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Brain-machine interfaces (BMI) were born to control “actions from thoughts” in order to
recover motor capability of patients with impaired functional connectivity between the
central and peripheral nervous system. The final goal of our studies is the development
of a new proof-of-concept BMI—a neuromorphic chip for brain repair—to reproduce the
functional organization of a damaged part of the central nervous system. To reach this
ambitious goal, we implemented a multidisciplinary “bottom-up” approach in which in vitro
networks are the paradigm for the development of an in silico model to be incorporated
into a neuromorphic device. In this paper we present the overall strategy and focus on the
different building blocks of our studies: (i) the experimental characterization and modeling
of “finite size networks” which represent the smallest and most general self-organized
circuits capable of generating spontaneous collective dynamics; (ii) the induction of lesions
in neuronal networks and the whole brain preparation with special attention on the impact
on the functional organization of the circuits; (iii) the first production of a neuromorphic chip
able to implement a real-time model of neuronal networks. A dynamical characterization of
the finite size circuits with single cell resolution is provided. A neural network model based
on Izhikevich neurons was able to replicate the experimental observations. Changes in the
dynamics of the neuronal circuits induced by optical and ischemic lesions are presented
respectively for in vitro neuronal networks and for a whole brain preparation. Finally the
implementation of a neuromorphic chip reproducing the network dynamics in quasi-real
time (10 ns precision) is presented.

Keywords: In vitro modular networks, whole brain, lesioned circuits, in silico neuronal circuit, hardware spiking

neural network

INTRODUCTION
Millions of people worldwide are affected by neurological disor-
ders that disrupt connections between brain and body, causing
paralysis, or impair cognitive capabilities. This number is likely
to increase in coming years, yet current assistive technology
is still limited. Over the last decade Brain-Machine Interfaces
(BMIs) and neuro-prostheses (Nicolelis, 2003; Hochberg et al.,
2006, 2012; Nicolelis and Lebedev, 2009) have been the object
of extensive research and offer the promise of treatment for such
disabilities. These devices could profoundly improve the quality
of life for affected individuals, and could have a more widespread
impact on society.

Neural interfaces have mainly been devoted to restoring motor
function that is lost due to injuries at the level of the spinal cord
(Collinger et al., 2013), or to recover sensorial capacities, e.g., arti-
ficial retinal or cochlear implants (Chader et al., 2009). However,
recent interest has also focused on neural prostheses for restor-
ing cognitive functions. For example, a hippocampal prosthesis

for improving memory function in behaving rats was recently
presented (Berger et al., 2011, 2012), and the same group has also
tested a device in primate prefrontal cortex aimed at restoring
impaired cognitive functions (Hampson et al., 2012; Opris et al.,
2012).

The realization of such prostheses implies that we know
how to interact with neuronal cell assemblies, taking into
account the intrinsic spontaneous activation of neuronal net-
works and understanding how to drive them into a desired
state in order to produce a specific behavior. The long-
term goal of replacing damaged brain areas with artificial
devices requires neural network-like prosthetics or models
that could be fed with recorded electrophysiological patterns
and that could provide a substitute output to recover the
desired functions. While ultimately this approach must be
tested and applied in vivo, important insights could be gained
using in vitro systems of increasing architectural complexity,
which can be more easily and thoroughly accessed, monitored,
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manipulated, and modeled than in vivo systems (at least at
present).

The final goal of the studies presented in this paper is to
develop a test-bed for the development of a new generation
of neuro-prostheses capable of restoring lost communication
between neuronal circuits. These studies constitute the object of
the European project BRAIN BOW (www.brainbowproject.eu).
Healthy and lesioned in vitro neuronal circuits are characterized
in parallel to the development of in silico neuronal networks, with
the goal of establishing bi-directional communication to mimic
or bypass an injured neuronal network. In order to develop an
experimental and computational platform for the prototyping
of neuro-prostheses, we followed a bottom-up approach using
in vitro biological neuronal systems with increasing structural
complexity. Our approach takes advantage of the unique features
of in vitro neuronal cultures, which represent a powerful experi-
mental model to investigate the inherent properties of neuronal
cell assemblies as a complement to artificial computational mod-
els. We use engineered networks of increasing structural complex-
ity, from isolated finite-size networks up to interacting assemblies,
as a model of intercommunicating neuronal circuitries. Moreover,
we scaled our studies up to the isolated whole guinea-pig brain
(IWB), to translate to an in vivo model.

In this paper we present the overall multidisciplinary strat-
egy and preliminary results on the different building blocks of
the project. The structure-function relationship of “finite size
circuits” was characterized with single cell resolution by com-
bining calcium imaging and immunocytochemistry. Similarly to
what previously observed in isolated neuronal clusters (Shein-
Idelson et al., 2010), we found that the frequency of synchronous
network events increased with circuit size. This result was repro-
duced by in silico neural network models based on Izhikevich
neurons with scale-free connectivity. The feasibility of con-
trolled network lesions was explored by optically transecting cell
processes and monitoring the subsequent change in functional
network connectivity. In addition, in a whole brain prepara-
tion, a focal ischemic lesion in the hippocampus was demon-
strated to cause an interruption of the limbic olfactory pathway.
Finally, a neural network hardware model with arbitrary con-
nectivity based on Izhikevich neurons, working at nanosecond
time scale, is presented. These experimental and computational
platforms represent a starting point for restoring functional
closed-loop communication in a neuronal network with lesioned
circuitries.

MATERIALS AND METHODS
EXPERIMENTAL MODELS
The repertoire of activity patterns exhibited by an in vitro neural
network is strongly dependent on the complexity of its geom-
etry (Shein-Idelson et al., 2011). While homogeneous networks
(Figure 1A) tend to display highly stereotyped bursts which
spread to most of the connected cells (Kamioka et al., 1996; Van
Pelt et al., 2004; Chiappalone et al., 2006; Eytan and Marom,
2006), networks composed of smaller sub-networks with sparse
connections (Figure 1C) usually present non-repetitive patterns
of sparse spiking and local bursts (Macis et al., 2007; Shein-
Idelson et al., 2010). The first cellular model proposed in this

FIGURE 1 | From finite size networks up to the whole brain: a

bottom-up approach. (A) Sketch of a homogeneous network composed
of about 1000 neurons (left panel) and the typical raster plot of its
electrophysiological activity, recorded by using 60 electrodes of a Micro
Electrode Array (MEA) chip (right panel). The black box highlights a
sub-region of the homogeneous network, which can be described as a
finite size network (black arrow pointing to panel B). (B) Sketch of a finite
size network used in the framework of this paper, composed of about 100
neurons (left panel), and its raster plot, obtained by calcium imaging
recording (right panel). (C) Scheme of interconnected finite size networks,
each composed of about 100 neurons (left panel), and the raster plot of the
electrophysiological activity recorded by a MEA (right panel). (D) Sketch of
the in-vitro whole brain of a guinea pig composed by interconnected
functional networks (left panel), and raster plot of the spontaneous periodic
events recorded by an array of 16 electrodes (right panel).

work is that of finite size network (Figure 1B), namely an isolated
neuronal circuit consisting of a small number of neurons (dozens
to a few hundreds) that is still able to spontaneously produce
bursts similar to those observed in larger homogeneous networks
(cf. section “Results”). Characterization of activity within these
assemblies could allow their use as building blocks for larger,
more complex structures of interconnecting sub-networks. At
the other end of the complexity spectrum we set the isolated
whole brain of a guinea pig (Figure 1D). This model is used to
investigate the properties of one complex functional neuronal
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assembly (the olfactory tract, see below) embedded in an intact
brain (cf. section “Results”).

Finite size networks: patterning, cell culture, and calcium imaging
The procedure adopted for the preparation of “finite size net-
works” is in accordance with the NIH standards for care and
use of laboratory animals and was approved by the Tel-Aviv
University Animal Care and Use Committee.

Cultures were prepared as described in Herzog et al. (2011).
After the fourth day in vitro, the growth medium was enriched
with 0.5% Pen-Strep (Biological Industries Beit Haemek), 2%
B-27 (Gibco), and 0.75% glutamax (Biological Industries Beit
Haemek). Cells were plated at a density of 750 cells/mm2 on a
23 mm square glass coverslip previously glued on a 35 mm petri
dish. Coverslips were coated with spots of poly-D-lysine (PDL,
Sigma), and petri dishes were homogenously coated with PDL.
The cells attaching homogeneously on the free surface of the
petri dish (i.e., not covered by the glass coverslip) functioned as a
“supporting network” (Kleinfeld et al., 1988). PDL spots were cre-
ated using either manual drop deposition or polydimethylsilox-
ane (PDMS) stencils. For manual drop deposition, an Eppendorf
pipette with a tip of 10 μl capacity was used. The spots were cre-
ated by touching the tip filled with 2 μl PDL on the coverslip
surface and then drying the coverslips at 37◦C for 30 min.

When PDMS stencils were used, the procedure to create PDL
spots was based on a soft lithography process, as described in
Sorkin et al. (2006). Briefly, an SU8-2075 (Micro Chem) mould
on a silicon wafer with a feature thickness of approximately
200 μm was used to shape the PDMS. The feature was composed
of squares of 700 μm × 700 μm separated by at least 1 mm, in
order to obtain isolated neuronal islands. The size of the square
was chosen to fit the field of view of a 10× objective in the cal-
cium imaging setup described in detail below and in Herzog et al.
(2011). Once the PDMS substrate was shaped and dried on the sil-
icon wafer, the PDMS stencils were detached and placed directly
on the glass coverslips. Drops of the PDL solution were dripped
onto the PDMS stencil until the features were completely covered.
After mild vacuum degassing for 15 min, the excess PDL solution
was removed and the sample was dried at 37◦C for 30 min. The
PDMS stencil was removed before cell plating.

Calcium imaging of the patterned neuronal networks grown
on coverslips was performed in buffered-ACSF solution (con-
taining, in mM, 10 HEPES, 4 KCl, 1.5 CaCl2, 0.75 MgCl2, 139
NaCl, 10 D-glucose, adjusted with sucrose to an osmolarity of
325 mOsm, and with NaOH to a pH of 7.4). In order to load the
cells with the calcium-sensitive dye, cultures were incubated for
30 min in 1 ml ACSF supplemented with 1 μl of 10% pluronic
acid F-127 (Biotium 59000) and 1 μl Oregon-Green BAPTA-I
AM (Invitrogen 06807) previously diluted with 7.6 μl anhydrous-
DMSO. Following incubation, cultures were washed with ACSF
and recorded at 37◦C. In order to avoid artifacts due to evapora-
tion and pH change, the ACSF was replaced every 20 min during
the recording session.

Calcium-fluorescence images were acquired with an EMCCD
camera (Andor Ixon-885) mounted on an upright Olympus
microscope (BX51WI) using a 10× water-immersion objective
(Olympus, NA 0.4). Fluorescent excitation was provided via a

120 W mercury lamp (EXFO X-Cite 120PC) coupled to the
microscope optical axis with a dichroic mirror, and equipped
with an emission filter matching the dye spectrum (Chroma
T495LP). Images were acquired at 59 fps in 2× 2 binning mode
using Andor software data-acquisition card (SOLIS) installed on
a personal computer.

Immunocytochemical staining
At the end of calcium-imaging experiments, cultures were washed
twice with PBS, then fixed with 4% PFA (15 min) and left in PBS
for not more than 5 days before staining. For immunocytochem-
ical staining, fixed cultures were washed three times with PBS
(10 min each) and then incubated with 1% Triton ×100 in PBS
for 30 min. Cultures were blocked with 2% BSA, 10% normal
serum and 0.5% Triton× 100 in PBS for 2 h at room tempera-
ture. The cultures were incubated overnight with the first primary
antibody (GAD67, 1:250, Millipore, MAB5406) in blocking solu-
tion at 4◦C. The next day cultures were incubated with the second
primary antibody (MAP2, 1:500, Chemicon, AB5622) overnight
at 4◦C. Cultures were then washed three times with TBS and incu-
bated with the secondary antibodies in 2% BSA, 2 mM CaCl2 in
TBS for 1 h at room temperature. After being washed three times
with TBS the cultures were mounted with aqueous mounting
medium containing DAPI (vector).

In vitro whole brain
Young adult Hartley guinea pigs (150–300 g, Charles River) were
used for IWB recordings. All procedures were approved by the
Italian Department of Health and were conducted in accor-
dance to FELASA guidelines and Italian and European directives
(DL 116/92 and 2010/63/EU). Animals were anesthetized with
sodium thiopental (125 mg/kg, i.p.) and transcardially perfused
with a cold (4◦C), oxygenated (95% O2, 5% CO2) saline solu-
tion composed of 126 mM NaCl, 3 mM KCl, 1.2 mM KH2PO4,
1.3 mM MgSO4, 2.4 mM CaCl2, 26 mM NaHCO3, 15 mM glu-
cose, 2.1 mM HEPES, and 3% dextran (MW 70,000). The pH of
the solution was corrected to 7.1 with 1N HCl. After assessing the
absence of nociceptive and ocular reflexes, the brain was gently
dissected out of the skull, transferred to a recording chamber, and
perfused at 7 ml/min with the above solution (pH = 7.3, 15◦C)
via a peristaltic pump (Minipulse II, Gilson, France) through a
cannula inserted in the basilar artery (Figure 5). Prior to record-
ing, the temperature of the preparation was gradually increased
to 32◦C (0.2◦C/min) (Llinas et al., 1981; Muhlethaler et al., 1993;
De Curtis et al., 1998). In order to induce an ischemic insult in
the hippocampal formation, a silk thread was positioned under
the left rostral and caudal posterior cerebral arteries [r- and
c-PCA, see Librizzi et al. (1999)] and a loose knot was pre-
pared around the vessels. The flow was interrupted by pulling
the thread ends to tighten the knot (Figure 5) (Pastori et al.,
2007).

READ-OUT SYSTEMS
Optical manipulation and recording system for in vitro neural
networks
The optical system combined a laser dissector with a micro-
scope for simultaneous fluorescence and bright field imaging
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during electrophysiological recording of neural network activity,
as previously described (Difato et al., 2011a).

The light source used to perform calcium fluorescence imag-
ing was composed of TTL modulable laser diodes (TECBL-15
G-473-TTL-FC, World Star Tech. Inc., USA) coupled to the
microscope (BX51, Olympus, Italy) through a circle top-hat
engineered diffuser (ED1-C20-MD, Thorlabs, Optoprim, Italy)
to remove laser speckles. A pair of UV doublets (Thorlabs,
Optoprim, Italy) coupled the laser light to the microscope objec-
tive (60×, 0.9 NA water dipping). The laser light was focused
on the back focal plane of the microscope objective to produce
a homogenous wide field illumination on the sample. A light
emitting diode at 590 nm wavelength served as the bright field
illumination source (M590L2, Thorlabs, Optoprim, Italy). The
wavelength of the diode was chosen to avoid interference with
the emission spectra of the fluorochrome (Fluo4-AM, Invitrogen)
used to label the sample. A dichroic mirror separated the light
coming from the sample (green and red portion of light spec-
tra) onto two cameras. Green emission light was deviated on
CCD1 (V887ECSUVB EMCCD, Andor, Lot Oriel, Italy) acquir-
ing the calcium fluctuations due to network activity, and the
red portion of the light spectra was deviated on CCD2 (Pilot
PIA1000-48GM, Basler, Advanced Technologies, Italy) to per-
form bright-field imaging. The CCDs image acquisitions and
light sources were synchronized with a TTL signal coming from
a D/A board (PCI-6529, National Instruments, Italy). The use
of TTL-modulable light sources for fluorescence and bright field
imaging allowed a precisely timed illumination of the sample,
thereby reducing phototoxicity and facilitating long term calcium
imaging of neural networks. Bright-field images were acquired at
1 Hz to detect network topography before and after laser dissec-
tion of network connections. Cells were previously incubated for
10 min with 5 μm Fluo-4 AM (Invitrogen, Italy). To monitor the
neural network activity before and after laser induced network
lesions, calcium imaging was performed at 60 Hz (light expo-
sure of 3 ms each frame, at an average power at the sample of
60 μW).

Cells were kept under the microscope at 35◦C using a
Peltier device (QE1 resistive heating with TC-344B dual
channel heater controller, Warner Instruments, Italy). For
neuronal cultures plated on Petri dishes, pH and humidity were
controlled by aerating a custom-designed polydimethyl-
siloxane (PDMS) sleeve, which integrated the objective
for optical access, with humidified carbogen (95% O2,
5% CO2).

A pulsed, sub-nanosecond UV Nd:YAG laser at 355 nm
(PowerChip nano-Pulse UV laser PNV-001525-040, Teem
Photonics, Italy) served as the source for performing laser micro-
dissection experiments. The diaphragm of the epi-illuminator
was substituted by a narrow-band laser mirror, which reflects
355 nm laser light while passing all other wavelengths com-
ing from the laser diodes used for fluorescence microscopy
(DM6, TLM1-350-45-P, CVI, Italy), thus allowing fluorescence
imaging and laser dissection to be performed simultaneously.
Damage to neural network was inflicted with laser pulse repeti-
tion rate settled at 100 Hz, and an average power at the sample of
about 4 μW.

Electrophysiological system for the in vitro whole brain
Extra- and intracellular recordings were performed simultane-
ously in piriform and medial entorhinal cortex (PC and m-ERC).
To test the viability of the preparation throughout the experiment,
we monitored evoked local field potentials (LFPs) in PC and m-
ERC in response to the electrical stimulation (0.5–3 mA, 0.3 ms)
of the lateral olfactory tract (LOT) using custom-made bipolar
electrodes made of twisted, insulated silver wires. Intracellular
recordings were performed with sharp micropipettes filled
with 3M potassium acetate (input resistance 70–110 M�) and
attached to an electronically controlled micromanipulator (Sutter
Instruments, Novato, CA, USA). Signals were amplified by an
intracellular amplifier (IR-283A Cygnus Technology, PA, USA).
Field potentials were recorded using glass pipette filled with 0.9%
NaCl (resistance 2–5 m�) or microwire arrays (Tucker-Davis
Technologies, Alachua, FL, USA) featuring 16 tungsten planar
recording wires (filament diameter 50 μm, tip angle 45◦), each
separated by 250 μm (impedance 30–40 K�). The extracellular
signals were acquired using a PBX3 preamplifier (Plexon, Dallas,
TX, USA) configured to separately process spikes (150 Hz–8 KHz
bandwidth) and local field potentials (0.7–300 Hz).

Data were digitized at 25 kHz using a PCI-6071E A/D board
(National Instruments, Austin, TX, USA) and stored on the hard
drive of a personal computer. Recordings were performed using
ELPHO software developed by Dr. Vadym Gnatkovsky at the C.
Besta Neurological Institute (Milan, Italy).

COMPUTATIONAL MODEL
In the following sections we will present the computational model
used to mimic the dynamics expressed by finite size networks (cf.
section “Experimental Models”).

Neuron model
The neuron model used for the finite size networks is based on
the Izhikevich equations (Izhikevich, 2003). The dynamics of
this model depend on four parameters that, correctly chosen,
reproduce the spiking behavior and voltage traces of specific
types of cortical neurons. From a mathematical point of view,
the model is described by a two-dimensional system of ordinary
differential equations.

dv

dt
= 0.04v2 + 5v + 140− u+ Isyn + Inoise (1)

du

dt
= a(bv− u) (2)

with the after-spike resetting conditions:

if v ≥ 40 mV→
{

v← c
u← u+ d

(3)

In Equations (1–3), v is the membrane potential of the neuron,
u is a membrane recovery variable which takes into account the
activation of K+ and inactivation of Na+ channels; Isyn describes
the synaptic input from other neurons; Inoise is a current source
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generator introduced to model the spontaneous subthreshold
electrophysiological activity of the neurons. Practically, we intro-
duced a stochastic source of noise (modeled according to
an Ornstein-Uhlenbeck process) to each neuron described as
follows:

dInoise = − Inoise

τI
dt + mI

τI
dt + s1

√
2dt

τI
ξt (4)

In Equation (4) the quantity ξt is a white noise with zero mean
and unitary variance. In this way, Inoise is Gauss-distributed at any
time t and, after a transient of magnitude τI (correlation length),
converges to a process with a mean equals to mI and standard
deviation sI . For the simulation, we set τI = 1 ms, mI = 25 pA,
and sI = 9 pA.

Among the possible firing patterns generated by the neuron
model of Equations (1, 2), we implemented the family of regular
spiking (RS) and the family of fast spiking neurons (FS) in
percentage of 75% and 25%, respectively, in agreement with
the experimental findings (cf. section “Finite Size Network
Dynamics”). Mathematically, the four aforementioned parame-
ters were set as follows:

a =
[

0.02
0.02+ 0.08ri

]
b =

[
0.2
0.25− 0.05ri

]

c =
[−65+ 15r2

i
−65

]
d =

[
8− 6r2

i
2

]
(5)

In Equation (5), the first row is relative to the excitatory, while
the second one to the inhibitory neurons. ri is a random variable
which spans from 0 to 1, and i the neuron index. ri was added in
order to introduce a further variability in the neuron dynamics:
for example, a neuron exhibits classic RS behavior if ri = 0, and
bursting behavior if ri = 1.

Finite size network model
Graph theory was used to represent the network connectivity. All
graphs are defined by nodes which represent the neurons, and
edges which model the morphological connections among the
neurons. The structure of the graph is described by the adja-
cency matrix, a square matrix of size equal to the number of
nodes N with binary entries. If the element aij = 1, a connection
between the node j to i is present, otherwise aij = 0 means no
connection. All the auto-connections are avoided (aii = 0, ∀ i).
Then, the value 1 of the non-zero aij elements has been replaced
to mimic different synaptic strengths. Synaptic weights were cho-
sen randomly from a normal distribution with a mean value and
standard deviation equal to 10 and 3.5, respectively.

To model the synaptic transmission we chose the approach of
the pulse-coupled neural networks: practically, the firing of the
j-th neuron causes an instantaneous change in the membrane
potential of the neuron i-th by means of the weight sij.

Among the possible graphs, following the experimental find-
ings regarding the functional connectivity of such confined neu-
ronal assemblies (cf. section “Finite Size Network Dynamics”),
we implemented neuronal networks with a scale-free (SF)

connectivity (Barabasi and Albert, 1999). Briefly, in SF networks
the degree distribution follows a power law: if m is the num-
ber of edges incident to a node, i.e., the degree, the power law
distribution is given by Dorogovtsev and Mendes (2002):

P(m) = m−γ (6)

where γ is the characteristic exponent. This law suggests that most
nodes have just a few connections and other, named hubs, have
a very high number of links. To build a SF network, we made
use of the algorithm described in Batagelj and Brandes (2005),
particularly efficient in terms of computation when dealing with
large-scale networks. Nodes are added successively. For each node,
m edges are generated. The endpoints are selected from the nodes
whose edges have already been created, with a bias toward high
degree nodes.

In order to mimic the experimental conditions of the confined
assemblies described in section “Finite Size Network Dynamics,”
in section “Simulation Results” we presented the results regarding
the ongoing activity of networks made up of 90, 100, 120, 150,
240, 320, and 520 neurons.

DATA ANALYSIS AND STATISTICS
Analysis of network dynamics based on calcium fluorescence
imaging
Custom software running in MATLAB (Crépel et al., 2007;
Bonifazi et al., 2009) was used for the automatic identification of
the cells loaded with the calcium indicator and for the extraction
of their fluorescence signals as a function of time (time resolu-
tion 59 Hz). To detect the calcium events (i.e., the onset and offset
of neuronal firing) from the fluorescent trace Fij of the neurons
(1 ≤ i ≤ M, M number of neurons; 1 ≤ j ≤ N, N number of
frames) we calculated the first derivative of the fluorescent signal
(�Fij = Fij+1 − Fij) and we integrated �Fij in overlapping sliding
time windows of 1 s (Iij′ = �j′≤n≤j′+59 �Fnj; 1 ≤ j′ ≤ N − 59).
A Gaussian fit centered at zero was used to extract the standard
deviation σi of the noise of the processed signal Iij. Signal tran-
sients exceeding the threshold of 3σi for at least 5 consecutive
points were considered as calcium events. The onset and the offset
of these calcium events were determined using a four-parameter
sigmoidal equation as described in Takano et al. (2012). The esti-
mated onset and offset times were fixed respectively to the 5% and
the 95% of the sigmoidal plateau.

The reconstruction of the functional connectivity of the net-
work was based on pair-wise correlation analysis of the onset time
series extracted from the calcium imaging data, as described in
Bonifazi et al. (2009). Briefly, when the firing onset of cell j pre-
ceded in a repetitive way the firing onset of cell k, a functional
connection directed from j to k was established. In order to reveal
these temporal correlations, the post-stimulus time histogram of
cell k centered on the firing onsets of cell j was calculated within
a maximal time lag of 500 ms. Both the Student’s t-test and the
Kolmogorov-Smirnov test with a level of confidence of 5% were
used to exclude the possibility that the poststimulus time dis-
tribution could be a Gaussian distribution with zero mean or a
uniform distribution, respectively. In this way, we excluded cases
where the activation of two neurons was completely uncorrelated
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(uniform distribution) or synchronous (Gaussian centered at
zero).

The cross correlation between firing onsets time series of indi-
vidual neurons was used to estimate the average correlation and
average time of activation of each neuron relative to all others,
similarly to what described in Bonifazi et al. (2009) and Marissal
et al. (2012). Briefly, the cross correlation between the time series
of neurons a and b was calculated as follows:

CCab(τ) =
∑

0 < t < T
(at + τ− <a>) · (bt − <b>)

σa · σb
(7)

where σa and σb are the standard deviation of the time series,
t is the sampling time, T the duration of the entire movie and
|τ| ≤ 1 s.

The maximum cross-correlation value (CCmax
ab ) and the time

lag of its occurrence (τmax
ab ) were used to calculate, respectively,

the average correlation and average time of activation of neuron i
to the following formulas

〈
CCmax

i

〉 = 1
n

∑
j	=i CCmax

ij and
〈
τmax

i

〉 =
1
n

∑
j	=i τ

max
ij where n is the number of neurons displaying a

positive cross-correlation with neuron I.

Processing of electrophysiological signals from the IWB
Raw data acquired by the ELPHO software were loaded into
MATLAB (Mathworks Inc., Natick, MA, USA) for off-line pro-
cessing. First, raw traces were band-pass filtered to select either
multi-unit activity (MUA, 800 Hz–3 KHz) or local field poten-
tials (LFP, 1–300 Hz). Stimulation artifacts were suppressed using
an off-line MATLAB implementation of the SALPA algorithm
(Wagenaar and Potter, 2002). Highly noisy channels were visually
excluded from the analysis. Then, MUA raw data were spike-
detected by means of the PTSD algorithm (Maccione et al.,
2009) (peak lifetime period = 2 ms; refractory period = 1 ms;
threshold = ±8 times the estimated noise standard deviation).
The result of the spike-detection procedure consists of a series of
point processes (i.e., spike trains), one for each recording channel
(Bologna et al., 2010).

We evaluated the network-wide evoked response by comput-
ing the Peri Stimulus Time Histogram (PSTH; Perkel et al., 1967)
for each recording channel of the array and for the full array
[time bin = 4 ms, time window = (−100 ms, +400 ms) relative
to the stimulus onset]. We also measured the intensity of the
response as the average number of evoked spikes in a 200-ms
time window following each stimulus. The final dataset com-
prised 4 recordings in control brains (duration ∼300 s, 10–20
paired pulses delivered to the LOT at 0.05 Hz, inter-pulse interval
200 ms) and 3 recordings before and after the induction of focal
ischemia (same stimulation protocol).

RESULTS
FINITE SIZE NETWORK DYNAMICS
Spontaneous synchronizations in finite size networks
To build an experimental model for the study of physiological
and impaired communications between neuronal assemblies we
grew finite size neuronal networks, i.e., networks composed of
neuronal assemblies spatially separated by hundreds of microme-
ters and interconnected through long neuritis. As a first step, we

focused on the properties of single modules, i.e., the structural
and dynamical properties of isolated and spatially confined neu-
ronal circuits (Figure 2). Isolated neuronal circuits located within
an 800× 800 μ m spot were obtained by plating the cells on glass
cover slips previously coated with a geometrically defined molec-
ular adhesive layer (PDL). The individual cell populations varied
between a few dozen up to a few hundred neurons. Similar to
homogenous and clustered cultures (Chiappalone et al., 2006;
Shein-Idelson et al., 2010), finite size circuits displayed sponta-
neous synchronized events after 2 weeks in culture (Figure 2,
panel B1) occurring with a frequency linearly correlated with
the number of cells present in the circuit (Pearson correlation
0.88, Figure 2C1). Likewise, depending on the density of the
plating and on the vicinity to the supporting network, finite
size circuits organized into monolayers or in three-dimensional
clusters, with a higher propensity of clustering at increased plat-
ing density or at larger distances from the supporting network
(data not shown). We used calcium imaging of monolayer neu-
ronal circuits (performed with a 10× objective) in combination
with immunocytochemical staining to map the functional and
structural properties of all the neurons in the circuits with single-
cell resolution. GABAergic cells could be specifically identified
(Figure 2A3), allowing us to investigate their specific involvement
in spontaneous synchronization processes, similar to the work of
Bonifazi et al. (2009) in developing hippocampal networks.

A pair-wise analysis based on the cross-correlation between the
firing onsets time series of pairs of neurons (see section “Materials
and Methods”) was used to estimate the average correlation and
average time of activation of each neuron relative to all others
(Bonifazi et al., 2009; Marissal et al., 2012). In all the circuits
analyzed (n = 4) the time correlation graph presented a bimodal
distribution (Figure 2C2), indicating that network events syn-
chronized first the population of neurons plotted on the left side
of the graph (i.e., with a time lag < 0), whereas neurons on the
right (i.e., with a time lag > 0) were activated next. In addi-
tion, the presence of highly correlated early activated GABAergic
neurons was observed (red points within the violet circle in
Figure 2C2). Interestingly, the existence of a characteristic, early-
activated neuronal population within the network synchroniza-
tions has been already documented in developing hippocampal
circuits (Bonifazi et al., 2009) even in absence of GABAergic
transmission (Marissal et al., 2012). Notably, in the presence of
GABAergic transmission it has been shown that early-activated
GABAergic neurons can play the role of hub cells in orchestrating
network dynamics (Bonifazi et al., 2009). The similarity between
these previous observations and the results presented here sug-
gest that cortical circuits share common innate features in their
functional organization.

Effect of laser ablation on functional connectivity
To monitor the synaptic re-organization of lesioned neuronal
circuits with single cell resolution, we reconstructed the func-
tional connectivity of a neuronal subset of a larger neuronal net-
work 20 min before and after laser-induced ablations (see section
“Materials and Methods”).

Two micro-lesions (lesion 1 and lesion 2) were induced next
to the center of the field of view, using an average laser power
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FIGURE 2 | Structure vs. function relations in neocortical finite circuits.

(A) Immunocytochemical staining revealing cellular nuclei (blue, DAPI, A1),
neuronal cells (green, MAPs, A2), GABAergic neurons (red, GAD67, A3). In
panel (A4), the contours of the cells monitored through calcium imaging
(white) are superimposed to the merged immunocytochemical pictures.
(B) Monitoring the dynamics of the neuronal circuit through calcium imaging.
Raster plot (B1 left plot) of the activity of the circuit (shown in panel A)
displaying stereotyped spontaneous network synchronizations (broken
vertical lines). The activity of a representative network synchronization
(marked in orange) is shown with higher temporal resolution on the right
orange plot (bottom scale bar 0.5 s). The cells loaded with the calcium
indicator OGB are shown in the panel (B2) (objective magnification 10×, field

of view 800 × 800 μm). (C1) Frequency of spontaneous synchronizations as a
function of circuits’ population size (blue dots, n = 9). The cell number was
estimated by counting the cellular nuclei stained with DAPI. The result of the
linear fit with least-squares regression (Pearson correlation coefficient 0.88) is
represented by the red line and by the equation. (C2) Time lag—correlation
graph for the circuit shown in (A) plotting for each imaged neuron the average
correlation and average time of activation relative to all other cells (see
section “Materials and Methods”). Red dots indicate GABAergic cells. The
violet circle highlight GABAergic cells reliably activated at the synchronization
build up possibly playing a key role in the orchestration of network synchrony
similarly to what previously documented for the developing hippocampal
circuits (Bonifazi et al., 2009).

at the sample of 4 μW and 5 μW, respectively. The second lesion
was performed at higher power to obtain a more pronounced
alteration of the network. Indeed, this lesion produced a strong
intracellular calcium increase in several cells, and a calcium

“shockwave” started to propagate through the network. After
a few minutes, only directly ablated cells displayed a saturated
calcium fluorescence signal, while the other neurons recovered
a relatively low basal calcium level and presented spontaneous
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activity (cf. Figure A1). The frequency of occurrence of sponta-
neous network synchronizations was not affected by the lesions
(Figure 3, 4th and 5th rows) with no significantly statistical
difference between the inter-burst interval distribution before and
after lesion (student t-test, p > 0.05). However, the number of
cells recruited within the network events in the imaged field (i.e.,
close to the location of the lesion) decreased by 31± 10% (student
t-test, p < 0.05).

Based on the calcium dynamics of the cells imaged in a cir-
cular field of 244 μm diameter (Figure 3), we reconstructed the
functional connectivity of the neuronal population through a
pair-wise analysis of the onset of firing (see section “Materials
and Methods”). Briefly, if the activation of cell i reliably preceded
the activation of cell j (i.e., over several repetitions with sta-
tistical significance, see section “Materials and Methods”), we
inferred a functional connection directed from i to j. Cell pairs
that were synchronously activated or not displaying any activation
order were not included in the directed functional connectivity
reconstruction (see section “Materials and Methods”). Figure 3
(1st row) shows the location of ten neurons with the highest
number of functional INPUT (violet) and OUTPUT (yellow)
connections before and after the lesions. Interestingly, after the
lesions, top rank INPUT and OUTPUT neurons segregated into
spatially distinct regions. Top rank OUTPUT neurons relocated in
the bottom right region while top rank INPUT neurons remained
in the rest of the circuit. In addition, just one out of the ten
neurons for each group belonged to the top rank group before
and after the lesion. The relocation of the functional connec-
tions (drawn for clarity just for the five best ranked neurons) can
additionally be observed in Figure 3 (2nd and 3rd row).

In vitro WHOLE BRAIN
We also characterized the activity of an ex vivo experimental
model (i.e., the isolated brain of a guinea pig, Figure 4) before
and after a lesion induced by a focal ischemia.

Network response to LOT stimulation in the m-ERC
Electrical stimulation of the LOT induced a polysynaptic response
in the m-ERC mediated by the interposed activation of the
hippocampus (Biella and De Curtis, 2000; Gnatkovsky and De
Curtis, 2006) (Figure 4). The intracellular correlate of the LOT-
evoked delayed response in neurons of m-ERC superficial lay-
ers was characterized by an early GABAA receptor- mediated
inhibitory postsynaptic potential (IPSP; latency from LOT stimu-
lation: 51± 1 ms, n = 12), followed by a relatively slow (duration
409 ± 36 ms) NMDA-dependent depolarizing component which
often reached threshold for spike firing. Conversely, pyramidal
cells in deeper layers responded to LOT stimulation with an
early excitatory postsynaptic potential (EPSP) occurring 15±
1 ms after the population spike recorded in the dentate gyrus
(DG, Figure 4). The EPSP often crossed the threshold for action
potential firing and was followed by a relatively slow inhibitory
potential mediated by GABAB receptors (Gnatkovsky and De
Curtis, 2006). The early inhibition of the superficial principal
cells is presumably due to a feed-forward mechanism sustained by
interneurons recorded in layers II/III (i.e., basket and chandelier
cells; Canto et al., 2008). In Figure 4 the firing of an interneuron

FIGURE 3 | Directed functional connectivity before (left) and after

(right) lesion. The number of OUTPUT and INPUT functional
connections has been calculated for all the imaged neurons based on
the temporal correlation between the firing onsets of the neurons (see
section “Materials and Methods”). The ten top ranked cells, i.e., the
cells with the largest number of functional OUTPUT (yellow) and INPUT
connections (pink), are represented in the top row. For graphic clarity,
the connectivity graphs shown in the 2nd and 3rd rows (respectively
INPUT and OUTPUT connections) include only the five top ranked cells.
The data refers to a homogenous neuronal network where functional
hub cells (i.e., neurons with a very large number of functional
connections) were not identified. The fluorescent images show the
cells loaded with the calcium indicator Fluo4 (see section “Materials
and Methods”). The locations of the two lesions (L1 and L2) are
marked by the white arrows. The green rectangle highlights the region
shown in Figure A1. The field of view is a circular region of 244 μm
diameter. The raster plot (representing the firing onsets) and the
fraction of activated cells are shown respectively in the 4th and
5th row.
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FIGURE 4 | The guinea pig isolated whole brain (IWB). (A) Schematic
view of IWB observed from its ventral surface. The circle of Willis with its
principal branching arteries is highlighted in black. The whole brain is
perfused by means of a peristaltic pump that delivers ACSF to the brain
through a polyethylene cannula inserted into the basilar artery. The two
vessels that are occluded to induce the hippocampal ischemia are marked by
red crosses. In the same hemisphere a microelectrode array (MEA) is
positioned in the center of the m-ERC (delimited by dotted line). S,
stimulating electrode; LOT, lateral olfactory tract; PC, piriform cortex; l-ERC,
lateral entorhinal cortex; DG, dentate gyrus; m-ERC, medial entorhinal cortex.
(B) Stereomicroscope photograph of the isolated brain positioned in the
perfusion chamber. (C) Electrical responses to LOT stimulation recorded in
the m-ERC. Left, intracellularly recorded voltage traces from a superficial
pyramidal cell lying at 200–300 μm from pial surface (black trace), a

GABAergic interneuron (400–500 μm, red trace), and a deep pyramidal cell
(600–1000 μm, green trace). Note the correspondence between the early
firing of an action potential in the interneuron and an IPSP (asterisk) recorded
in the superficial pyramidal cell. The bottom trace is an extracellularly
recorded field potential (LFP) characterized by a volume conducted
component propagating from the rostral part of the LOT-activated synaptic
pathway (PC and l-ERC) and subsequently invading the hippocampal structure
(DG and CA1, dark and light gray spots, respectively). The left margin of the
gray area is aligned to the first component of the m-ERC LFP. Right,
simplified scheme of the polysynaptic neuronal circuitry within the m-ERC,
based on the evoked response pattern and delay analysis of the neuronal
response to LOT stimulation. The gray cell represents a putative interneuron
mediating a feedback GABAergic inhibition onto a deep pyramidal cell and a
feed-forward inhibition onto another interneuron.

corresponds to the early IPSP measured in the pyramidal cells in
the same layer.

Spiking responses to paired-pulse LOT stimulation (inter-
pulse interval 200 ms) were recorded by 16-channel MEAs

implanted in the superficial layers of the m-ERC (200–500 μm
from pial surface; Figure 5A). Figure 5B shows the peri-stimulus
raster plots of two selected channels (19 and 24, experiment #1)
in response to each of the two LOT stimulations for a selected
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FIGURE 5 | LOT-evoked m-ERC network activity is abolished after

ischemic lesioning of the hippocampus. (A) Local field potentials (LFP) and
multi-unit activity (MUA) raw traces from two selected electrodes (19 and 24,
experiment #1) recorded in response to an individual paired-pulse stimulus

(ISI 200 ms) delivered to the LOT. The volume-conducted components
originating in DG and CA1 are indicated by the dark gray and light gray dots,
respectively. (B) Peri-stimulus raster plots for the same two representative

(Continued)
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FIGURE 5 | Continued

electrodes. The corresponding PSTHs are superimposed (bin size = 4 ms). (C)

Summary plot of mean number of evoked spikes (mean± S.E.M.) after 1st
and 2nd pulse for all four experiments. ∗p < 0.05, Mann–Whitney U-test.
(D) LFP and MUA raw traces of one selected electrode recorded in response
to a paired-pulse stimulus either before (black trace) or after (gray trace) an

ischemic lesion of the hippocampus. (E) Peri-stimulus raster plot for the same
representative electrode, before and after the lesion. The corresponding
PSTHs are superimposed (bin size = 4 ms). (F) Summary plot of mean
number of evoked spikes by a paired pulse stimulus delivered to the LOT
(mean± S.E.M.) either before or after the ischemic lesion of the hippocampus
for all analyzed experiments. ∗p < 0.05, Mann–Whitney U-test.

experiment. An earlier phase, which we observed in almost all
active recording channels, was characterized by two relatively
sharp peaks: the first corresponding to the far-field response orig-
inating in the hippocampus and the other corresponding to the
initial phase of the m-ERC response (Figure 4). This was followed
by a late, long-lasting but less reliable component (cf. channels
19 and 24). The histogram in Figure 5C displays the number
of spikes (mean± S.E.M.) evoked by the 1st and the 2nd pulse
for all experiments (control condition) as a measure of response
intensity. In 2 out of 4 experiments (#1, #4) we observed a
stronger activation after the 1st rather than 2nd pulse, whereas in
the other 2 experiments (#2, #3) responses to the 2nd pulse were
slightly stronger than to the 1st pulse (no significant statistical dif-
ference). However, one must consider that first evoked responses
in experiments #1 and #4 were on average more intense, probably
reflecting a relatively high probability of excitatory neurotrans-
mitter release upon the first pulse. This would nearly deplete
the available pool of synaptic glutamatergic vesicles, leading to a
paired-pulse depression of the postsynaptic response.

Cutting the olfactory pathway: hippocampal focal ischemia
Occlusion of the posterior left cerebral arteries abruptly reduced
ACSF perfusion of the hippocampus, resulting in a block of the
propagation of the synaptic activity toward the entorhinal cortex
(Figure 4). About 5 min after the ischemic insult, LOT stimula-
tion failed to evoke any response (Figure 5). Stimulus-triggered
raster plots and the corresponding pre- and post-lesion PSTH
are shown in Figure 5E. The bar graph in Figure 5F summa-
rizes the total number of spikes evoked by a paired-pulse stimulus
before and after the ischemic lesion. A significant reduction of the
response intensity caused by the lesion was observed in all three
analyzed experiments.

SIMULATION RESULTS
In this section, we report the results of simulations in which we
modeled the effects changing the number of neurons in confined
networks. Each simulation lasted 10 min, sampled at 10 kHz.
Networks were simulated in MATLAB (The Mathworks, Natik,
US). Peak trains were stored and then processed by using SpyCode
software (Bologna et al., 2010), conveniently adapted to manage
large-scale networks.

Dynamics of finite size networks
We simulated the ongoing activity of neuronal networks made
up a 90, 100, 120, 150, 240, 320, and 520 neurons. The choice
of these networks sizes followed from the experimental findings
described in section “Finite Size Network Dynamics” (assuming
a neuron/glia ratio equal to 2:1). In addition, 25% of such neu-
rons were considered inhibitory (Isaacson and Scanziani, 2011)

and were modeled as FS neurons (cf. section “Computational
Model”).

Model neurons were connected following a scale-free (SF)
topology. Figure 6A shows the degree distribution of the simu-
lated SF networks. For all SF networks, the degree distribution
was fitted by a power law and the corresponding exponent lay
between −1.04 (network made up of 90 neurons) and −1.34
(networks made up of 520 neurons).

The simulated networks displayed spontaneous synchronized
events (network bursts) independently of their size (Figure 6B).
However, the frequency of occurrence of those synchronized
events varied in a linear manner with respect to the num-
ber of cells present in the circuit (Pearson correlation 0.96,
Figure 6C). To facilitate comparison with Figure 2C1, the x-
axis of Figure 6C reports the total cell number (neurons+ glia),
although the number of neurons effectively simulated is indicated
near the blue dots. The results of the simulation were fit well with
the experimental data, as confirmed by the slope of the linear fit
(0.00015 vs. 0.00016). An interesting finding was that the sim-
ulated networks tended to show a higher proportion of random
spiking activity and less bursting than normally observed in actual
finite-size neuronal networks. This is consistent with other exper-
imental results of interconnected finite-size networks previously
reported in the literature (Macis et al., 2007).

HARDWARE SET-UP FOR A BRAIN PROSTHESIS
The hardware set-up that will be used to interface the bio-
logical component (either the neuronal culture or the in vitro
whole brain) is a Spiking Neural Network (SNN) system. This
SNN implements biologically realistic neural network models,
spanning from the electrophysiological properties of one single
neuron up to network plasticity rules. As already discussed in the
modeling section, the choice of Izhikevich neuron model is rel-
evant because (1) it is biologically realistic, and (2) it operates
in biological real time. By real-time, we mean that computa-
tion results are provided within a firmly controlled delay (10 ns
precision), which is lower than the sampling period (100 μs to
1 ms). Among these modules, the computation-critical task is the
implementation of a SNN model, which represents the prosthesis
itself, and the analysis of biological signals to produce events from
the recorded activity.

The digital Izhikevich neurons and detection system are
implemented as a configurable digital integrated circuit (field-
programmable gate array, FPGA) using the VHDL language. We
implement Regular Spiking (RS) neurons (excitatory) and Fast
Spiking (FS) interneurons (inhibitory) similar to those found in
cell culture (Figures 2, 3 and 6). The hardware models follow
the Izhikevich equations with parameters corresponding to RS
activity (a = 0.02, b = 0.2, c = −65, and d = 8). In Figure 7A1
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FIGURE 6 | Simulation results. (A) Degree distribution of the 7 scale-free
networks. (B) Raster plots showing 300 s of spontaneous activity of
simulated confined networks. Each raster is relative to a different network
size. From top to bottom networks with 100, 120, 150, 240, 520 neurons
can be observed.. IFR profiles was evaluated over simulations lasting 600 s
(bin size = 100 ms). (C) Bursting rate frequency as a function of network

population size. The number of neurons of the simulated networks was
reported near the blue dots. The x-axis reports the total number of cells
(glia + neurons) in order to make easier a comparison with Figure 2C1.
The result of the linear fit with least-squares regression (Pearson
correlation coefficient 0.96) is represented by the red-dotted line and by
the fitting equation.

we describe the choice of the topology (Cassidy and Andreou,
2008) to implement the Izhikevich equations. We implement a
neuron on FPGA board Xilinx Virtex 5 XC5VLX50. This neu-
ron uses really few resources (only 2% of the FPGA) and works
in real-time. In Figure 7A2 we compare the behavior f(I) of bio-
logical RS neurons and one RS neuron implemented into the
FPGA.

Concerning the SNN, our goal was to implement a model
using 80 neurons (FS and RS) with high connectivity capacity
(e.g., 6400 synapses). Network structure is fully configurable, and
synapses are excitatory or inhibitory conductances which provide
current depending on the postsynaptic membrane voltage. Delays
are also implemented to provide good accuracy on timing. The
network is defined into the RAM of the digital board where lie
all characteristics of all neurons and synaptic connections in the
network. A synaptic connection is defined by a synaptic weight

and the address of the neuron linked by this synapse. Added with
complementary functions like loopback stimulation and moni-
toring, this system will be able to perform cross-platform neural
computation.

The detection of neural electrophysiological activity is done by
a reconfigurable acquisition based on wavelet detection circuit for
in vitro biological signals. Our strategy for real-time spike detec-
tion is to implement a pre-processor, which emphasizes spikes
shapes and attenuates out-of-band noise. This pre-processor
provides two outputs corresponding to different wavelet detail
levels. The first one is essentially composed of out-of-band
noise used to determine a threshold level adapted to the sig-
nal amplitude. The second output is compared to the threshold
to discriminate spike events. The pre-processing algorithm is
the Stationary Wavelet Transform (SWT). The detection system
computes in real-time the SWT, the adaptive threshold and the
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FIGURE 7 | Hardware elements for the neuro-prosthesis. (A1) Choice of
the topology. To implement the two equations of Izhikevich model, two
topology of pipeline are chosen (Cassidy and Andreou, 2008). There are five
stages of computing for each equation. The I(stat), I(exc), and I(inh) currents
describe the synaptic contribution. (A2) Hw-based model. Comparison of f(I)
curves between biological Regular Spiking (RS) neuron and digital one. The
biological curves are intracellular recordings of regular-spiking neurons in
ferret visual cortex in vitro. The neuromorphic board gives the same results in
term of frequency of the neuron vs. the stimulation current. (B) Outputs of
the detection system to be implemented in the closed-loop set-up of the
brain prosthesis. First row—(a). Raw electrophysiological signal. Second
row—(b). The same signal with added Gaussian white noise to reduce Signal

to Noise Ratio. This step was added to stress the capability of the system to
detect action potentials in difficult conditions. Third row—(c). Output of the
stationary wavelet decomposition preprocessing module. We used a Haar
mother wavelet with 16 bits fixed point computation. The output signal is the
sixth level detail output of the decomposition tree. Fourth row—(d). Binary
output of the detection module. This output is the result of a threshold
applied to the signal in (c). The threshold is computed from the standard
deviation of the first level detail output of the wavelet decomposition tree.
The emphasized detected spike is a false positive. This shows that the signal
(b) represents the limit of signals that can be reliably processed by our
system. These signals were first recorded then input to the system with a
waveform generator.

comparison. This method proved to be very efficient to extract
action potential of excitable cells from very noisy signals (Raoux
et al., 2012). Figure 7B shows the performance of the method
on a single channel setup. Action potentials are emphasized by
arrows on the signal A. We added significant noise [signal (b)]
and then sent the signal to the detector that provides outputs
(c) and (d).

To summarize, all modules (i.e., Izhikevich neuron, neural net-
work specifications, detection and stimulation modules) will be
implemented into the FPGA. This modular system will be used as
a cross-platform neural computation unit. Microelectrode arrays
will be used to record and electrically stimulate living neural
networks, with a specific emphasis on stimulation localization.
Dedicated integrated electronics will be designed to implement
the communication channels between the living and the artifi-
cial networks. The biological signals (from living to artificial) will
be processed by using on-line spike detection algorithms and a

rate-based decoding (Rieke et al., 1997; Novellino et al., 2007;
Tessadori et al., 2012), while the firing rate of an artificial neuronal
sub-network will be translated into the stimulation frequency for
the biological network (from artificial to living), thus following a
similar rate-based strategy. The system including the artificial and
living neural networks will form a closed loop with a regulated
feedback (cf. next Section).

A BI-DIRECTIONAL NEURO-PROSTHESIS
The knowledge that we gained through the various studies
presented here will contribute to the final realization of a bi-
directional communication between in vitro and in silico models
of interconnected cell assemblies. By studying the dynamics of
in vitro networks (see Figures 2, 3), we will create a compu-
tational model (see Figure 6) exhibiting the same I/O function
of its biological counterpart (Figure 8, panel A). Through this
approach we also plan to further our knowledge about the
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FIGURE 8 | In vitro neuro-prostheses. Sketch illustrating the main approach
of the BRAIN BOW project. First, we will characterize the I/O function of
simple finite-size networks and reproduce it by means of a computational
model (A, left). Second, we will use more complex modular networks and
replace one sub-network module with our computational model of the
finite-size network, in order to replicate the function of the intact system (A,
right). Finally, the same conceptual approach will be adopted to recover the
function of the olfactory-limbic circuit after an ischemic lesion of the

hippocampus (B). The bidirectional interaction with a model reproducing the
function of the damaged area will allow restoring the original I/O pattern. s(t):
stimulus function; ylive(t): response function of a healthy preparation; ysim(t):
response function of the neuronal network model; ydamaged(t): response
function after lesion in the IWB; yhybrid(t): response function of the hybrid
system resulting from the combination of biological and artificial
components. In panel (B), the hippocampal areas targeted by the ischemic
lesion are marked in red.

interplay between structural connectivity and dynamics in neu-
ronal networks. Once we have realized and tested our model,
we will bi-directionally integrate it into a biological network
made up of few interconnected sub-networks in replacement of

one of these that has been previously lesioned (Figure 8A, right
panel).

The same conceptual approach will be applied to the olfactory-
limbic pathway in the IWB (Figure 8, panel B). After a thorough
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characterization of spontaneous activity patterns (e.g., sponta-
neous periodic events, which strikingly resemble the ones shown
by primary cortical cultures; see Figure 1) and LOT-evoked
responses generated in the m-ERC (see Figure 8), we will include
such information into a realistic computational model. We will
then induce an ischemic lesion of the hippocampus and realize
a functional model able to reproduce the same transfer function
of the damaged part in order to restore the original pathway.
Figure 8 summarizes this approach, both for in vitro intercon-
nected finite-size networks and for the guinea pig IWB.

The final step foreseen in the BRAIN BOW project is the hard-
ware implementation of the signal processing algorithms and
computational models to achieve our proof-of-concept neuro-
prosthesis based on a neuromorphic chip. Figure 9 illustrates
the closed-loop architecture that we plan to develop. Raw traces
recorded by means of either planar or implanted MEAs (depend-
ing on the biological sample) will be fed into the artificial element
and pre-processed online to extract multi-unit activity patterns
(MUA). Spatio-temporal spiking patterns will then be translated
by the “decoding” block into signals delivered to the neuronal
network model. After elaboration, output patterns produced by

the model will be finally translated by the “coding” block into a
stimulation delivered to the neural element (Figure 9).

DISCUSSION
This paper presents a bottom-up, multidisciplinary approach
toward the realization of a neural prosthesis capable of replacing
lesioned neuronal circuitries. The final goal of the studies consists
of developing a neuromorphic chip reproducing the function of
a lesioned circuit without replicating its specific architecture or
structural organization.

As a general model of a self-organized neuronal circuit, finite
size neuronal circuits in culture are produced and studied in an
isolated configuration to reveal innate (and therefore most gen-
eral) features of intra-circuit organization (cf. Figure 1). Since
finite size networks can spontaneously interconnect in a “multi-
modular” network organization, they also represent an optimal
experimental model to reveal innate inter-circuit communica-
tion properties (cf. Figure 1), as shown in previous studies (Macis
et al., 2007; Raichman and Ben-Jacob, 2008; Shein-Idelson et al.,
2010, 2011). The structural—functional configuration of the
finite size circuits can be replicated by an in silico neuronal

FIGURE 9 | Schematic representation of the closed-loop system to

be implemented as a proof-of-concept neuro-prosthesis. Different
in vitro neural models with increasing degrees of architectural
complexity (“Neural element”) will be interfaced to a hardware
neuromorphic chip (“Artificial element—Hardware”), implementing both

signal processing (“MUA detection”) and modeling (“Neuronal network
model”) algorithms previously tested in software (“Artificial element—
Software”). The communication between the neuronal network model
and its biological counterpart is accomplished by the “Coding” and
“Decoding” blocks.
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network and then implemented on a neuromorphic prosthetic
chip. The capability of the neuromorphic chip to replace the func-
tion of a lesioned circuit will be tested at increasing levels of
network complexity from an in vitro modular network to an iso-
lated whole brain system (IWB). In the attempt to present the
overall scientific approach of the BRAIN BOW project (cf. section
“Introduction” and “A Bi-Directional Neuro-Prosthesis”), this
paper shows first results from the different level of investigation
grounding the overall strategy.

FINITE SIZE CIRCUITS AND INNATE FUNCTIONAL ORGANIZATION OF
CORTICAL CIRCUITS
As previously shown by Shein-Idelson et al. (2010), cultured
cortical neuronal networks composed of at least a few dozen
neurons are able to produce spontaneous collective dynamics
known as network bursts, characterized by oscillatory activity
in the gamma-theta range, and with the frequency of the bursts
increasing with the number of neurons in the network. We
confirmed these findings here using optical measurements on
monolayer circuits (cf. Figure 2). By combining calcium imaging
with immunocytochemistry, we have found that network events
first recruit a characteristic population of neurons which includes
GABAergic neurons. In particular, the time-lag correlation of the
finite size cortical circuits is similar to what observed in devel-
oping hippocampal circuits (Bonifazi et al., 2009), in which a
scale-free functional connectivity distribution was accompanied
by the existence of GABAergic hub cells able to play a key role in
the orchestration of the spontaneous network events. All together,
these observations suggest that cortical neuronal circuits share a
common innate functional organization which might include the
existence of GABAergic hub cells.

MONITORING EFFECTS OF LESIONED NEURONAL CIRCUITS IN FINITE
SIZE NETWORKS
After characterizing the spontaneous dynamics of the finite size
networks we monitored how a focalized lesion can trigger func-
tional reorganization in the neuronal circuit. We made con-
trolled laser ablations of different intensities on our networks
(e.g., targeting single modules, inter-connections between mod-
ules, single neuritis/cell bodies/cell assembly). After the lesions,
the neuronal circuits continued to produce spontaneous net-
works events with no significant changes in the frequency of
occurrence (Figures 3 and A1). These were presumably gener-
ated out of the imaged field where the lesions were performed.
The number of cells recruited during network events decreased
either because they were directly lesioned by the laser ablation
or because of a change in the local functional organization of
the circuits (see the functional connectivity graphs of Figure 4).
In a previous study by Maeda et al. (1995) the authors made
a lesion in a homogeneous network over a MEA to study the
origin of spontaneous network bursting. More recently, Difato
et al. (2011a) reported controlled sequential ablation of single
connections in a neuronal network, causing modulation of its
activity without irreversibly damaging it. By combining MEA
recording and calcium imaging the authors found changes in
electrophysiological patterns in the network and identified the
contribution of neuronal sub-populations to the network activity

(Difato et al., 2011b). To the best of our knowledge, our study
is the first to make a spatially defined micro-lesion at the single
cell scale and to analyze the neuronal dynamics and connec-
tivity by means of optical-only tools. This methodology, which
can be extended to the use of genetically encoded calcium sen-
sors, allows a more detailed and prolonged monitoring of the
functional reorganization of the circuit over hours or days with
the advantage, when compared to electrophysiological recordings,
that the high spatial resolution (i.e., single cell) can be linked
to morphological/structural cellular properties through post-hoc
immunocytochemical characterizations. This could also facilitate
testing of methods to promote functional circuit repair, such as
pharmacological approaches.

SIMULATION RESULTS (SOFTWARE AND HARDWARE)
Given the similarity between the synchronization dynamics
observed in developing hippocampal networks (Bonifazi et al.,
2009) and in the finite circuits (Figure 2) with early activated
GABAergic cells forecasting synchrony, we hypothesized a com-
mon innate structural-functional organization in neocortical
and paleocortical circuits. Therefore, we used a scale-free topol-
ogy (Barabasi and Albert, 1999) to model a neuronal network
based on Izhikevich neurons (Izhikevich, 2003) (Figure 6). The
proposed model was able to reproduce the empirical depen-
dence between bursting rate and circuit size. However, the
model predicted a richer repertoire of firing patterns (e.g.,
Figure 6B). Indeed, such patterns can be found in biologi-
cal networks (Segev et al., 2002; Macis et al., 2007; Marconi
et al., 2012). Thus our synthetic models (conveniently tuned
and adapted) are able to reproduce the dynamics found in
in vitro networks. Our results also demonstrate that the hard-
ware element of the prosthesis (cf. section “Hardware Set-up
for a Brain Prosthesis” and “A Bi-Directional Neuro-Prosthesis”)
can be constituted by a neuromorphic model (SNN) built on
the same equations as the computational model (Izhikevich,
2003), since it reproduces similar firing rate distributions
(Figure 7). Thus, the computational (software) model serves
as a bridge between the biological networks and the hardware
implementation.

COMPARISON TO PREVIOUS WORK AND PROSPECTIVE RESULTS
In the last decades, great efforts have been made to develop neuro-
prostheses to restore lost sensory or motor functions (Taylor
et al., 2002; Chader et al., 2009; Collinger et al., 2013), but
very few groups have focused on neuro-prostheses targeting
lesions at the level of the CNS and aimed at recovering lost
cognitive capabilities (Berger et al., 2011; Prueckl et al., 2011;
Bamford et al., 2012; Hampson et al., 2012; Opris et al., 2012).
Although our studies are limited to simplified in vitro models
of cell assemblies, their final aim is to provide useful insights
for the design of future cognitive prostheses. We believe that our
approach would help us understand how we can influence/drive
the dynamics of a neuronal assembly by interfacing it to an
artificial network, implemented either in software or hardware.
This is not the first attempt to realize an in vitro closed-loop
system: previous studies have used a robotic actuator or a con-
trol algorithm aimed at clamping network activity to a desired
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level (Demarse et al., 2001; Martinoia et al., 2004; Wagenaar
et al., 2005; Wallach et al., 2011). However, we seek to extend
these approaches by replacing a real biological network with a
simulated network, and hence by implementing bi-directional
communication between biological and simulated networks. This
research project builds on previously published results in the field
of in vitro closed-loop electrophysiology (Arsiero et al., 2007).
It can also be generalized to a more structured experimental
model like the in vitro whole brain of a guinea pig, which lies
between in vivo (as it retains the original tridimensional archi-
tecture) and in vitro (as it is disconnected from any sensory
input/motor output). In contrast to other groups which have
exclusively investigated in vivo brain prostheses (Prueckl et al.,
2011; Bamford et al., 2012; Berger et al., 2012; Hampson et al.,
2012; Opris et al., 2012), we are trying to exploit the unique
advantages of in vitro electrophysiology—accessibility, visibility
and control of physical and chemical conditions—to study neural
information processing in neuronal assemblies, and to under-
stand which parameters are relevant for effectively interfacing
biological and artificial networks. In addition to informing the
design of future in vivo approaches, our approach could also

illuminate how network structure constrains and drives network
dynamics.
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APPENDIX

FIGURE A1 | Subpopulation of a neuronal network before and after

laser induced lesions. The first panel, starting from the left upper
corner, shows a subpopulation of a neuronal network loaded with
Fuo4-AM. White arrows, depicted with L1 and L2, indicate the
positions of the lesions inflicted to the network. The red arrows
indicate the position of the UV laser focus spot. The average power
delivered at the sample, during lesion one, is 4 μW, and during Lesion

2, is 5 μW. We delivered 300 UV light pulse for each lesion, at
pulse-repetition rate of 100 Hz. At 25 s, after Lesion 1, the L2 position
is centered onto the UV focus spot. The last panel shows the same
field of view of the first one, after laser inflicted damages. The cells
directly affected by the UV laser presented saturated calcium signal.
Numbers indicate seconds. The field of view is 150 × 150 μm. Calcium
imaging was acquired at 60 Hz.
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