrated. Slides were stained

with H&E and Periodic Acid Shift (PAS) Staining Systems (Sigma).

For collagen detection, slides were incubated in saturated picric

acid containing 0.1% of both Fast Green FCF and Direct Red

(Sigma) for 1 hour in the dark. For immunoperoxidase detection of

8-HOG, renal sections were treated with Proteinase K for 20 min,

blocked and probed in 1:4000 diluted 8-HOG antibody in PBS

containing 1.5% horse serum at 37uC. For BNIP3 immunohisto-

chemistry, heat-induced antigen retrieval was performed in acetic

acid. The sections were blocked and probed with anti-BNIP3

antibody (1:50) in PBS containing 1.5% of horse serum. After

being washed the sections were processed as recommended by

ABC protocol (ABC Universal kit; Vector Laboratories, Burlin-

game, CA). For TUNEL assay, sections were stained with Apoptag

Plus Peroxidase Apoptosis Detection Kit (Chemicon International,

Temecula, CA) per the manufacturer’s instruction. Images were

captured on a Nikon Eclipse 80i microscope equipped with a

Nikon camera head DS-Fi1 (Niko, Tokyo, Japan). For quantitative

analysis at least 16 randomly chosen fields (4 from each animal)

were digitized. Glomerulli perimeters were measured using NIS

Elements for Basic Research software (Ver. 3.1, Nikon). Collagen

volume and oxidative stress levels were determined using the

Image J software (http://rsbweb.nih.gov/ij) as previously de-

scribed [38].

Tissue Collection and Protein Extraction
Kidneys were immediately excised and either preserved in 4%

formalin or immediately frozen at 280uC until used. For protein

extraction tissues were homogenized in liquid N2 and immediately

transferred to RadioImmunoPrecipitation Assay (RIPA) buffer,

containing 50 mM Tris-HCl, pH 7.5, 150 mM NaCl, 1%

Nonidet P-40, 5% sodium deoxycholate, 0.1% SDS, and protease

(cOmplete, Roche Diagnostics) and phosphatase inhibitors

cocktails(HaltTM, Thermo Scientific) [39].

Preparation of Cellular Fractions
Mitochondria were extracted as previously described [40].

Kidney tissues were thinly sliced and homogenized in a porter

Figure 2. Renal tissue fibrosis in 2K1C and HPP593-treated 2K1C rats (Sirius Red staining). In control kidneys, collagen-specific Sirius Red
staining under bright light is observed around glomeruli, basement membrane and blood vessels. Under polarized light, collagen III fibers (yellow-
green color) are visible only around blood vessels. In the cortex of 2K1C rats fibrillary collagen I (orange/red color under polarized light) is present in
the interstitium and in arteriolar walls. Renal tubules are replaced by the scar tissue in the cortex and at the cortico-medullary junction. Note the
sclerotic and crowded glomeruli scattered in the scar tissue of untreated 2k1C rats. In kidneys of HPP593-trearted rats some glomeruli remain
crowded (circled in black). Cortical tissue in HPP593-treated 2K1C rats contains large amounts of collagenous matrix as indicated by the intense red
color present on these renal sections under bright light. However, unlike in the untreated 2K1C rats, fibrillary collagens I and III are present around
blood vessels only (arrows).
doi:10.1371/journal.pone.0064436.g002

Renal Necrosis Prevention by HPP593
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Figure 3. Quantitative analysis of glomerular size (A) and total amounts of fibrous collagens I and III in kidneys of three studied
groups. **p,0.001 vs control.
doi:10.1371/journal.pone.0064436.g003

Figure 4. Apoptotic cell death in kidneys of 2K1C and HPP593-treated 2K1C rats (TUNEL staining). Apoptotic cells are absent in the
control kidneys. In untreated 2K1C rats, apoptotic cells are present in the cortical scar (arrows with unbroken lines) and in some glomeruli (arrows
with broken lines) located close to the cortical capsule. In contrast, in HPP593-treated 2K1C rats apoptotic cells are absent from the glomeruli and
present in (arrowheads) or around small atrophic tubules (arrows).
doi:10.1371/journal.pone.0064436.g004

Renal Necrosis Prevention by HPP593
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homogenizer, kept on ice, containing 10 mM Tris-HCl buffer,

pH 7.4, 0.25 mol/L sucrose, 1 mM EGTA, 0.1 mM PMSF

(4 ml/g wet weight) and protease and phosphatase inhibitors

cocktail as described above. The homogenate was centrifuged at

1,0006g for 10 min. The supernatant (mitochondrial and

cytosolic fractions) was saved. The pellet was homogenized in

homogenization buffer and spun down at 3006g for 10 min. The

supernatant discarded and the nuclear fraction was collected after

washing and spinning the remaining pellet three times with the

same buffer at 2,3006g. The supernatant saved after the first

centrifugation was centrifuged at 8,000 g for 10 min. The

supernatant (cytosolic fraction) and the pellet (mitochondrial

fraction) were washed three times for 15 min each at 15,0006g

and 8,0006g respectively. Protein concentration was determined

using the Modified Protein Assay (Bio-Rad). Mitochondrial yield

was estimated per renal wet mass and per extracted proteins since

in a significant portion of kidneys from untreated 2K1C rats

contained insoluble fibrous proteins.

Western Blotting
Equal amounts (10–40 mg) of protein were loaded onto SDS-

PAGE followed by transfer to Immobilon-FL membrane

(Millipore, Billerica, MA) by semi-dry electroblotting. Mem-

branes were then air-dried, rewetted in methanol and incubated

in blocking buffer (LI-COR Bioscience). All primary antibodies

were used as recommended by the manufacturer. Blots were

analyzed using the Odyssey Infrared Imaging system (LI-COR

Bioscience) and the results quantitated using the Image J

software (http://rsbweb.nih.gov/ij). The area under the curve

(AUC) of the specific signal was corrected for the AUC of the

actin loading control. The average value for the samples from

control rat was set as 1 and other values were calculated

accordingly and the ratios compared [39].

StaRT-PCR for Analysis of Mitochondrial and Nuclear DNA
Content

Mitochondrial DNA (mtDNA) content was quantified by

competitive PCR according to the method described in detail by

Willey et al [41]. Briefly, DNA from kidneys was extracted using

DNeasy Tissue Kit (Qiagen, Germantown, MD). DNA was

amplified in an Eppendorff Thermal Cycler for 35 cycles with

primers for mitochondrial genes – cytochrome B (F: TAA ACT

CCG ACG CAG ACA AA, R: 59: GGT GAT TGG GCG GAA

TG) and COXII (F: 59 GCC CTT CCC TCC CTA C, R: 59

GAC GTC TTC GGA TGA GAT TA), and actin (R: 59GAG

CGG ACA CTG GCA AAG, F: 59 CAA AGA CCC ATA GGC

Figure 5. Renal tissue necrosis is associated with an increase in total and mitochondrial content of BNIP3 protein. A-
immunohistochemical analysis of BNIP3 expression in kidneys. ln control kidneys BNIP3 is expressed in some tubules in the corticomedullary junction.
In untreated 2K1C kidneys all necrotic tubules show strong immunoreactivity for BNIP3 protein however there are likely two subpopulations of
tubules with different levels of BNIP3 expression. Glomeruli possess a weak immunoreativity for BNIP3. In kidneys of HPP593-treated 2K1C rats BNIP3
positive staining is present in some tubules. B- western blotting analysis of BNIP3 expression. Representative immunoblots and densitometry analysis
of BNIP3 expression (n = 6) in total and mitochondrial renal extracts and mitochondrial proteins (n = 10) in the mitochondrial fractions. *p,0.05 and
**p,0.001 vs control, ##p,0.001 vs 2K1C.
doi:10.1371/journal.pone.0064436.g005

Renal Necrosis Prevention by HPP593
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CAT CA) for nuclear genes. Competitive templates (CT) were: for

cytochrome B –59CAA AGA CCC ATA GGC CAT CAA CAG

ATG CGG CTT AAC ACC C; for COXII -59GAC GTC TTC

GGA TGA GAT TAG GTT TTA GGT CAT TGG TTG G,

and for actin –59CAA AGA CCC ATA GGC CAT CAA CAG

ATG CGG CTT AAC ACC C. 25 ml of PCR reaction contained

20 ng of total DNA, 12.5 ml of PCR master mix (Promega,

Madison, WI), 2 ml of each primers and 1 m of CT mixture

containing 10215 moles of mitochondrial templates and 10211

moles of nuclear templates. Reaction products were analyzed on

Agilent 2100 Bioanalyser Microfluidic CE Device using DNA

1000 LabChip kit (Agilent Technology, Santa Clara, CA). The

native template to competitive template ratio was calculated and

the number of mitochondrial and nuclear DNA molecules was

estimated.

Statistical Analysis
All data are presented as mean6S.E.M, and mean6SD for

blood pressure measurements. Significance of difference in mean

values was determined using one-way analysis of variance followed

by the Newman-Keul’s post hoc test. Statistical significance was

reported at the *p,0.05 and ##, **p,0.001 levels.

Results

Physiological and Histological Assessments of the Renal
Tissue Damage

HPP593 treatment inhibited atrophy of the clipped kidneys and

normalized systolic blood pressure in 2K1C rats (Table 1). Plasma

creatinine level was elevated in HPP593-treated rats, however this

increase was not statistically significant (p = 0.09) when compared

with sham-operated controls (Table 1).

Microscopic examination of clipped kidneys of 2K1C rats

showed typical ischemic nephropathy renal injuries [1]. Diffuse

coagulative type necrosis was observed in tubular epithelia and in

glomeruli in untreated clipped kidneys (Figure 1B,E). In some

areas, initial preservation of renal architecture was broken and

dystrophic calcifications were present (Figure 1B). Cortical volume

was markedly decreased due to replacement of the atrophic

tubules by fibrotic tissue (Figure 2B). Globally sclerotic glomeruli

surrounded by extracellular matrix, composed mainly of collagen

I, were seen in the cortex and at the corticomedullary junction

(Figure 2 B, E). Blood vessels were abnormal with thickening of the

intima (Figure 2 B, E). In the kidneys of rats treated with HPP593,

the renal parenchyma remained viable (Figure 1C,F). Some

tubules had an almost normal appearance. Many more tubules

were lined with small simplified cells and supported by multilay-

ered basement membrane (Figure 1F) indicating ongoing repara-

Figure 6. Oxidative stress in kidneys of 2K1C rats. A- Immunohistochemical staining of kidney sections with antibody against 8-HOG. B-
quantitative analysis of 8-HOG staining in the kidneys. *p,0.05 and **p,0.001 vs control, ##p,0.001 vs 2K1C.
doi:10.1371/journal.pone.0064436.g006

Renal Necrosis Prevention by HPP593
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tion of the epithelia [42,43]. At the same time, presence of dilated

tubules, tubules with proteinaceous cast in their lumen and

crowded glomeruli indicated continuing tubular atrophy

(Figure 1C and 2C). Tubular interstitium contained a lymphoid

infiltrate (Figure 1 C,F) but was free from fibrosis in HPP593-

treated rats (Figure 2 C,F). Elevated fibrillar collagen accumula-

tion was found at perivascular zones only; the levels of total

collagens I/III were not significantly higher when compared with

sham-operated controls (Figure 3A). The glomerular size was

significantly (p,0.001) decreased in the clipped kidneys of both

untreated and HPP593-treated rats (Figure 3B). HPP593-treat-

ment resulted in thickening of Bowman’s capsule (Figure 1F). In

untreated kidneys, apoptotic cells were seen in the sclerotic

atubular glomeruli and in the interstitium (Figure 4). In contrast,

in HPP593-treated rats, apoptotic cells were found among

dedifferentiated tubular epithelia.

Effect of HPP593 on BNIP3 Activation
Immunohistochemical analysis with antibody against BNIP3

revealed moderate staining in some tubules located near the

corticomedullary junction in control kidneys and in clipped

kidneys of HPP593-treated 2K1C rats (Figure 5A). In untreated

2K1C rats all tubules were positive for BNIP3-immunostaining,

staining was more intensive when compared to both control and

HPP593-treated kidneys. This observation was confirmed by

Western blotting analysis (Figure 5B). The total and mitochondrial

levels of BNIP3 were substantially increased (7- and 2.5- fold

respectively) in the clipped kidneys of 2K1C animals when

compared to kidneys from sham operated controls. The total

expression of BNIP3 was lower in kidneys of HPP593-treated

2K1C rats when compared to untreated (p,0.001), yet levels

remained elevated (,2-fold, p,0.05) when compared to controls.

However, BNIP3 mitochondrial fraction was decreased by 50% in

the HPP593-treated clipped kidneys when compared with control

kidneys.

Effect of HPP593 on Oxidative Stress and NRF2/NRF1 Axis
in Clipped Kidneys

Up-regulation of BNIP3 protein in clipped kidneys of 2K1C

rats was associated with increased oxidative stress as revealed by

immunostaining with antibody against 8-HOG and western

blotting analysis of KEAP1 (Figures 6, 7). Cytosolic fraction of

NRF2, a major oxidative defense transcription factor the

degradation of which is regulated by KEAP1 [44], was

significantly increased in untreated clipped kidneys when

compared to controls (p,0.05) (Figure 7A). HPP593 treatment

attenuated oxidative damage in the clipped kidneys (Figure 6).

Accordingly, there was a significant (p,0.05) reduction of

KEAP1 levels and a decrease of the cytoplasmic fraction of

NRF2 in kidneys of HPP593-treated rats when compared with

untreated clipped kidneys (p,0.05). In nuclear extracts from

untreated clipped kidneys NRF1 and NRF2 proteins were not

detectable due to nuclear dissolusion in necrotic cells (Figure 7B).

In HPP593-treated clipped kidneys the levels of NRF1 were

,20% below that found in control kidneys. Nuclear amounts of

NRF2 were decreased by ,40% in the treated clipped kidneys

when compared with sham-operated controls (Figure 7B).

Figure 7. Cytosolic and nuclear levels of the key oxidative defense transcription factors NRF2/NRF1. Representative immunoblots and
densitometry analysis of NRF2 and KEAP1 in the cytosolic fraction (A) and NRF1 and NRF2 in the nuclear fraction (B) of renal extracts (n = 6). *p,0.05
and **p,0.001 vs control.
doi:10.1371/journal.pone.0064436.g007

Renal Necrosis Prevention by HPP593
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Effect of PPARd Activation on Mitochondria
We examined the expression of subunit IV of cytochrome c

oxidase (COXIV), two mitochondrial matrix proteins, medium

chain acyl-CoA dehydrogenase (MCAD) and mitochondrial

transcription factor A (TFAM), and outer mitochondrial mem-

brane protein voltage-dependent anion channel 1 (VDAC1). All

three proteins, localized to the inner compartment of mitochon-

Figure 8. Mitochondrial mass, protein and DNA levels in clipped kidneys of untreated and HPP593-treated 2K1C rats. A-
representative western blots and quantitative analysis of mitochondrial protein expression in mitochondrial fractions (n = 16), **p,0.001 vs control
and 2K1C+HPP593. B-mitochondrial mass estimated as total weight of mitochondria extracted from 1 mg of wet renal tissue (n = 5), **p,0.001 vs
control and 2K1C+HPP593. C- mitochondrial DNA copy number per nuclear DNA estimated by copy number of mitochondrial genes COXII and
Cytochrom B nuclear actin gene (n$3), **p,0.001 vs control.
doi:10.1371/journal.pone.0064436.g008

Figure 9. Autophagy impairment and mitochondrial biogenesis in HPP593-treated and untreated clipped kidneys of 2K1C rats.
Representative immunoblots and densitometry analysis of the levels of key autophagy proteins and PGC-1a in clipped kidneys of 2K1C rats (n = 6).
*p,0.05 and **p,0.001 vs control, ##p,0.001 vs 2K1C.
doi:10.1371/journal.pone.0064436.g009

Renal Necrosis Prevention by HPP593
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dria, were down-regulated by more than 50% in the clipped

kidney, while VDAC1 levels remained unchanged when com-

pared with control kidneys (Figure 8A). Clipped kidneys from the

rats treated with HPP593 retained physiological levels of all three

mitochondrial proteins indicating that HPP593 treatment main-

tains mitochondrial integrity.

The total mitochondrial mass in the clipped kidney of untreated

2K1C animals was decreased by up to 80% when compared to

controls (Figure 8B). In the HPP593-treated animals, the total

mitochondrial mass in kidney was almost equal to those in sham

operated controls. Mitochondrial DNA per nuclear DNA was

decreased (up to 80%) in both HPP593-treated and untreated

clipped kidneys (Figure 8C). Therefore PPARd activation

preserved physiological levels of mitochondrial mass and proteins

in the clipped kidneys in spite of persistent renal ischemia.

Effect of HPP593 on Markers of Autophagy and
Mitochondrial Biogenesis in Clipped Kidneys

Western blot analysis revealed that Beclin 1, an essential

autophagy inducer [45], was up regulated (Figure 9, p,0.05) in

both untreated and HPP593-treated clipped kidneys. LC3 protein

(the microtubule-associated protein light chain 3) is a marker of the

later stages of autophagy [46]. Two forms of LC3 protein (the

cytoplasmic LC3-I and membrane-bound, lipid-conjugated LC3-

II) were present in control sham operated kidneys indicating

physiological levels of basal autophagy. In contrast, both treated

and untreated clipped kidneys were deficient of the lipidated LC3-

II conjugate. ATG5, which is required for LC3 lipidation [46,47],

was expressed in sham operated kidneys and absent in both treated

and untreated clipped kidneys (Figure 9). Autophagy impairment

in the clipped kidneys was further confirmed by an increased

accumulation of p62 protein in the total extracts from both

untreated and HPP593-treated clipped kidneys (two- and three-

folds respectively) when compared to sham operated controls,

p,0.001 in both cases (Figure 9). The levels of PGC1-a were

reduced by 50% in clipped kidneys (p,0.01) and remained

unchanged with HPP593 treatment (Figure 9).

Effect of HPP593 on Mitochondrial Quality and Function
and Vasculogenesis in Clipped Kidneys

The degradation of mitochondrial proteins in clipped kidneys

triggered substantial (p,0.001) activation of an energy sensing

AMP-activated protein kinase (AMPK) (Figure 10). With HPP593

treatment, the pAMPK/AMPK levels in the clipped kidneys were

slightly elevated when compared with those in sham operated

controls (p,0.05). The levels of Parkin protein, the E3 ubiquitin

ligase which binds specifically to depolarized mitochondria [48],

were not significantly different in the mitochondrial and cytosolic

fractions from the kidneys of control and HPP593-treated animals.

In contrast, mitochondrial p62, which is involved in quality

control of oxidation-prone proteins [49], was up-regulated

(p,0.05) in HPP593-treated clipped kidneys. In the untreated

Figure 10. Mitochondrial function in the clipped kidneys of HPP593-treated 2K1C. Representative immunoblots and densitometry analysis
of cytoplasmic pAMPK/AMPK expression (A) and p62 and Parkin proteins (B) in cytosolic and mitochondrial fractions (n = 6). *p,0.05 and **p,0.001
vs control.
doi:10.1371/journal.pone.0064436.g010
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clipped kidneys Parkin relocation to mitochondria was inhibited

and the mitochondrial portion of p62 protein greatly diminished

presumably due to severe damage of mitochondria (Figure 10).

VEGF protein was up-regulated in both untreated and treated

clipped kidneys (p,0.01 and p,0.05 respectively) in response to

hypoxia (Figure 11). However, in HPP593-treated 2K1C rats

VEGF levels was lower when compared with untreated 2K1C rats.

Thus, preservation of renal mitochondria from bioenergetic

collapse and dysfunction rather than increased vasculogenesis

appears to be the most likely mechanism of renal protection by

HPP-593 under persistent ischemia.

Discussion

Our data demonstrate that renal atrophy induced by experi-

mental RAS can be inhibited by the pharmacological activation of

PPARd by its agonist, HPP593 (Figure 1, 2). In the kidney, tubular

cells are especially vulnerable to ischemia because of high

mitochondria volume density necessary for metabolic demand of

the ion transport [50]. Three mechanisms can trigger epithelial

cell loss depending on the duration and level of hypoperfusion:

necrosis, cell detachment and apoptosis [1]. In our experimental

setting, tubular necrosis was a primary mechanism involved in

renal atrophy in untreated 2K1C rats (Figure 1). Necrotic death of

epithelial cells in the clipped kidneys was critically dependent on

up-regulation and mitochondrial translocation of the cell death

protein BNIP3 since a significant decrease of BNIP3 expression

and activation resulted in complete inhibition of necrosis (Figure 1).

The exact mechanism(s) by which BNIP3 regulates necrosis is not

well understood and is believed to be context–dependent

[6,51,52]. BNIP3 regulation and activation in renal epithelial

cells have never been thoroughly investigated; however studies of

cardiac, neuronal, liver and cancerous cells demonstrated that

BNIP3 facilitates necrotic cell death via induction of permeabiliza-

tion of the inner mitochondrial membrane [23]. Under neutral

pH, BNIP3 relocation to mitochondria is inhibited and cytosolic

BNIP3 is degraded [15,16]. Progressive hypoxia/ischemia leads to

cellular acidosis [53,54]. In an acidic milieu, BNIP3 is activated

upon integration into mitochondrial membrane via its transmem-

brane domain located in the c-terminus [20,55]. Oxidative stress

triggers oxidation of the BNIP3 n-terminal cysteine residue which

in turn promotes BNIP3 homodimerization and further enhances

BNIP3 protein stability [17]. In our control kidneys some tubules

express BNIP3 presumably as an adaptation to basal levels of

hypoxia and oxidative stress present in inner cortex and outer

medulla [56,57]. Studies have demonstrated that BNIP3 has been

critically implicated in the pathogenesis of cardiac ischemia

[6,51,58]. We demonstrated that renal ischemia also is associated

with BNIP3 up-regulation and activation. Moreover, BNIP3 pro-

death activity can be inhibited even under resisitent hypoxia. Two

major mechanisms which may be responsible for BNIP3

deactivation were identified: control of oxidative stress and

preservation of mitochondrial function.

Intracellular redox balance is under control of KEAP1/NRF2

system [59]. Under normal conditions steadily expressed NRF2

protein is permanently targeted for ubiquitination and proteoso-

mal degradation by the cytosolic protein KEAP1. Oxidants and

electrophiles induce conformational changes of KEAP1 and, thus,

stimulate NRF2 release and translocation to the nucleus. NRF2

transcription activity targets broad range of cytoprotective genes

including those that are critically involved in antioxidant functions

and mitochondrial biogenesis [59,60]. Oxidative stress was

significantly reduced in clipped kidneys of 2K1C rats by

HPP593 treatment but remained higher than in sham-operated

controls. Elevated oxidant levels in the kidneys of HPP593-treated

rats correlated with a decrease in the basal levels of nuclear NRF2.

Figure 11. Vascular endothelial growth factor (VEGF) in the
clipped kidneys of 2K1C untreated and HPP593 treated rats.
Representative immunoblot and densitometry analysis of VEGF
expression in kidneys of rats (n = 5). **p,0.01 vs control, #p,0.05 vs
2K1C.
doi:10.1371/journal.pone.0064436.g011

Table 1. Physiological measurements in the experimental groups of the rats.

Control 2K1C 2K1C+HPP593

(n = 8) (n = 8) (n = 12)

Relative weight of clipped kidney
(%)

98.463.4 38.266.0** 71.565.4*#

Systolic blood pressure (mmHg) 124.169.4 167610.8** 13562.4#

Serum creatinine 0.4160.08 0.5760.12 0.6260.08

The weight of the right kidney was set as 100% and the relative weight of the left (clipped) kidney was recalculated for each animal sample. (n = 8, *p,0.05 and
**p,0.001 vs control, #p,0.05 vs 2K1C).
doi:10.1371/journal.pone.0064436.t001
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However, HPP593 treatment completely preserved mitochondrial

function and proteins suggesting that mitochondria protection

might be a primary mechanism of BNIP3 deactivation under

hypoxic conditions of stenotic kidney.

In many cell types BNIP3 triggers apoptosis under hypoxia via

interaction with the pro-apoptotic Bax/Bak proteins [15,19,22]. In

untreated clipped kidneys, apoptotic cells were present in the

sclerotic glomeruli and intersitium. However BNIP3 immunor-

eativity was not found in these particular cells (Figure 4, 5). In

kidneys of HPP593-treated rats, intensive immunostaining for

BNIP3 as well as apoptotic cells were detected in some tubules.

Therefore, whether BNIP3 could control apoptotic removal of

dedifferentiated epithelial cells and thus facilitate tubular remod-

eling or atrophy in HPP593-treated kidneys remains to be

clarified.

In addition to its pro-cell death activities, BNIP3 facilitates the

selective autophagic removal of damaged mitochondria in a

variety of cell types [20,23,24,25,26,61,62]. Induction of cell death

and autophagy is considered to be two separate and independent

functions of the BNIP3 protein. Specifically, inhibition of

autophagy can stimulate BNIP3-mediated cell death [20,24].

Under hypoxia, BNIP3 stimulates autophagy by releasing Beclin 1

from inhibitory interactions with anti-apoptotic BCL-2 proteins

[26,63]. At the later stages of autophagy, the mitochondria-bound

BNIP3 can interact with the autophagosome-forming protein

LC3-II thus facilitating delivery of dysfunctional mitochondria to

the autophagosome [24]. In aging mouse kidneys the BNIP3-

induced activation of mitochondrial autophagy under caloric

restriction protects tubular cells against hypoxia [64]. However, in

our study autophagic machinery was impaired in stenotic kidneys

of 2K1C rats as indicated by inhibition of LC3 lipidation and

deficiency of ATG5 protein in spite of Beclin 1 up-regulation

(Figure 9). Calpain-mediated the N-terminal cleavage of ATG5

was reported in cancer cell lines undergoing apoptosis and in

tubular cells in cisplatin nephrotoxicity models [65,66]. However

ATG5 cleavage fragments were undetectable in the present study

although antibodies used were raised against N-terminal of ATG5.

Notably, mice with genetic ablation of ATG5 gene specifically in

proximal tubules develop tubular hypertrophy/degeneration and

increased sensitivity to ischemic injury [67,68].Thus the role and

mechanism(s) of ATG5 inhibition in ischemic renal cells remains

to be investigated.

Autophagy inhibition leads to p62 accumulation in the

cytoplasm (Figure 9) [69,70]. A multifunctional ubiquitin-binding

scaffolding protein p62 contains several functional motifs which

allow its interactions with a variety of cell signaling pathways

[71,72]. p62 plays a critical role in cellular adaptation to oxidative

stress through its direct binding KEAP1 and following release of

NRF2 [70,73,74,75,76]. In turn, NRF2 positively regulates p62

gene expression independently of oxidative stress [74]. As we

showed, p62 levels were increased in untreated clipped kidneys.

HPP593 treatment resulted in even higher levels of both total and

mitochondrial p62 (Figure 10). Further investigation is needed to

clarify the effect of excessive p62 accumulation on the survival of

clipped kidneys.

Surprisingly, HPP593 treatment had no effect on mitochon-

drial DNA content and on the level of PGC-1a, a master

regulator of mitochondrial biogenesis and a PPARs co-activator,

in the clipped kidneys (Figure 8, 9). However, regulation of

mitochondrial DNA copy number is not well understood and is

not always correlated with mitochondrial mass [77,78]. PPARd
stimulates mitochondrial biogenesis through PGC-1a in skeletal

muscles and in the heart [79,80,81,82]. However, under

conditions of chronic hypoxia in mice, PGC1-a levels and

mitochondrial density decrease in the diaphragm but are

unchanged in skeletal muscle [83]. Interestingly, this reduction

in PGC1-a expression in the diaphragm is associated with an

elevation of BNIP3 protein content [83].

The cytoprotective functions of PPARd, similar to PPARa and

PPARc, are attributed to suppression of oxidative stress and

inflammation in a variety of pathological conditions [84,85]. In

particular, PPARd expression and activation attenuate ischemic

damage and reduce the death of cardiac and neuronal cells in vivo

and in vitro [86,87,88,89,90,91,92]. In these studies the cytopro-

tective role of PPARd has been linked to suppression of

inflammation. Two primary mechanisms, by which activated,

agonist-bound PPARd modulates inflammatory signaling have

been found: i) deactivation of nuclear factor NF-kB complex via

interaction with the p65 subunit [93]; ii) release of the

transcriptional repressor Bcl6 (B cell lymphoma-6) from its

complex with PPARd [94,95,96]. These two mechanisms of

PPARd action, together with PPARd-dependent up regulation of

oxidative stress defense genes, are likely to contribute to

attenuation of oxidative stress in kidneys of HPP593-treated

2K1C rats [59,97]. Interestingly, NF-kB activation can suppress

both basal and hypoxia-inducible BNIP3 expression and improve

mitochondrial function in ventricular myocytes [98,99]. These

mechanisms of PPARd actions presumably are cell- and stimulus-

specific and might be differently regulated in distinct populations

of kidney cells under ischemic condition. Thus, more investiga-

tions are needed to clarify mechanisms of PPARd actions and its

interactions with BNIP3, NF-kB and KEAP1/NRF2 systems in

the chronically ischemic kidney.

In addition to their anti-inflammatory and antioxidative

properties, PPARs are involved in control of angiogenesis. While

PPARa and PPARc activation generally inhibit angiogenesis,

different PPARd agonists may have either pro- or anti-angiogenic

effects in various tissues and pathological conditions [100,101].

VEGF and its receptors are molecular targets of PPARd agonists

[101,102]. VEGF is constitutively expressed in the kidney and

markedly increased in hypoxia [103]. However, overexpression of

VEGF was associated with persistent inflammation and kidney

damage in various animal models and human conditions [104]. As

we found in untreated 2K1C rats VEGF expression was

significantly up-regulated yet HPP593 treatment resulted in a

decrease of VEGF levels presumably maintaining it within an

adaptive tissue protective range.

In summary, we demonstrated that renal atrophy and fibrosis

in the 2K1C rat model of ischemic nephropathy can be

prevented by the pharmacological activation of PPARd by its

agonist, HPP593. The data presented strongly suggest that: 1)

necrotic death of tubular epithelia in clipped kidneys is linked to

the up-regulation and stabilization of BNIP3 and to mitochon-

drial damage; 2) PPARd activation attenuated oxidative stress

and preserved basal mitochondrial function and concomitantly

inhibited BNIP3 activation. Significantly, the preservation of

renal tissue in HPP593-treated rats was associated with an

excessive accumulation of p62 protein due to the impairment of

autophagy.
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