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Traditional approaches to cancer therapy seek common molecular targets in tumors 
from different patients. However, molecular profiles differ between patients, and most 
tumors exhibit inherent heterogeneity. Hence, imprecise targeting commonly results in 
side effects, reduced efficacy, and drug resistance. By contrast, personalized medicine 
aims to establish a molecular diagnosis specific to each patient, which is currently 
feasible due to the progress achieved with high-throughput technologies. In this 
report, we explored data from human RNA-seq and protein–protein interaction (PPI) 
networks using bioinformatics to investigate the relationship between tumor entropy 
and aggressiveness. To compare PPI subnetworks of different sizes, we calculated 
the Shannon entropy associated with vertex connections of differentially expressed 
genes comparing tumor samples with their paired control tissues. We found that the 
inhibition of up-regulated connectivity hubs led to a higher reduction of subnetwork 
entropy compared to that obtained with the inhibition of targets selected at random. 
Furthermore, these hubs were described to be participating in tumor processes. We 
also found a significant negative correlation between subnetwork entropies of tumors 
and the respective 5-year survival rates of the corresponding cancer types. This 
correlation was also observed considering patients with lung squamous cell carcinoma 
(LUSC) and lung adenocarcinoma (LUAD) based on the clinical data from The Cancer 
Genome Atlas database (TCGA). Thus, network entropy increases in parallel with tumor 
aggressiveness but does not correlate with PPI subnetwork size. This correlation is 
consistent with previous reports and allowed us to assess the number of hubs to be 
inhibited for therapy to be effective, in the context of precision medicine, by reference 
to the 100% patient survival rate 5 years after diagnosis. Large standard deviations of 
subnetwork entropies and variations in target numbers per patient among tumor types 
characterize tumor heterogeneity.
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INTRODUCTION

Statistical and epidemiological data indicate that cancer is a 
growing global health problem. The World Health Organization 
(WHO) predicts an estimated 27 million new cases of cancer 
worldwide by 2030. Cancer initiation and progression involves 
genetic and epigenetic changes that reprogram complex regulatory 
circuits. Within this context, Hanahan and Weinberg (Hanahan 
and Weinberg, 2011) characterized 10 consensus processes, called 
cancer hallmarks, which are representative of oncogenesis.

Traditionally, a protocol of chemotherapy is considered 
beneficial for an entire patient subpopulation with common tumor 
traits and is, therefore, referred to as one-size-fits-all. However, 
molecular diversity increasing with tumor development promotes 
therapy resistance (van Wieringen and van der Vaart, 2011; Banerji 
et al., 2015). Moreover, chemotherapy drugs may result in harmful 
side effects for patients due to their low selectivity that adversely 
affects both tumor and normal cells (Siegel et al., 2012). Thus, the 
process of therapeutic target identification is complex and implies 
the recognition of molecular differences between tumor and 
healthy cells, most of them based on gene regulation. Accordingly, 
the profile of up-regulated genes in tumor tissues is used in a 
personalized (individualized) medicine approach. Personalized 
medicine is expected to bring higher benefits to patients.

The development of personalized medicine is directly related 
to high-throughput technologies that became available in recent 
years. High-throughput techniques, such as RNA sequencing, 
are important tools for the characterization of tumor and control 
cells. These techniques allow a better understanding of tumor 
biology and demonstrate that each tumor is unique.

Many efforts are being made to identify new targets that could 
assist in individual treatment. An approach recently used was the 
identification of five specific therapeutic targets for each of seven 
breast cell lines (Carels et al., 2015a). This strategy combines 
protein–protein interactions (PPI) and RNA-seq data to infer 
the topology of the regulatory network for each cell line. Three 
concepts were considered in this approach: i) a vertex with a 
high expression level is more influential than a vertex with a low 
expression level; ii) a vertex with a high connectivity level (hub) 
is more influential than a vertex with a low connectivity level; and 
iii) a protein target must be expressed at a significantly higher 
level in tumor cells than in control cells to reduce harmful side 
effects to the patient after its inhibition. It is worth mentioning 
that each combination of targets that most closely satisfied these 
conditions was specific for its respective cell line.

This approach was validated experimentally in vitro in 
MDA-MB-231 (a triple-negative cell line of invasive breast 
cancer) (Tilli et al., 2016) and showed that the inactivation, by 
interference RNA, of the five top-ranked targets identified for this 
cell lineage resulted in a significant reduction of cell proliferation, 
colony formation, cell growth, cell migration, and cell invasion. 
Inactivation of these targets in other cell lines, such as MCF-7 
(non-invasive breast cancer) and MCF-10A (control), showed little 
or no effect, respectively (Tilli et al., 2016). In addition, the effect 
of joint target inactivation was greater than the one expected from 
the sum of individual target inhibitions, which is in line with the 
buffer effect of regulatory pathway redundancy in tumor cells.

Inactivating multiple hubs may be necessary to shut down 
alternative pathways that maintain the tumor malignancy. Other 
authors have also shown that the use of combined drugs is more 
efficient than monotherapies (Fumiã and Martins, 2013).

The analysis of signaling pathways as networks has been 
widely used to explore the synergistic effect of targeting multiple 
proteins and for identifying new targets for cancer treatment. 
Topological measures regarding node centrality, degree, and 
path metrics have been used in the identification of regulation 
patterns and new potential targets for cancer treatment 
(Schramm et al., 2010; Peng et al., 2014). For instance, Azevedo 
and Moreira-Filho (Azevedo and Moreira-Filho, 2015) used 
node degree and betweenness centrality measures to explore 
the synergistic effects of potential target combinations to 
overcome chemotherapy resistance to temozolomide in glioma. 
The network robustness after node removal was assessed 
considering the following network parameters: diameter, 
shortest path length, size, and the clustering coefficient. 
Winterbach et al. (Winterbach et al., 2013) reviewed network 
metrics and types to discuss their applications and limitations 
in descriptive and predictive network analyses.

The signaling network of a biological system is scale-free 
(Albert et al., 2000), which means that few proteins have high 
connectivity values and many proteins have low connectivity 
values. As a consequence, the inhibition of proteins with high 
connectivity values has a greater potential for network disruption 
than randomly selected proteins (Albert et al., 2000).

The impact of node removal can also be evaluated by 
the use of Shannon entropy, which has been proposed as a 
network complexity measure and applied by many authors to 
determine a relationship between network entropy and tumor 
aggressiveness. Breitkreutz et al., for instance, found a negative 
correlation between the entropy of networks composed by genes 
documented in the Kyoto Encyclopedia of Genes and Genomes 
(KEGG) database considering cancer types and their respective 
5-year survival (Breitkreutz et al., 2012).

Other studies adapted the Shannon entropy formula to 
combine a unique signaling network and multiple transcriptome 
data related to the considered phenotypes. Wieringen and Vaart 
(van Wieringen and van der Vaart, 2011) found that, when 
considering transcriptome data, the entropy level of cancer 
samples is higher than that of normal samples. The same behavior 
was found considering tumor stages, where more advanced 
stages were characterized by higher entropy than the earlier ones 
(Breitkreutz et al., 2012; Winterbach et al., 2013; Banerji et al., 
2015).

The Shannon entropy is calculated according to formula 
1 below (Shannon, 1948) and allows the quantification of 
information content associated with the likelihood that a given 
vertex may have a given connectivity value in the considered 
network. The Shannon entropy (H) is given by the formula

 H p k p kk
n= − =Σ 1 2( )log ( ( ))  (1)

where p(k) is the probability that a vertex with a connectivity 
value (k) occurs in the analyzed network. Since entropy is an 
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extensive thermodynamic function of states, it should not be 
normalized for network size.

In this report, we considered the concepts of connectivity 
hubs, up-regulated genes, and Shannon entropy in order to 
assess tumor complexity and to infer a personalized medicine 
approach. We used the transcriptome data from tumors 
and their paired non-tumoral tissue considered as control 
samples to determine their up-regulated genes, construct their 
corresponding subnetworks, and calculate their respective 
entropy. We performed this exercise individually for the data 
collected from 475 patients distributed among nine cancer types. 
The results confirmed the existence of a negative correlation 
between the entropy of a tumor’s PPI subnetwork and the 
corresponding survival rate using data from bench experiments 
(The Cancer Genome Atlas, TCGA). We also propose a method 
to infer the suitable number of targets for inhibition according 
to the 100% patient survival 5 years after treatment. This method 
concerns the number of connectivity hubs that should be 
inactivated in a tumor to lower its subnetwork entropy to a level 
that maximizes patient survival.

To our knowledge, this is the first report aiming at the 
application of Shannon entropy, transcriptome data, and 
individual signaling subnetwork mining in the design of a 
personalized approach for cancer therapy.

MATERIALS AND METHODS

Gene Expression Data
The gene expression data were obtained as RNA-seq files in their 
version 2 (Illumina Hi-Seq) available for tissues affected by cancer 
or not (paired tissues), from TCGA (https://cancergenome.nih.
gov/) accessed in February 2016. Version 2 gives gene expression 
values  for 20,532 genes referred to as GeneSymbol, calculated 
by RNA-seq through expectation maximization (RSEM) (Li 
and Dewey, 2011) and normalized according to the upper 
quartile methods. The 9,190 genes for which the equivalence 
between GeneSymbols and UniProtKB could be obtained went 
through further analysis. This equivalence list is available in 
Supplementary Table 1.

The data selection followed two criteria: i) for each cancer 
type, a minimum of 30 patients with paired samples (control and 
tumor samples from the same patient) was required to satisfy 
statistical significance; and ii) the tumor sample had to be from 
a solid tumor. The data used in this work included 475 paired 
samples, shown in Table 1.

The cancer molecular subtypes could be determined based on 
the following references: (The Cancer Genome Atlas Research 
Network, 2012a; The Cancer Genome Atlas Research Network, 
2012b; The Cancer Genome Atlas Research Network, 2013; The 
Cancer Genome Atlas Research Network, 2014a; The Cancer 
Genome Atlas Research Network, 2014b; The Cancer Genome 
Atlas Research Network, 2015; Guo et al., 2016; The Cancer 
Genome Atlas Research Network, 2016). However, the number 
of paired samples in each subtype did not reach the threshold 
of statistical significance (n = 30), and they were therefore not 
considered in this paper.

Identification of Hubs in Up-regulated 
Genes of Tumors
To identify genes that were significantly differentially expressed 
in the tumor samples of patients, we subtracted gene expression 
values  of control samples from their respective tumor paired 
sample. The resulting values were called differential gene 
expression. Negative differential gene expression values 
indicated higher gene expressions in control samples, while 
positive differential gene expression values  indicated higher gene 
expressions in tumor samples.

We analyzed the frequency distribution of differential 
gene expressions of 9,190 genes for each patient. The relative 
frequencies obtained, represented by yi, were transformed using 
the relationship y’i = log10 (yi + 1) and approximated to a Gaussian 
distribution by best fitting in GraphPad Prism software with a 95% 
level (Carels et al., 2015a; Carels et al., 2015b). We considered the 
area under the Gaussian curve to determine the one-tail threshold 
values that would limit p-values ≤ 0.05. The up-regulated genes 
were those with expression values above the one-tail threshold. 
This analysis was performed for each patient individually in R.

In a subsequent step, the PPI subnetworks were inferred for 
the proteins identified as products of up-regulated genes. We only 
considered up-regulated genes since they are those representing 
the tumor phenotype and the inhibition of the proteins they 
encode is expected to minimize potential toxic side effects to 
patients. The subnetworks were obtained by comparing these 
gene lists with the human interactome.

The human interactome was obtained from the intact-
micluster.txt file (version updated December 2017) accessed 
on January 11, 2018, at ftp://ftp.ebi.ac.uk/pub/databases/intact/
current/psimitab/intact-micluster.txt. We excluded incomplete 
and non-human interactions from this file, and the resulting file 
presented 151,631 interactions among 15,526 human proteins 
with UniProtKB accessions. These data can be retrieved from 
Supplementary Table 2.

We used the PPI subnetworks of up-regulated genes from 
each patient to identify the node degree of each protein through 
automated counting of their edges. These values were used 
to calculate the Shannon entropy of each PPI subnetwork as 
explained in Section “Shannon Entropy” below. In parallel, we 
selected the 10 proteins with the highest degree (hubs) for each 
patient (top-10 proteins), and we validated the five most frequent 

TABLE 1 | Number of tumor, control, and paired samples for nine different 
cancer types in The Cancer Genome Atlas (TCGA) (2016). 

Cancer Tumor 
samples

Control 
samples

Paired 
samples

Stomach adenocarcinoma (STAD) 413 35 31
Lung adenocarcinoma (LUAD) 512 58 57
Lung squamous cell carcinoma (LUSC) 497 51 49
Liver hepatocellular carcinoma (LIHC) 738 99 48
Kidney renal clear cell carcinoma (KIRC) 529 72 70
Kidney renal papillary cell carcinoma (KIRP) 289 32 32
Breast invasive carcinoma (BRCA) 1,082 99 81
Thyroid cancer (THCA) 500 57 56
Prostate cancer (PRAD) 483 51 50
Total 5,043 554 475
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hubs among them for each tumor type regarding their biological 
relevance as targets through literature searches. Finally, we 
characterized the up-regulated genes from the MDA-MB-231 
breast cancer cell line as described in Ref. (Carels et al., 2015a). 
Those genes were used in the PPI subnetwork construction, 
which was performed with the interactome and the methodology 
described above. The resulting subnetwork was used for Shannon 
entropy analysis as a reference to the extension of cell line 
inferences to tumor tissues as presented in this report.

Shannon Entropy
The Shannon entropy was calculated with formula 1, where p(k) 
is the probability of occurrence of a vertex with a rank order k 
(k edges) in the subnetwork considered. The subnetworks were 
generated automatically from gene lists found to be up-regulated 
in each patient and the cell line MBA-MD-231 as described in the 
previous section. All operations were performed using Perl codes 
that can be obtained upon request.

The Shannon entropy was also used to assess the relevance 
of treatment directed against connection hubs by comparing the 
decrease in subnetwork entropy induced by hub removal with 
that obtained by random target selection. We randomly removed 
five nodes from the network and calculated the resulting entropy. 
This process was repeated 1,000 times for each patient to build 
an empirical distribution of entropies. Next, we compared 
the entropy found after hub removal with the distribution of 
entropies found after removal of nodes selected at random (see 
Supplementary Table 3).

Overall Survival
The 5-year survival rates of the tumor tissues were inferred based on 
the overall survival (OS) data available from The Cancer Genome 
Atlas Clinical Cata Resource (TCGA-CDR) (Liu et al., 2018), 
which contains curated clinical and survival data from TCGA 
patients whose purpose was to eliminate incomplete survival 
(follow-up) information. Table S1 of Liu et al. (Liu et  al., 2018) 
has two columns, “OS” and “OS.time,” that were used in GraphPad 
Prism software for survival curve analysis, indicating death/event 
as 1 and censored data as 0. This analysis resulted in survival rates 
corresponding to days to “death/last follow-up” for each cancer 
type (Supplementary Table 4). The survival rate found over 5 
years (in days) was used to represent each cancer type.

Finally, to determine each patient survival rate, we retrieved 
the number of days to “death/last follow-up” from each patient 
(Supplementary Table 5) and searched for its respective survival 
rate in Supplementary Table 4. These data were used to calculate 
the correlation between survival rate and entropy considering 
patients with the same tumor type.

Average Target Number Per Tumor Tissue
We analyzed the subnetwork entropies of up-regulated genes 
associated with each cancer type and their respective 5-year 
survival rate. We performed a Kruskal–Wallis test and a 
Wilcoxon signed-rank test to determine if all samples had the 
same entropy average and, if not, which pairs had significantly 
different averages. We also analyzed the correlation coefficient 
between the averages of entropies per tumor type and their 

respective 5-year survival rate and the fitted linear regression (see 
Supplementary Table 6).

The correlation obtained between subnetwork entropies from 
up-regulated genes and survival rates allowed the inference of the 
approximate number of targets to be inactivated for each patient. 
The 20 proteins from the up-regulated subnetwork with the largest 
connection counts were called top-20 targets. In order to mimic 
the effect of inhibiting top-1 to top-20 targets, we excluded each 
target from the patient subnetwork of up-regulated genes. The 
Shannon entropy was calculated for the resulting subnetworks, 
and the suitable number of hubs for inactivation was found when 
the entropy of top-n subnetworks was equal to or less than the 
entropy that would correspond to the 100% survival rate (see 
Supplementary Table 7).

In addition, we performed the same experiments considering 
the suitable number of hubs for inactivation and the entropy 
found for patients in a given tumor type. In this case, we 
selected tumor types with at least three patients with “death/last 
follow-up” in each survival rate interval (100%–81%, 80%–61%, 
60%–41%, 40%–21%) to calculate the entropy and survival rate 
averages. Only LUAD and LUSC satisfied these requirements 
(Supplementary Table 5).

RESULTS

Identification of Up-regulated Hubs in 
Patients
We identified 273 proteins among all hub combinations of top-
10 proteins for each patient. From those proteins, 112 (41.0%) 
were patient specific, 143 (52.4%) were specific for one cancer 
type, and only 16 (5.9%) were found in combinations over every 
cancer type. Furthermore, only four patients shared the same 
top-10 combination, two from BRCA and two from PRAD. This 
means that 99% of patients had a unique combination of top-
10 hubs, even if some hubs could be found conserved across a 
significant part of the patient population. This property can be 
related to the variation in the number of connections for each 
hub according to the patients’ subnetwork of up-regulated genes 
and to the variation of hubs that are up-regulated from one tumor 
to the other. The hub combination for each patient and their 
respective connection number in each subnetwork are given in 
Supplementary Table 8.

The five most frequent hubs among patients from each 
cancer type are listed in Table 2 in association with their cancer 
hallmarks and the respective literature reference.

The heat shock protein AB1 (HSP90AB1) was identified 
in 65% of all patients and is the most common hub identified 
among all 475 patients. High expression of HSP90AB1 has been 
associated with aggressive phenotypes in HER2-negative breast 
cancer (Cheng et al., 2012), and it is also identified as a hub target 
for MDA-MB-231, a triple-negative breast cell line. Its inhibition 
in combination with four other hubs decreased cell growth, 
proliferation, migration, and invasion in vitro (Tilli et al., 2016). 
Table 2 also shows two other heat shock proteins: HSPA5 and 
HSPB1. Since heat shock proteins function as chaperones, they 
are essential for cell maintenance and survival. Their relationship 
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TABLE 2 | List of the five most frequent hubs, their incidence in patients for each cancer type, and their respective cancer hallmark. 

Cancer type Hub Number of 
patients

Percentage 
of patients

Cancer hallmark Reference

STAD HSP90AB1 29 90.6% Genomic instability (Haase and Fitze, 2016)
MYH9 27 84.3% Cell adhesion, invasion and migration (Li and Yang, 2016)

YWHAZ 22 68.7% Cell proliferation, invasion and migration (Nishimura et al., 2013; Deng et al., 2019; 
Hong et al., 2018)

FN1 18 56.2% Cell adhesion, invasion and migration, cell 
growth, cell death escape

(Soikkeli et al., 2010; Wang et al., 2017)

HSPA5 14 43.7% Genomic instability (Haase and Fitze, 2016)
LUAD YWHAZ 48 84.2% Cell proliferation, invasion and migration (Nishimura et al., 2013; Deng et al., 2019; 

Hong et al., 2018)
HSP90AB1 46 80.7% Genomic instability (Haase and Fitze, 2016)

HSPA5 38 66.6% Genomic instability (Haase and Fitze, 2016)
FN1 30 52.6% Cell adhesion, invasion and migration, cell 

growth, cell death escape
(Wang et al., 2017; Soikkeli et al., 2010)

ACTB 27 47.4% Invasion and migration (Guo et al., 2013)
LUSC YWHAZ 48 96.0% Cell proliferation, invasion and migration (Nishimura et al., 2013; Deng et al., 2019; 

Hong et al., 2018)
HSP90AB1 39 78.0% Genomic instability (Haase and Fitze, 2016)

HSPA5 28 56.0% Genomic instability (Haase and Fitze, 2016)
TP63 25 56.0% Cell growth (Jiang et al., 2018)
NPM1 21 44.0% Invasion and migration, inflammation, genomic 

instability
(Loubeau et al., 2014; Box et al., 2016; Lin 
et al., 2016)

LIHC HSP90AB1 41 83.6% Genomic instability (Haase and Fitze, 2016)
HSPB1 28 57.1% Genomic instability, cell death escape (Deng et al., 2019; Hong et al., 2018)
MYH9 27 55.1% Cell adhesion, invasion and migration (Li and Yang, 2016)
ACTB 24 48.9% Invasion and migration (Guo et al., 2013)

YWHAZ 21 42.9% Cell proliferation, invasion and migration (Nishimura et al., 2013; Deng et al., 2019; 
Hong et al., 2018)

KIRC FN1 61 87.1% Cell adhesion, invasion and migration, cell 
growth, cell death escape

(Wang et al., 2017; Soikkeli et al., 2010)

RPL10 56 80.0% Invasion and migration, cell death escape (Goudarzi and Lindström, 2016; Shi et 
al., 2018)

VCAM1 55 78.6% Inflammatory response, cell adhesion, cell 
growth 

(Huang et al., 2013; Kong et al., 2018)

NPM1 47 67.1% Invasion and migration, inflammation, genomic 
instability

(Loubeau et al., 2014; Box et al., 2016; Lin 
et al., 2016)

ACTB 43 61.4% Invasion and migration (Guo et al., 2013)
KIRP ACTB 25 78.1% Invasion and migration (Guo et al., 2013)

LRRK2 20 62.5% Cell proliferation, cell death escape (Wallings et al., 2015)
VCAM1 18 56.3% Inflammatory response, cell adhesion, cell 

growth 
(Huang et al., 2013; Kong et al., 2018)

FN1 17 53.1% Cell adhesion, invasion and migration, cell 
growth, cell death escape

(Soikkeli et al., 2010; Wang et al., 2017)

HSPB1 16 50.0% Genomic instability, cell death escape (Deng et al., 2019; Hong et al., 2018)
BRCA FN1 80 95.2% Cell adhesion, invasion and migration, cell 

growth, cell death escape
(Wang et al., 2017; Soikkeli et al., 2010)

ACTB 58 69.0% Invasion and migration (Guo et al., 2013)
YWHAZ 55 65.5% Cell proliferation, invasion and migration (Nishimura et al., 2013; Deng et al., 2019; 

Hong et al., 2018)
HSP90AB1 49 58.3% Genomic instability (Haase and Fitze, 2016)

ESR1 44 52.3% Cell proliferation, invasion and migration, escape 
immune response

(Mostafa et al., 2014; Ahmed and 
Aboelnaga, 2015; Jeselsohn et al., 2015)

THCA FN1 47 83.9% Cell adhesion, invasion and migration, cell 
growth, cell death escape

(Wang et al., 2017; Soikkeli et al., 2010)

LRRK2 41 73.2% Cell proliferation, cell death escape (Wallings et al., 2015)
FLNA 39 69.6% Cell adhesion, invasion and migration, growth, 

cell death escape
(Shao et al., 2016)

RPL10 27 48.2% Invasion and migration, cell death escape (Shi et al., 2018; Goudarzi and Lindström, 
2016)

MYH9 25 44.6% Cell adhesion, invasion and migration (Li and Yang, 2016)

(Continued)
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with tumor development is associated with their ability to 
stabilize mutant proteins, resulting from increased genomic 
instability, which would be degraded without the chaperones’ 
assistance (Haase and Fitze, 2016). Specifically, HSPA5 has been 
identified in 38.7% of patients belonging to all nine cancer types, 
while HSPB1 has been identified in 27.2% of patients distributed 
among eight cancer types. The latter protein has been described as 
responsible for cancer escaping cell death and has been proposed 
as a specific biomarker for monitoring ovarian cancer patients’ 
response to chemotherapy (Sun et al., 2015; Stope et al., 2016).

Fibronectin 1 (FN1) is found in 64% of patient combinations 
belonging to all nine cancer types analyzed. FN1 has been widely 
described in tumor progression and is a member of multiple 
hallmarks, such as cell adhesion, invasion, migration, growth, 
and cell death escape (Soikkeli et al., 2010; Wang et al., 2017). 
Its high expression level has been associated with increased 
aggressiveness in thyroid cancer (Sponziello et al., 2016), and its 
expression in renal clear carcinoma is associated with a higher 
disease-related mortality rate (Steffens et al., 2012). Furthermore, 
its inactivation through microRNA has inhibited papillary 
thyroid carcinoma progression (Ye et al., 2017).

The tyrosine 3-monooxygenase/tryptophan 5-monooxygenase 
activation protein zeta (YWHAZ) was identified in 55.9% of all 
patients’ combinations from all nine cancer types. This protein 
is present in high levels in different cancer cells and is associated 
with tumor cell proliferation, cell invasion and migration, and 
drug resistance (Nishimura et al., 2013; Hong et al., 2018; Deng 
et al., 2019). This protein target has prognostic potential, and its 
overexpression is associated with short OS time in non-squamous-
cell lung carcinoma (Deng et al., 2019); its knockdown has 
suppressed tumorigenesis in ovarian cancer cells (Hong et al., 2018).

It is interesting to note here that we found some common 
targets between tumors and cell lines, which is expected since 
the origin of malignant cell lines is a tumor sample. However, the 
treatment of tumors is more complex because it is heterogeneous 
and formed by several cell lines. For this reason, the protein 
targets identified for each patient are encoded by up-regulated 
genes identified by comparison to their paired control since the 
RNA-seq of a tumor cannot differentiate the various cell lines 
that compose this tumor. In order to assess the effect of inhibiting 
selected hubs on tumor subnetwork entropy, we compared it to 
the effect that would be obtained inhibiting randomly selected 
targets in these subnetworks. Indeed, the inactivation of five hubs 
had a significantly higher effect in decreasing entropy than the 
inactivation of five targets selected at random. One example for 

each cancer type is given in Figure 1, and all results are given 
in more detail in Supplementary Table 3. These results indicate 
that the entropy increase in cancer is driven mainly by hubs 
(Teschendorff et al., 2015), which has the corollary of an increase 
in the number of alternative pathways in more aggressive tumors.

The effect of disrupting tumor subnetworks by hub 
inactivation is similar to the one obtained with the subnetwork 
of MDA-MB-231 (Figure 1). Indeed, as discussed in the 
introduction, the simultaneous inactivation of the top-5 hubs 
identified for this cell line resulted in significant reduction of 
tumor activity without any side effects to a non-tumoral cell line 
used as a control (Tilli et al., 2016). This result suggests that our 
strategy should be as successful in heterogeneous tumor samples 
as it was in cell lines. In this sense, this report is a generalization 
to tumors of our entropy-based strategy formally established 
with cell lines. Since such a strategy is not obvious a priori, it 
may be considered as a significant progress for translational 
medicine because it enables to us infer rational strategies for 
cancer therapies by personalized approaches.

Tumor Entropy and Its Correlation With 
Overall Patient Survival Rate
We considered the subnetworks of up-regulated genes to 
calculate the Shannon entropy relative to the tumor sample of 
each patient and used the averages to represent each cancer type. 
The number of genes up-regulated in tumors varied from patient 
to patient, but the average number for each cancer type was 
between 250 and 450. A supplementary table shows the number 
of up-regulated genes and the entropy calculated for each patient 
(see Supplementary Table 6).

The entropy found for the subnetworks of up-regulated genes 
was used to analyze tumor complexity and its relationship with 
OS rate. The OS data available in ref. (Liu et al., 2018), which 
contains curated clinical and survival data from TCGA patients, 
were used to infer the 5-year survival rate for each cancer type 
(for more details, see “Materials and Methods”).

The non-parametric Kruskal–Wallis test was performed to 
assess whether the entropy averages were the same for all cancer 
types. We found a chi-squared value of 94.9, degrees of freedom  = 
8, and a p-value < 2.2e−16, which refutes the null hypothesis of 
average entropy equality and indicates that at least one cancer type 
has an average significantly different from another one (Figure 
2A). The Wilcoxon pairwise comparison test confirmed that 
cancer types with large differences in survival rates have significant 

TABLE 2 | Continued

Cancer type Hub Number of 
patients

Percentage 
of patients

Cancer hallmark Reference

PRAD HSPA5 31 62.0% Genomic instability (Haase and Fitze, 2016)
HSP90AB1 30 60.0% Genomic instability (Haase and Fitze, 2016)

RPL10 30 60.0% Invasion and migration, cell death escape (Goudarzi and Lindström, 2016; Shi et al., 
2018)

NPM1 29 58.0% Invasion and migration, inflammation, genomic 
instability

(Loubeau et al., 2014; Box et al., 2016; Lin 
et al., 2016)

NDRG1 28 56.0% Invasion and migration, growth (Menezes et al., 2017)
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average entropy differences (Figure 2B). For instance, Figure 2B 
shows that thyroid cancer (THCA) and prostate cancer (PRAD), 
the cancer types with the highest survival rates, have significantly 
different entropy averages in comparison to almost all other cancer 
types, with the exception of LIHC. In addition, LUSC also has 
significantly different entropy averages when compared to BRCA 

and LIHC (Figure 2B). The p-values found for each pairwise 
analysis can be found in Supplementary Table 9.

The relationship between tumor entropy and 5-year survival 
rates was characterized by a negative correlation (r = −0.68, 
p-value = 0.043), and the fitted regression line (Y = −0.004X + 
2.507) had a slope within a 95% confidence interval from 

FIGURE 1 | Histograms of frequency and entropy distribution after inactivation of targets selected at random from subnetworks of up-regulated genes from nine 
patients (one from each cancer type) and the cell line MDA-MB-231. The arrows indicate the entropy found after hubs’ inactivation from the same subnetwork.
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FIGURE 2 | (A) Box plot of the entropies found for the subnetworks of up-regulated genes in each cancer type and the result of Kruskal–Wallis test. (B) Heat map 
of p-values from Wilcoxon pairwise comparison. Light-yellow squares represent non-significant p-values; other colors represent significant but different p-values 
according to legend. (C) Correlation between entropies of up-regulated genes’ subnetworks and their respective 5-year survival rates. The vertical bars indicate 
standard deviations.
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−0.00800 to −0.00017 (Figure 2C). These results indicate that 
the regression line was significantly different from the horizontal 
(slope = 0.00000).

These results were based on patient data and are in agreement 
with those proposed elsewhere (Teschendorff and Severini, 
2010; van Wieringen and van der Vaart, 2011; Breitkreutz et al., 
2012; West et al., 2012; Banerji et al., 2015), indicating that the 
subnetwork entropy of tumor tissues increases together with the 
tumor aggressiveness.

The linear regression indicates a common trend between 
malignancy and entropy for each tumor. However, the 
standard deviations associated with each tissue’s averages 
indicate a variation in entropy between patients with the same 
cancer type, which means that despite sharing some common 
molecular features, each patient has his/her own tumor 
complexity and aggressiveness.

The relationship between tumor entropy and survival rates also 
holds when considering patients from the same tumor type. For 
LUAD, we found a significant negative correlation of −0.98 between 
entropy average and survival rate, with a significant p-value = 0.02 
and a slope in the 95% confidence interval from −0.005 to −0.001. 
For LUSC, we found a negative correlation of −0.70, with a non-
significant p-value = 0.29 and a slope in the 95% confidence interval 
from −0.015 to 0.007. The lack of statistical significance is most 
likely due to the small sample size (n = 4). All these data can be seen 
in more detail in Supplementary Tables 5 and 6.

The limitation in the tissue diversity of our report is justified 
by statistical constraints. However, this tissue diversity covers 
the whole range of tumor aggressiveness. The small slopes found 
in the regression analyses (found across patients with tumors 
in multiple tissues and within the set of patients with tumors 
in the same tissue, such as LUAD and LUSC) can be explained 
by the use of Shannon entropy as a complexity measure, whose 
values vary in the first decimal between 2.0 and 2.5 for patients 
between 35% and 100% survival, on the average. This approach 
requires a significant difference of survival rates between patients 
with different tumor types or patients within one tumor type 
to reveal a significant difference in their respective entropies. 
For this reason, it was not possible to analyze patients among 
PRAD and THCA. Both included patients with high survival 
rates, between 100.0% and 93.0% for PRAD, and from 99.7% to 
89.6% for THCA. Furthermore, the other tissues (kidney renal 
clear cell carcinoma -KIRC, kidney renal papillary cell carcinoma 
- KIRP and stomach adenocarcinoma – STAD) had only three 
survival rate intervals available, which is not enough to generate 
a statistically significant regression line.

Moreover, correlations between subnetwork size and entropy 
(r = −0.12, p-value = 0.74) or between subnetwork size and 
survival rates (r = 0.48, p-value = 0.18) were not large enough and 
not even statistically significant to suggest any linear relationship.

Many efforts were made for stratifying patients based on 
their molecular subtypes that would suggest better patient 
treatment (The Cancer Genome Atlas Research Network, 
2012a; The Cancer Genome Atlas Research Network, 2012b; 
The Cancer Genome Atlas Research Network, 2013; The Cancer 
Genome Atlas Research Network, 2014a; The Cancer Genome 
Atlas Research Network, 2014b; The Cancer Genome Atlas 

Research Network, 2015; Guo et al., 2016; The Cancer Genome 
Atlas Research Network, 2016). Unfortunately, due to the small 
number of patients (n~3) with paired samples characterized in 
each subtype and the few subtypes described in each tumor type 
(~2), we could not explore the potential differences in entropy 
and survival rates at the subtype level.

Identification of Hubs Whose Inhibition 
Could Benefit Patients
Our results suggest a prognostic potential of the entropy measure: 
the higher the entropy, the worse the prognosis. This relationship 
was previously described for the patient outcome according to 
breast cancer major subtypes and lung cancer (Banerji et al., 
2015). Therefore, reducing the subnetwork entropy by inhibiting 
the most connected hubs encoded by up-regulated genes should 
improve the patient’s prognosis.

As indicated above, each tumor has a specific entropy value 
around the mean of its corresponding tissue. For this reason, the 
question is how much one should decrease the entropy value on a 
case-to-case basis in order to improve the patient’s prognosis and 
treatment benefit. In this context, we hypothesized that decreasing 
the entropy value to the one corresponding to 100% survival rate, 
we would increase the patient’s prognosis by a signaling network 
restructuring specific to tumor tissues, which is in line with the 
in vitro validation performed earlier (Tilli et al., 2016).

When we compared the tumor entropies found for each 
patient to the entropy corresponding to 100% survival, we found 
out that 318 of them would need at least one hub inhibition. The 
remaining patients showed tumor entropies lower than the one 
expected for 100% survival. This unexpected behavior could 
be explained by two biological facts: signaling heterogeneity, 
which may occur in early tumor stages when the difference in 
cell differentiation between normal and tumor tissues is still very 
small, and sampling heterogeneity, when surrounding tumor 
tissues, considered as control samples in this work, are invaded 
by cancer stem cells (Lau et al., 2017). The entropy of cancer 
stem cells has been previously described as higher than that of 
differentiated normal or tumor cells due to their larger signaling 
pathway heterogeneity (Banerji et al., 2013), which may explain 
why the resulting entropy for these patients is lower than the one 
expected for 100% survival rate.

The Kruskal–Wallis test and a Wilcoxon pairwise comparison 
considering the number of targets indicated for inhibition show 
a significant difference between tissues averages (Figure 3A 
and Supplementary Table 10). The relationship between the 
number of targets and 5-year survival rates was characterized 
by a negative correlation (r = −0.77, p-value < 0.011) and had a 
slope = −0.067 within a 95% confidence interval from −0.114 to 
−0.020 (Figure 3B). This result suggests that, on average, cancer 
types with lower survival rates need a higher number of hubs for 
inhibition (around eight) than cancer types with higher survival 
rates (around four hubs).

Yet, the selection of as many targets as necessary to decrease 
the tumor entropy level to that of 100% patient survival showed 
that patients from all nine cancer types needed the inhibition 
of target combinations varying from 1 to 20 hubs. The effect on 
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entropy and the number of targets to be inhibited for each patient 
is given in Supplementary Table 7.

DISCUSSION

Many efforts were made to better understand cancer through 
Shannon entropy approaches. We confirmed here the existence 
of a significant negative correlation between the entropy of 
up-regulated gene subnetworks and patients’ survival rate in real 
cases, which suggests a larger ability of aggressive tumors to switch 
among alternative pathways and to overcome environmental 
challenges such as drug treatments.

The Relevance of Targeting Connection 
Hubs
The decrease of entropy values after hub inactivation was 
significantly higher than the decrease of entropy after 

inactivation of targets selected at random, which confirms the 
benefit of a targeted attack on scale-free systems as shown by 
Albert et al. (Albert et al., 2000). The success of this approach 
has been validated in cell lines in vitro (Tilli et al., 2016). The 
relevance of targeting hubs allows us to investigate the quality 
(nature) and the quantity (number) of hubs that should be 
taken into consideration to rationally design a drug cocktail 
for a patient with a given gene expression profile. For this 
purpose, we investigated the number of connectivity hubs 
indicated for inhibition according to tumor aggressiveness 
using Shannon entropy. The benefit of characterizing a 
topology using entropy is based on the fact that this measure 
is invariant with respect to network size since the entropy 
calculation involves probabilities rather than absolute values. 
This concept is important in the context of this study because 
the subnetworks investigated were varying in size even if the 
criteria for their construction were kept identical from one 
patient to another.

FIGURE 3 | (A) Box plot of the number of targets in each cancer type and the result of Kruskall–Wallis test. (B) Correlation between number of targets and 5-years 
survival rates of each cancer type.
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Shannon Entropy and Tumor 
Aggressiveness
Our results are in accordance with previously published works that 
also describe a negative correlation between tumor entropy and 
aggressiveness. For instance, Breitkreutz et al. considered entropy 
as a tumor complexity measure and found an r2 = 0.7 between 
the Shannon entropy of tumors and the 5-year survival rate after 
treatment, which means that 70% of the variance among the 
14 samples considered was well represented by linear regression 
(Breitkreutz et al., 2012). Despite these outstanding results, the 
reference to KEGG regulatory pathways (http://www.genome.
jp/kegg/) can be argued as non-representative of the real cases 
since these pathways include only a few vertices, ranging from 
25 to 50, and are constructed as a consensus based on the data 
from many patients. Obviously, tumors are more complex and may 
present variations of the KEGG patterns of regulatory pathway 
dysregulation between patients with the same cancer type.

In addition, entropy was used as a measure of system 
randomness (Teschendorff and Severini, 2010), system disorder 
(West et al., 2012), and heterogeneity in order to quantify the 
network signaling rather than network topology (Banerji et al., 
2015). All these works found higher entropies for cancer samples 
than control samples. Larger entropies were also associated with 
metastatic compared to non-metastatic tumors and also with 
advanced stages compared to early tumor stages (van Wieringen 
and van der Vaart, 2011).

All these methodologies considered a unique signaling 
network with different interaction weights assigned according 
to the phenotypic expression data. In a similar way, we took 
expression data into consideration in our analysis but through 
the determination of expression thresholds above which genes 
would have to be considered as up-regulated. This binary 
approach of incorporating expression data into PPI directly 
affects the features of subnetworks regarding their topology.

Identification of Molecular Targets
We found that despite using the same protocol to select 
up-regulated genes and the same interactome, all subnetworks had 
different sizes and hub profiling. The variation of Shannon entropy 
among patients of the same tumor type indicates how much the 
individual profiling of molecular targets is recommended for 
rational therapeutic design.

As shown here, the transcriptome and PPI data currently 
available allow the development of personalized medicine, which 
offers the possibility of a rational therapeutic approach based on 
individual molecular data, i.e., maximizing the patient benefit of 
therapy by designing the best combination of targets to be inhibited 
through personalized cocktails of drugs and/or biopharmaceuticals. 
Furthermore, the inhibition of hubs preferentially expressed in 
tumor samples would minimize overlapping toxicity effects.

The reference to the entropy corresponding to 100% patient 
survival enabled us to explore putative individual therapeutics 
as well. Despite the general trend of higher entropy associated 
with aggressive tumors, each patient would need the inhibition 

of a different hub combination to reach the entropy level 
corresponding to 100% patient survival.

These ideas were first proposed through bioinformatic 
inference with cell line expression data (Carels et al., 2015a) 
and then validated in vitro (Tilli et al., 2016). Here, we extended 
these concepts to their application to patient data as an initial 
step toward translational medicine. Our approach was shown 
to be robust once the hubs identified were validated in the 
literature as key players in the processes known to be key for 
tumor development.

Future Direction
The large target number between 10 and 20 necessary in some 
patients to reduce the entropy of the tumor tissue to the level 
corresponding to the 100% patient survival probability may be 
a consequence of our approach. The effects of hub inactivation 
were analyzed considering a static network, in which we had to 
implement all interventions in order to reach the desired state. 
However, the signaling network is dynamic due to regulatory 
interactions between proteins and genes, and it is possible that 
the inhibition of a smaller target set may trigger a cascade effect 
resulting in irreversible tumor cell death as suggested by Tilli et 
al. (Tilli et al., 2016).

In this context, each gene expression profile of the signaling 
network may be interpreted as a state. The set of all states 
represents a continuous and multidimensional state space defined 
by the number of genes analyzed and their expression. Some states 
may define a cell phenotype or correspond to cell differentiation. 
Those states can be called attractors and are characterized as an 
equilibrium point in phase space. However, due to the stochastic 
nature of gene regulation, other states might result in the same 
phenotype as the attractor, and for this reason, they form the 
basin of attraction (Huang et al., 2009).

Once we consider cancer disease as resulting from attractors 
in the phase space of cellular dynamics, therapy should lead the 
signaling network toward a new basin of attraction of active cell 
death (Cornelius et al., 2013; Huang et al., 2009). The analysis of 
the signaling network state space should allow the identification 
of the basin related to the desired attractor, optimizing the number 
of targets indicated for treatment. Moreover, this strategy would 
also allow the identification of an order of priority for therapeutic 
interventions required to reach the basin of attraction related to 
the desired state (Cornelius et al., 2013).

Also, we assumed here that any target can be inhibited in 
different ways, using drugs, aptamers, interference RNA, or other 
methodologies that will have different consequences for patients 
depending on their off-target activity. This exercise also assumes 
that the inhibition of any target combination is possible, without 
considering interactions between drugs or any other side effect 
of a pharmacokinetic nature (differences in drug metabolism 
among human haplotypes).

Therefore, our approach still requires a case-by-case examination 
according to additional layers of complexity associated with the 
dynamics of signaling networks and methods for target inactivation.
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CONCLUSION

Topological measures of PPI networks bring useful information for 
personalized treatment of cancer. Among the measures of node and 
path metrics, we focused this study on the application of Shannon 
entropy to subnetworks of tumors’ up-regulated genes. The results 
of our analysis in this paper show the following: (i) As proposed 
by Albert et al. (Albert et al., 2000), our experiment showed that 
removing the most connected targets is more effective than removing 
targets at random, whatever their connectivity degree. (ii)  The 
gross approximation by Breitkreutz et al. (Azevedo and Moreira-
Filho, 2015) is confirmed using interactome and RNA-seq data of 
real tumors, but the slope of the regression line obtained is lower 
than that published by these authors. This shows the need for large 
changes in network complexity to observe a difference in survival 
rates. (iii) As expected from the intra-tumor heterogeneity in cell 
line composition, we found a large standard deviation of entropy by 
tissue. The highly personalized molecular profile of tumors justifies 
an individual diagnostic and therapeutic (theranostics) approach in 
order to reduce toxic side effects of treatment to patients. (iv) When 
considering 100% survival as the goal of the treatment, the negative 
correlation indicates that aggressive tumors will need a larger set 
of therapeutic agents (drugs and/or biopharmaceuticals) than 
benign ones, on average, to reduce the entropy of the subnetwork of 
up-regulated genes to achieve a higher life expectancy.
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