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ABSTRACT

Fungal secondary metabolites (SMs) are an im-
portant source of numerous bioactive compounds
largely applied in the pharmaceutical industry, as in
the production of antibiotics and anticancer medica-
tions. The discovery of novel fungal SMs can poten-
tially benefit human health. Identifying biosynthetic
gene clusters (BGCs) involved in the biosynthesis of
SMs can be a costly and complex task, especially
due to the genomic diversity of fungal BGCs. Previ-
ous studies on fungal BGC discovery present lim-
ited scope and can restrict the discovery of new
BGCs. In this work, we introduce TOUCAN, a su-
pervised learning framework for fungal BGC discov-
ery. Unlike previous methods, TOUCAN is capable
of predicting BGCs on amino acid sequences, facil-
itating its use on newly sequenced and not yet cu-
rated data. It relies on three main pillars: rigorous se-
lection of datasets by BGC experts; combination of
functional, evolutionary and compositional features
coupled with outperforming classifiers; and robust
post-processing methods. TOUCAN best-performing
model yields 0.982 F-measure on BGC regions in the
Aspergillus niger genome. Overall results show that
TOUCAN outperforms previous approaches. TOU-
CAN focuses on fungal BGCs but can be easily
adapted to expand its scope to process other species
or include new features.

INTRODUCTION

Secondary metabolites (SMs) are specialized bioactive com-
pounds primarily produced by plants, fungi and bacteria.
They represent a vital source for drug discovery: from an-
ticancer, antiviral and cholesterol-lowering medications to
antibiotics and immunosuppressants (1). Genes involved in

the biosynthesis of many SMs in fungi are co-localized in
the genome, organized as clusters of genes (2), and known
as biosynthetic gene clusters (BGCs). Typically, BGCs are
minimally composed of one or more synthase or synthetase
genes encoding backbone enzymes, which produce the core
structure of the compound, and genes that encode tailor-
ing enzymes, which modify the core compound to gener-
ate variants (3). Backbone enzymes determine the class of
SM produced by a BGC. BGCs may also contain other
genes such as those encoding cluster-specific transcription
factors, mitigating toxic properties, transporters, tailoring
enzymes and genes with hypothetical functions (4). Iden-
tifying new fungal BGCs can potentially lead to the dis-
covery of new compounds that can serve as vital source for
drug discovery (5,6). Despite the availability of a large vol-
ume of fungal genome sequence data, BGC discovery re-
mains a challenging task (1) due to the diversity of fun-
gal BGCs. Fungal BGCs have been shown to present no-
ticeable differences in synteny and non-conservation of se-
quences even in related species or different strains of the
same species (3), where clustered genes of the same SM
can appear in different scaffolds among evolutionarily close
species.

Several studies have presented approaches to discover
BGCs (1). Most approaches to identify fungal BGCs rely
on probabilistic or data-driven methods, requiring as input
genomic data (7) combined with gene functional annota-
tions (8) and/or transcription data (9,10). Previous works
also analysed fungal gene expression levels (9), motif co-
occurrence in promoters around anchor genes (contain-
ing backbone enzymes) (8), compared expression levels of
virtual gene clusters in conditions favourable to SM pro-
duction (10) and analysed homologous genes through se-
quence alignment and filtering syntenic blocks (7). fungiS-
MASH (11) combines a probabilistic method (profile hid-
den Markov models from proteins) and curated BGC de-
tection rules, and can use tools such as CASSIS (cluster
assignment by islands of sites) (8) and ClusterFinder (12)
to predict fungal BGC boundaries. These previous ap-
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proaches present several limitations: overprediction of
BGC length (11,13); dependence on manual curation (9),
which is expensive; or a very limited scope, potentially
affecting the ability to process different BGC types or
organisms (7,13).

Approaches derived from supervised learning have shown
to perform well when predicting bacterial BGCs (14,15).
To our knowledge, such methods have not been applied
to identifying fungal BGCs. For instance, RiPPMiner (14)
based on support vector machine (SVM) and random for-
est achieves 0.91 F-measure (F-m) in binary classification
of ribosomally synthesized and post-translationally modi-
fied peptides. A recent approach, called DeepBGC, was de-
signed to exploit Pfam (16) domain embeddings to repre-
sent bacterial BGCs (12) to feed a bidirectional long short-
term memory (BiLSTM) neural network (15). DeepBGC
relies also on post-processing methods such as merging
consecutive BGC genes or filtering regions without known
BGC protein domains. DeepBGC achieved a 0.923 area
under the curve when predicting BGC positions in a set
of 65 experimentally validated BGCs from six bacterial
genomes, outperforming previous studies (15). When han-
dling fungal BGC data, DeepBGC in its original version
yielded performance no higher than 0.2 F-m (17), and when
trained on fungal data underperformed previous methods
such as fungiSMASH (11), as we show in the ‘Results’ sec-
tion. This could indicate that BGC discovery methods de-
veloped for bacteria may not be suitable for fungi due to
the high diversity of fungal BGCs that are found to vary
even among closely related species (3). Hence, it is impor-
tant to develop BGC discovery approaches dedicated to
fungi, taking into account the specific characteristics of
fungal BGCs, such as high diversity, BGC components,
and BGC and genome lengths that are usually longer than
bacteria. Here, we propose TOUCAN, a supervised learn-
ing framework to tackle BGC discovery in fungi that is
based on a combination of heterogeneous biological fea-
ture types: k-mers, protein domains and Gene Ontology
(terms) to represent protein motifs and functions relevant to
fungal BGCs.

MATERIALS AND METHODS

TOUCAN classification models were built based on a set
of six open-access fungal BGC datasets of varying distri-
butions, a total of six classifiers and two post-processing
methods. In this section, we present the methodology
adopted to develop TOUCAN models. TOUCAN pre-
dictions are validated based on a set of curated fungal
BGCs.

Datasets

TOUCAN classification models were developed with com-
prehensive and exhaustive fungal BGC datasets presented
in (17) that are publicly available to support benchmark-
ing of BGC discovery methods. The six fungal BGC train-
ing datasets are composed of different distributions of pos-
itive instances obtained from the MIBiG (Minimum In-

formation about a Biosynthetic Gene cluster) (2) reposi-
tory and synthetic negative instances generated from Or-
thoDB (18) orthologues. Fungal orthologous genes were
previously applied in BGC discovery (7). Orthologues can
be a relevant source of negative instances since they repre-
sent conserved genes across species, while BGCs are known
to show large genomic diversity even in closely related
species (3).

To build negative instances, the amino acid sequences of
OrthoDB fungal orthologous genes were concatenated us-
ing a fixed window size of 7000 amino acids, which corre-
sponds to the average amino acid length of all positive in-
stances from the fungal subset in MIBiG. This process gen-
erated a pool of training samples of 693 195 synthetic nega-
tive clusters [see (17) for details]. Studying datasets of vari-
ous distributions could shed light on the impact of class im-
balance in fungal BGC discovery, which by nature presents
a highly imbalanced scenario where only a small fraction
of fungal genomes actually corresponded to BGCs (17). To
account for genomic diversity in fungi, positive instances
in the six datasets represent >10 different BGC types and
>100 fungal species, while negative instances were gener-
ated from a pool of orthologous genes representing ≈300
fungal species. To build and validate our models, we per-
formed a random fixed split in each training dataset for
which 80% of instances are dedicated to training and 20%
for validation. Supplementary Table S1 shows the positive
versus negative distribution, and the training and valida-
tion splits in the six training fungal BGC datasets. A ran-
dom fixed split allows us to evaluate the performances of
the same training and validation sets under different param-
eters.

In the test phase, we evaluated our classification mod-
els with six test datasets, generated similarly to (17), from
a manually curated genome sequence of Aspergillus niger
NRRL3, available at https://gb.fungalgenomics.ca/portal.
Aspergillus niger is an organism of interest for BGC dis-
covery due to its relevance to industrial processes, and its
ubiquitous distribution (6). In this work, 85 manually cu-
rated BGCs (19) in A. niger will be considered as gold stan-
dard. Test candidate BGCs are generated by sequentially
extracted genomic regions of A. niger with a sliding win-
dow of 5000, 7000 or 10 000 amino acids, with a 30% or
50% overlap. The overlap of genomic regions allows us to
cover BGC fragmented by the sliding windows. Multiple
test datasets allow to analyse the impact of window lengths
and overlaps when handling input data of test organisms,
helping to determine recommended parameters to obtain
BGC predictions in new genome sequences. By generating
test candidates based on a fixed sliding window length, new
sequence data can be processed without requiring curation,
genome annotation or gene models as input, unlike that of
other BGC discovery tools. In the ‘Results’ section, we re-
port the performance obtained by the models using differ-
ent window lengths and overlaps.

Features

To represent the fungal BGC dataset instances as feature
vectors, we relied on heterogeneous biological features ex-
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tracted from the protein sequences of dataset instances: k-
mers, Pfam protein domains and GO terms. Several fea-
ture types are combined to better represent the diverse ge-
nomic profiles in fungal BGCs and help build relevant dis-
criminative models. Feature vectors are composed of num-
ber of occurrences of features per training instance. K-
mers (a contiguous number of K amino acids appearing se-
quentially) are common features in genomic classification
tasks (20). We have extracted k-mers with varying lengths of
3 ≤ K ≤ 9. K-mers appearing less than three times were dis-
carded to reduce feature dimensionality, because presence
of rare features could introduce bias (21). K-mer lengths
were evaluated separately using validation sets to identify
the K value yielding the best performance. Further de-
tails on validation of K values are provided in the ‘Results’
section.

Pfam protein domains were previously applied in BGC
discovery in both fungi (13) and bacteria (12,15). Protein
domains are relevant features for BGC classification and
can indicate the presence of backbone enzymes, a key com-
ponent of BGCs (3,19). We performed an analysis of pro-
tein domain distribution among positive instances in our
datasets to understand their relevance as features. In our
analysis, Pfam protein domains extracted from positive in-
stances were manually labelled by us as high (corresponding
to a domain usually only present in BGCs) and medium (a
domain usually present in, but not limited to, BGCs). The
complete lists of medium and high annotated Pfam domains
are presented in Supplementary Tables S2 and S3. Then, we
analysed all positive instance datasets for the presence or
absence of such domains, shown in Supplementary Figure
S1. This analysis highlights two important aspects: first, the
protein domain diversity in fungal BGCs; and second, the
presence of high domains shared by most BGCs suggesting
that they share a structural pattern, most likely related to
the presence of a backbone enzyme. The structural pattern
yielded by the distribution of manually annotated protein
domains in positive instances suggests that this feature type
might carry an important discriminating power. Pfam do-
main features were extracted from our training datasets us-
ing the Pfam database.

GO term annotations were also modelled as features
and obtained from our training instances using Swiss-
Prot (22). To identify corresponding GO terms, we per-
formed a BLAST analysis of amino acid sequences from
our dataset instances against the Swiss-Prot database com-
posed of 560 292 reviewed entries (as of June 2019). BLAST
parameters considered were evalue (expected value) ≤ 1e−4
and qcovs (query coverage per subject) ≥ 50. A qcovs ≥ 50
could indicate relevant sequence similarity (23), since the
alignment length would correspond to at least 50% of 7000
amino acids for each match. We considered GO terms from
all classes. GO term matches found were filtered for dupli-
cates, and only unique GO terms were kept to represent
dataset instances.

The number of unique features per type extracted from
each training dataset and used to build our classification
models is shown in Supplementary Table S4. At this point,
extracted features were all kept (except for k-mers that oc-

cur less than three times in a dataset), without relying on
feature selection methods. The feature order is not neces-
sarily conserved during classification, and it is by all pur-
poses processed in a bag-of-words manner. Consider that
all extracted features can be relevant at this point since the
experiments performed in our work are still a learning space
of suitable parameters to tackle BGC discovery. Feature se-
lection could therefore limit the exploration of potentially
relevant attributes or combinations of features, but it might
be valuable as the next step.

Classification methods

TOUCAN classification models were built with a total
of six classifiers. We performed experiments with different
classification algorithms to assess the performance of het-
erogeneous features and post-processing methods, and then
identified the best configuration to tackle the BGC discov-
ery task. Three classifiers were SVM classifiers: C support
vector (svc), linear support vector (lsvc) and nu support
vector (nusvc) classifiers. SVM classifiers were previously
applied in BGC discovery (14). Default parameters were
used for svc and lsvc during experiments, while for the
nusvc classifier the nu parameter was adjusted in connec-
tion with the percentage of positive instances pos in a given
dataset:

nu =
{

0.5, if pos ≥ 30%,
pos
100

, otherwise. (1)

The other three classifiers were a multilayer percep-
tron (mlp), logistic regression (logit) and random for-
est (randomf). While logit classifier can provide a base-
line model for the task, neural networks (15) and ran-
domf (14) were also previously applied in BGC discovery.
Also for mlp, logit and randomf, default parameters
were kept but could, however, be optimized to suit specific
experiments if needed. These six classifiers were evaluated
independently during our experiments.

Post-processing methods

Predictions of candidate BGCs outputted by TOUCAN
are post-processed to improve output precision. Post-
processing methods adopted in our work were greedy ap-
proaches, such as in PRISM (24) that identifies bond-
forming domains and expands cluster boundaries on either
ends of such domains. Unlike PRISM, TOUCAN does not
require curation as input, and relies on classification models
to identify potential BGC regions in which post-processing
methods can be applied, facilitating its use on newly se-
quenced or not yet annotated genomes. The post-processing
methods succ and merge are shown in the SUCCESSIVE-
MERGE algorithm, and aim to address potential cluster
boundary limitations (over- or underestimation) common
in previous approaches (11,13).
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BGC region length can vary greatly among fungal
MIBiG BGCs: for an x number of amino acids, x can
vary such as 195 ≤ x ≤ 62 079, with a standard deviation
σ (x) ≈ 6013.73 and mean x ≈ 7033. In this work, a fixed
amino acid length to generate test candidate instances from
an organism genome is applied. Both succ and merge
post-processing help to overcome the shortcoming in cases
where cluster regions have limited boundaries. The succ
post-processing gives to an nbSucc of successive predictions
the same confidence prediction score of a positive predic-
tion (confidence ≥ threshold). The merge post-processing
merges an nbSucc of successive predictions of a positive pre-
diction (confidence ≥ threshold) into a single positive predic-
tion. For bothsucc andmerge,we considered 0 ≤ nbSucc
≤ 3, set as an arbitrary parameter for the first evaluation
of post-processing methods. Both post-processing methods
were applied only if nbSucc successive predictions were also
not positive.

Evaluation metrics

TOUCAN classification models were assessed in terms of
precision (P), recall (R), F-m and a clusterScore metric. To
compute P, R and F-m, we considered as true positives
(TPs) BGC candidates predicted as positive that have at
least one gene that matches a gold standard BGC. The clus-
terScore represents the coverage of expected gold standard
BGC genes within a candidate BGC, where 0 ≤ clusterScore
≤ 1, and was computed for each BGC candidate predicted
positive. To compute the clusterScore for a BGC candidate
C and its gold standard BGC match M, we first counted
the number of geneMatches in C, meaning the number of
M genes in C. We then computed a similarity value sim be-
tween all pairs of genes in the disjunctive union C�M, and
add to the clusterScore the best sim obtained for the un-
matched M − C genes. Computing the sim value allows

us to account for the possible presence of gold standard
orthologues among unmatched genes in a BGC candidate
predicted positive. The sim value represents a percent iden-
tity pident obtained through a local alignment with BLAST
between two genes, using cut-offs of minimum pident ≥ 20
and minimum query coverage qcovs ≥ 10. The clusterScore
for a BGC candidate C was normalized by the number of
genes in its gold standard BGC match M. The SIMILAR-
ITY algorithm shows the computation of sim scores, while
the CLUSTERSCORE algorithm shows the computation of
clusterScore. We analysed the clusterScore of TOUCAN
predicted positives compared to state-of-the-art methods in
the ‘Results’ section.

State-of-the-art performance comparison

The performance of TOUCAN models was compared
to results obtained by two state-of-the-art tools: fungiS-
MASH (11) and DeepBGC (15) (version 0.1.18 and models
as of February 2020 available at https://github.com/Merck/
deepbgc). The experiments with fungiSMASM were per-
formed with its three strictness levels: relaxed, strict and
loose, and with default parameters for its extra feature
options (as of January 2020): ‘KnownClusterBlast’, ‘Ac-
tiveSiteFinder’ and ‘SubClusterBlast’. DeepBGC focuses
on bacterial data and is based on a BiLSTM neural net-
work and Pfam domain embeddings. A total of three Deep-
BGC classification models are applied in this work: one with
original DeepBGC training dataset and hyperparameters,
as in (15); one built with DeepBGC original hyperparame-
ters and our best-performing training dataset; and one built
with our best-performing training dataset and fungal opti-
mized hyperparameters (thanks to the authors) (see Supple-
mentary Table S7 for original and fungal optimized hyper-
parameters).

https://github.com/Merck/deepbgc
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RESULTS

We present here results obtained with TOUCAN, a su-
pervised learning framework to discover fungal BGCs. To
identify the best configuration to tackle BGC discovery
in fungi, we designed, trained and assessed several clas-
sification models combining heterogeneous biological fea-
tures, datasets of various distributions, classifiers and post-
processing methods, as described in the ‘Materials and
Methods’ section. Validation results are drawn on held-
out training instances corresponding to 20% of each train-
ing dataset. The performance of TOUCAN was assessed
on test datasets of a gold standard of 85 manually anno-
tated A. niger BGCs (19). The focus here is BGC discovery;
hence, the model is optimized to correctly identify positive
instances, rather than the negative ones. Thus, results were
reported for the positive class.

Feature importance and performance on validation datasets

To identify the most suitable K for k-mer features within 3 ≤
K ≤ 9, we performed a set of experiments on all six datasets
and six classifiers, as presented in the ‘Datasets’ and ‘Clas-
sification methods’ sections. Performance of k-mer models
on our validation sets is shown in Supplementary Figure
S2. In general, better performance was achieved with K =
6, which was thus the K value considered for our follow-
ing experiments. We also performed an analysis of feature
importance across training datasets, obtained with a ran-
domf classifier, with default parameters. Table 1 shows the
top 15 ranked features across training datasets.

Features appearing on the top 15 of multiple datasets are
highlighted. Protein domain feature names start with PF,

GO term feature names start with GO and the other fea-
tures are 6-mers. We can observe that every protein domain
feature appearing among the top ranked of all datasets be-
longed to either the high or medium manually annotated do-
mains, even though non-high and non-medium domain fea-
tures are also included in our feature set. Moreover, while
GO terms represent ≈30% of all top 15 ranked features, they
make up for at most 0.7% of total features. This possibly in-
dicates their strong discriminating power in the task. After
evaluating feature importance, we trained several classifica-
tion models combining the feature types for each classifier
and training dataset distribution. For each training dataset
distribution, a random fixed split, designating 80% of its in-
stances, was selected for training and 20% for validation,
as mentioned in the ‘Datasets’ section. The top F-m perfor-
mances on validation sets per training dataset are shown in
Supplementary Table S5. During validation, we noted that
models built with three feature types outperformed models
using one feature type, such as the ones built when evaluat-
ing the most suitable k-mer length.

Validation performance seems to be overall affected
by the instance distribution: more imbalanced datasets
show lower F-m compared to more balanced ones. When
analysing MIBiG fungal BGCs, only ≈1% of a genome se-
quence would correspond to cluster regions (17), so utiliz-
ing more balanced training data could provide better per-
formance than using real case scenario distributions. We se-
lected the dataset with the best F-m average performance,
which was the most balanced (50%–50%), to perform fur-
ther evaluation with hyperparameter optimization through
a grid search, followed by cross-validation (CV) classifica-
tion for all six classifiers. Best-performing hyperparameters
to maximize F-m for each classifier are listed in Supplemen-
tary Table S8. A 5-fold CV was performed with optimized
hyperparameters on the 50%–50% dataset instances, ran-
domly split between training and validation at each fold.
Supplementary Table S6 shows the average performances
on the 5-fold CV for each classifier.

TOUCAN performance on test datasets

We assessed TOUCAN models on six test datasets
with amino acid sliding window lengths of 5000, 7000
and 10 000, with overlaps of 50% and 30%, as described
in the ‘Datasets’ section. Candidate BGC predictions on
the test data were obtained with TOUCAN classification
models built using the six training dataset distributions
with fixed training and validation splits, three feature types
and six classifiers. We then processed TOUCAN predicted
candidate BGCs with post-processing methods succ and
merge, considering 0 ≤ nbSucc ≤ 3.

Table 2 shows for the positive class the best F-m obtained
for each test dataset among all training dataset distribu-
tions. The highest 0.931 F-m was obtained by a model built
with a 50%–50% distributed training set, an mlp classifier
and a merge3 post-processing. The best F-m was achieved
with 10 000-amino acid sliding window test datasets. Re-
garding classifiers, mlp and logit yielded best perfor-
mance followed less often by lsvc. As mentioned in the
‘Classification methods’ section, default parameters were
used when performing our experiments. Tuning the clas-
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Table 1. Top 15 features ranked by importance for each training dataset, from completely balanced (50% positive, 50% negative) to most imbalanced (5%
positive, 95% negative)

Training dataset distribution

50%–50% 40%–60% 30%–70% 20%–80% 10%–90% 5%–95%

PF00698.21 PF00698.21 GO:0008168 HGTGTQ PF00109.26 TACSSS
PF00668.20 HGTGTQ HGTGTQ GO:0008152 GO:0044550 GTGTQA
ADGYCR GO:0031177 GQGAQW PF00550.25 LYRTGD GYARGE
GO:0016491 GAGTGG GYCRAD IDTACS VFTGQG GO:0046148
FDGYRF VEMHGT GAGTGG PF02458.15 NFSAAG TGDLAR
GO:0016740 VFTGQG QQRLLL DTACSS VEAHGT SINSFG
MHGTGT PF00668.20 TACSSS VTLSGD GO:0043041 DPQQRL
DTACSS GO:0016874 PF02801.22 FTGQGA GHSLGE LFTSGS
GO:1900557 YKTGDL GO:0009058 PF08242.12 AYEALE NSFGFG
GO:0009058 GO:0019184 GO:0046148 AYGPTE GO:0016491 CDTAVA
GRFFAA GO:0043042 GO:0047462 GO:0004315 TQVKIR FDASFF
PF14765.6 PGRFFA GEYAAL GO:0031177 GO:0046500 AYGPTE
MDPQQR MHGTGT GO:0005829 KLRGFR DTACSS YILFTS
FTSGST GO:1900790 PFAFHS GO:0016021 GO:0032259 AIVLAG
GQGAQW VEIGPH LHSLEA PF00067.22 DTFVRC AVVGHS

Highlighted features appeared in multiple datasets.

sifier parameters may affect the performance, but this is
not the focus of this study. Overall results showed that a
30% overlap seems to be more advantageous for all slid-
ing window lengths, even though the best F-m was achieved
with test candidates generated based on a 50% overlap.
The training set distribution seemed to have little influence
on test candidates with a sliding window length of 5000
amino acids, showing only a small variation on F-m for both
30% and 50% overlap. Less balanced training distribution
seemed to affect performance more for candidates with a
sliding window length of 10 000 amino acids, with an F-m
varying from 0.618 to 0.931 when using 50% overlap, and
from 0.629 to 0.917 when using 30% overlap.

We selected the best-performing test datasets (10 000-
amino acid sliding window) to carry an evaluation using 5-
fold CV classification models based on the best-performing
training set (50%–50%). The predicted BGC candidates
obtained with CV classification models were also pro-
cessed with TOUCAN post-processing methods succ and
merge, in the same manner as the models presented in
Table 2. The best performance results obtained with the
10 000-amino acid sliding window test data among all 5-
fold CV classification models are shown in Table 3.

As shown in Table 3, the 5-fold CV classification mod-
els improved to a 0.982 F-m from the previously best 0.931
F-m achieved with models based on fixed training and val-
idation splits. Performance results in Tables 2 and 3 show
TOUCAN models’ discriminative power to identify candi-
date BGC regions from non-BGC regions. Our results also
demonstrate TOUCAN models’ capacity of obtaining rele-
vant BGC predictions on new or non-annotated genomes in
test dataset instances generated solely based on sliding win-
dows of fixed amino acid length. This aspect distinguishes
TOUCAN from previous approaches that rely on gene
models and other genomic annotations as input (14,15).

Performance comparison with DeepBGC

We compared the performance of three DeepBGC classifi-
cation models using the 10 000-amino acid sliding window

test datasets, which yield the best F-m with TOUCAN. As
mentioned in the ‘Materials and Methods’ section, two out
of the three DeepBGC models were trained using the best-
performing constructed training dataset (50%–50% dataset
in this case). The DeepBGC hyperparameters applied in this
comparison are also listed in the ‘Materials and Methods’
section. As shown in (17), during validation phase the Deep-
BGC model trained using the original hyperparameters and
the 50%–50% training dataset had early stopping at epoch
109, from the original total of 328 epochs, as applied in (15).

Table 4 shows P, R and F-m performances of the three
DeepBGC models for the positive class on the test dataset
with a 50% or 30% overlap. DeepBGC models built with
original hyperparameters yielded high recall but very low
precision, consequently leading to F-m metrics <0.3 for ei-
ther models based on the 50%–50% training set or models
based on DeepBGC original data. Models built with fun-
gal optimized hyperparameters yielded a noticeable perfor-
mance improvement, with a 0.627 F-m.

For each of the three DeepBGC models, the test sets using
a 30% overlap resulted in better performance than the ones
using a 50% overlap. DeepBGC performance on predict-
ing fungal BGCs shows high recall but very low precision,
which consequently lead to F-m metrics <0.2. The most im-
balanced models classified all test candidates as negative,
which could be a sign of the model trying to optimize accu-
racy towards the majority class. Originally, DeepBGC was
developed to predict bacterial BGCs, for which much more
data are available compared to fungal BGCs. The larger
amount of bacterial BGC data available benefits the de-
velopment of supervised learning approaches. Fungal BGC
data are more scarce, which makes it challenging to build ro-
bust classification models. Supervised learning approaches
that fit bacteria may not be suitable to discover BGCs in
fungi (17).

Performance comparison with fungiSMASH

We compared the performance of fungiSMASH on the
same 10 000-amino acid sliding window test datasets used
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Table 2. TOUCAN best-performing models per test set sliding windows and overlaps in A. niger

Sliding Training Post-
window Overlap set Classifier process P R F-m

10 000 50% 50%–50% mlp merge3 1 0.871 0.931
10 000 50% 40%–60% mlp merge3 1 0.753 0.859
10 000 50% 30%–70% mlp merge2 1 0.706 0.828
10 000 50% 20%–80% mlp merge2 1 0.706 0.828
10 000 50% 10%–90% mlp merge3 1 0.647 0.786
10 000 50% 5%–95% mlp merge3 1 0.447 0.618
7000 50% 50%–50% logit merge3 0.929 0.765 0.839
7000 50% 40%–60% logit merge3 1 0.741 0.851
7000 50% 30%–70% mlp merge3 0.969 0.729 0.832
7000 50% 20%–80% mlp merge3 1 0.741 0.851
7000 50% 10%–90% mlp merge3 1 0.694 0.819
7000 50% 5%–95% mlp merge3 1 0.647 0.786
5000 50% 50%–50% logit merge3 0.817 0.788 0.802
5000 50% 40%–60% logit merge3 0.914 0.753 0.826
5000 50% 30%–70% logit merge3 0.953 0.718 0.819
5000 50% 20%–80% logit merge3 1 0.718 0.836
5000 50% 10%–90% mlp merge3 0.913 0.741 0.818
5000 50% 5%–95% mlp merge3 0.923 0.706 0.800
10 000 30% 50%–50% mlp merge3 1 0.847 0.917
10 000 30% 40%–60% mlp merge3 1 0.741 0.851
10 000 30% 30%–70% mlp merge2 1 0.694 0.819
10 000 30% 20%–80% mlp merge2 1 0.671 0.803
10 000 30% 10%–90% mlp merge3 1 0.6 0.750
10 000 30% 5%–95% mlp merge3 1 0.459 0.629
7000 30% 50%–50% mlp merge3 0.95 0.906 0.928
7000 30% 40%–60% mlp merge3 1 0.824 0.903
7000 30% 30%–70% mlp merge2 1 0.741 0.851
7000 30% 20%–80% mlp merge3 1 0.741 0.851
7000 30% 10%–90% lsvc merge3 1 0.553 0.712
7000 30% 5%–95% mlp merge3 1 0.635 0.777
5000 30% 50%–50% logit merge3 0.908 0.812 0.857
5000 30% 40%–60% logit merge3 0.985 0.788 0.876
5000 30% 30%–70% logit merge3 1 0.753 0.859
5000 30% 20%–80% mlp merge3 0.985 0.776 0.868
5000 30% 10%–90% mlp merge3 0.984 0.729 0.838
5000 30% 5%–95% mlp merge3 1 0.706 0.828

Table 3. TOUCAN best performances for the completely balanced (50% positive, 50% negative) CV models on A. niger test sets generated with a 10 000-
amino acid sliding window

Training Sliding Post-
set window Overlap Classifier process P R F-m

50%–50% 10 000 50% svc merge3 0.941 0.941 0.941
50%–50% 10 000 30% randomf merge3 1 0.965 0.982

Table 4. Performance metrics of DeepBGC models for A. niger test sets generated with 10 000-amino acid sliding window

Training DeepBGC Sliding
dataset model window Overlap P R F-m

DeepBGC Original 10 000 50% 0.114 1 0.205
DeepBGC Original 10 000 30% 0.159 1 0.274
50%–50% Original 10 000 50% 0.075 1 0.140
50%–50% Original 10 000 30% 0.105 1 0.191
50%–50% Fungal 10 000 50% 0.464 0.765 0.578
50%–50% Fungal 10 000 30% 0.580 0.682 0.627

to compare with DeepBGC. The fungiSMASH parameters
considered in this comparison are described in the ‘Mate-
rials and Methods’ section. fungiSMASH predictions are
also assessed in terms of P, R and F-m, which are shown
for the positive class in Table 5. fungiSMASH best perfor-
mance yielded a 0.571 F-m when using a 50% overlap and
0.692 F-m when using a 30% overlap, both under relaxed
strictness. As expected, loose strictness results in higher re-

call and lower precision, while a strict parameter results in
higher precision but lower recall.

Similar to TOUCAN models, fungiSMASH seems to
yield generally better performance on 30% overlap test can-
didates. fungiSMASH showed in general a more stable
performance predicting fungal BGCs compared to Deep-
BGC. Apart from being based on a different approach than
DeepBGC, fungiSMASH was developed focusing on fun-
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Table 5. Performance metrics of fungiSMASH models for A. niger test sets generated with 10 000-amino acid sliding window

fungiSMASH Sliding
strictness window Overlap P R F-m Overlap P R F-m

Relaxed (default) 10 000 50% 0.470 0.729 0.571 30% 0.649 0.741 0.692
Strict 10 000 50% 0.471 0.576 0.519 30% 0.671 0.600 0.634
Loose 10 000 50% 0.435 0.788 0.561 30% 0.591 0.800 0.68

gal organisms. The difference in performance between the
bacteria-focused approach of DeepBGC and the fungal-
focused approach of fungiSMASH may be another indica-
tion that BGC discovery is a complex task, and can benefit
from approaches built to target related organisms.

TOUCAN yields reproducible performance on Aspergillus
nidulans

To assess TOUCAN reproducibility, we assessed the per-
formance of its models in the A. nidulans genome. As in A.
niger, A. nidulans is a species known as an important source
of BGCs (3,19). Previous work on manual annotation of
BGCs in Aspergilli (19) identified a total of 70 BGCs in
A. nidulans, which are considered as gold standard for this
analysis. To obtain candidate BGCs for testing, A. nidulans
genome sequence was processed in the same manner as A.
niger. Test candidate BGCs for A. nidulans were obtained
by extracting genomic regions sequentially from its genome,
using amino acid sliding windows of 10 000 amino acids
that overlap by 30% and 50%. The analysis on A. nidulans
used the best-performing model parameters previously es-
tablished in A. niger: 50%–50% dataset, hyperparameter op-
timization and 5-fold CV.

Table 6 shows TOUCAN best performance results
among all six classifiers and post-processing methods for
the A. nidulans 10 000-amino acid sliding window test sets.
For comparison, we evaluated A. nidulans BGC predictions
obtained with the best fungiSMASH and DeepBGC mod-
els on the same test sets, for which the results are also shown
in Table 6. We observed that similar F-m performance met-
rics were achieved for A. nidulans and A. niger. TOUCAN
and DeepBGC, both based on supervised learning, yielded
the least F-m variation on the results obtained for the two
Aspergillus species, suggesting that due to their generaliza-
tion ability, supervised learning approaches may be a suit-
able approach to tackle BGC discovery.

TOUCAN TP predictions improve coverage of BGC genes

We compared TP predictions (BGC candidate predicted
positives that have at least one gene matching a gold stan-
dard BGC) obtained from best-performing models in A.
niger and A. nidulans for TOUCAN (0.982 F-m and 0.910 F-
m, respectively) versus fungiSMASH (0.692 F-m and 0.780
F-m, respectively) and DeepBGC (0.620 F-m and 0.607 F-
m, respectively). First, we analysed the distribution of clus-
terScore computed for each BGC candidate predicted posi-
tive. Figure 1 shows the clusterScore distribution in A. niger
and A. nidulans TP predictions obtained with TOUCAN,
DeepBGC and fungiSMASH best models.

We observed that compared to the other tools, TOU-
CAN TP predictions more often present a clusterScore =

Figure 1. Distribution of clusterScore among TP predictions in A. niger
and A. nidulans genomes. clusterScore distribution was computed for best-
performing models of each system (A. niger: TOUCAN: 0.982 F-m, Deep-
BGC: 0.627 F-m, fungiSMASH: 0.692 F-m; A. nidulans: TOUCAN: 0.910
F-m, DeepBGC: 0.607 F-m, fungiSMASH: 0.780 F-m).

1, meaning that TOUCAN predictions better encompass
genes matching gold standard BGCs, possibly as a result
of TOUCAN merge post-processing. Although merge
post-processing leads to more comprehensive predictions,
it could result in overprediction of cluster boundaries. To
mitigate, filtering methods could be applied to refine candi-
date cluster regions, and also as an opportunity to fine-tune
TOUCAN predictions to specific genus or species of inter-
est. One possible way to apply targeted filtering is to rely
on manually curated annotations of relevant features, such
as the annotated high and medium Pfam protein domains
shown in the ‘Features’ section.

We also analysed the presence of backbone enzymes
within genes of TP predictions. Backbone enzymes are con-
sidered as the BGC core (3), playing a key role in its biosyn-
thesis and defining the BGC compound to be produced (19).
We mapped the presence and absence of backbone genes
among TOUCAN, DeepBGC and fungiSMASH best mod-
els’ TP predictions. Figure 2 shows backbone genes and
product types found in A. niger and A. nidulans, respectively.
Scores in Figure 2 (or the colour intensity) correspond to
the clusterScore computed for the predicted BGC. Back-
bone enzyme genes were present in 86.6% of all TOUCAN
TP predictions for A. niger, versus 76.2% in fungiSMASH
and 75.9% in DeepBGC. For A. nidulans, 93.5% of TOU-
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Table 6. Best performances per overlap of TOUCAN compared to fungiSMASH and DeepBGC for A. nidulans test sets generated with 10 000-amino
acid sliding window

Sliding
System Model window Overlap P R F-m

TOUCAN lsvc + merge3 10 000 50% 0.919 0.814 0.864
TOUCAN svc + merge3 10 000 30% 0.953 0.871 0.910
fungiSMASH Relaxed (default) 10 000 50% 0.550 0.786 0.647
fungiSMASH Relaxed (default) 10 000 30% 0.775 0.786 0.780
DeepBGC 50%–50% fungal 10 000 50% 0.473 0.629 0.540
DeepBGC 50%–50% fungal 10 000 30% 0.631 0.586 0.607

Figure 2. Presence of backbone enzymes among positive predictions in A. niger and A. nidulans genomes. Each backbone enzyme is shown per the gene
ID it is associated with and the clusterScore assigned to the candidate predicted BGC.

CAN TP predictions found backbone enzymes, versus 89%
for fungiSMASH and 82.9% for DeepBGC.

DISCUSSION

SMs are bioactive compounds that play a vital role in the
production of various drugs. Discovery of novel fungal
BGCs can potentially benefit human health. In this work,
we presented TOUCAN, a supervised learning framework
for fungal BGC discovery. We evaluated classification mod-
els based on fungal BGC datasets of various distribu-
tions, six classifiers, heterogeneous biological features and
three post-processing methods. TOUCAN best-performing
model achieved 0.982 F-m in A. niger and 0.910 F-m
in A. nidulans, outperforming previous methods. The re-
sults obtained with TOUCAN models could indicate that
standard supervised learning approaches are suitable to
tackle BGC discovery. TOUCAN outperformance is pos-

sibly due to a combination of factors: combining feature
types, evaluating the impact of different class distribu-
tions during training and post-processing candidate BGC
predictions. merge post-processing can help identify re-
gions that might have been missed, but in certain cases it
may potentially lead to overestimation of predicted cluster
boundaries.

The performance of TOUCAN models was compared
to two BGC discovery state-of-the-art approaches: Deep-
BGC, based on deep learning, and fungiSMASH, based
on probabilistic methods. TOUCAN models showed bet-
ter F-m when predicting BGCs in A. niger and A. nidu-
lans compared to DeepBGC and fungiSMASH. TOUCAN
also yielded more comprehensive coverage of gold standard
BGC genes within predicted clusters, and was able to iden-
tify backbone enzyme genes more often in its TP predictions
compared to the other methods. The presence of backbone
enzymes can be a crucial aspect in determining the presence
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of a BGC in a given genomic region. The results obtained by
TOUCAN, as well as the performance of DeepBGC mod-
els, demonstrate the potential of exploring supervised learn-
ing approaches for BGC discovery, and relevance of devel-
oping BGC prediction tools focused on fungal organisms.
Fungi were shown to be an important source for bioac-
tive compounds (5,6) used in the pharmaceutical industry,
but fungal BGC data available in open-access databases are
scarce compared to bacteria. The availability of more anno-
tated fungal BGCs is hence an important aspect to promote
development and improvement of existing and new fungal
BGC discovery approaches. Previous BGC discovery tools
require curated data to identify candidate BGC regions in
an organism, which may not be available or is expensive to
obtain. Unlike previous approaches, TOUCAN is capable
of outputting BGC predictions from amino acid sequences
without requiring further data curation as input. This as-
pect can facilitate TOUCAN usage and its application on
newly sequenced genomes, promoting the discovery of novel
candidate BGC regions and potentially novel drugs, such
as antibiotics, immunosuppressants and anticancer medi-
cations.
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