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Abstract—The concept of Digital Twins (DTs), software
models that mimic the behavior and interactions of phys-
ical or conceptual objects within their environments, has
gained traction in recent years, particularly in medicine
and healthcare research. DTs technology emerges as a
pivotal tool in disease modeling, integrating diverse data
sources to computationally model dynamic biological sys-
tems. This narrative review explores potential DT applica-
tions in medicine, from defining DTs and their history to
constructing DTs, modeling biologically relevant systems,
as well as discussing the benefits, risks, and challenges
in their application. The influence of DTs extends beyond
healthcare and can revolutionize healthcare management,
drug development, clinical trials, and various biomedical
research fields

Index Terms—Biological system modeling, digital twin,
medical technology.

Impact Statement—Highlighting recent literature on Digi-
tal Twin technology, this minireview offers a comprehensive
guide to biological system integration and actionable so-
lutions, surpassing conventional healthcare-focused anal-
yses with enhanced clarity and illustrative aids.

l. INTRODUCTION

OMPUTATIONAL simulations are a powerful tool that
C provides a virtual environment where complex disease
processes can be studied in a controlled and cost-effective man-
ner [1], [2], [3], [4]. The concept of digital twins (DTs) has
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gained significant attention in the field of disease and biological
systems modeling. A DT is a dynamic, continuously updating
simulation that integrates real-time data from a physical entity
into a virtual representation in cyberspace. This virtual represen-
tation analyzes the data and provides insights and recommen-
dations that can inform decisions regarding the physical entity
[5]. In the context of disease modeling, a DT can be created
for an individual [6], [7], a population [8], [9], [10], or even a
specific organ or system within the body [11], [12]. The primary
advantage of DTs over traditional disease modeling approaches
lies in their ability to incorporate real-time data from various
sources, such as electronic health records, wearable devices, and
environmental sensors [S5]. This integration allows for a more
accurate and personalized representation of the disease process,
taking into account individual variations and external factors
that influence disease progression. By continuously updating the
simulation with new data, DTs can adapt and refine their pre-
dictions, enabling real-time monitoring and proactive decision-
making [13]. DTs offer numerous benefits in disease modeling,
including personalized medicine [14], predictive power [15],
[16], [17], real-time monitoring [[4]], [18], population health
management [19], [20], [21], and cost-effectiveness [22], [23],
ultimately revolutionizing healthcare by improving patient out-
comes and informing public health decisions. Additionally, DTs
in healthcare have the potential to enable risk-free simulation of
treatment strategies, enhance team collaboration with accessible
patient data, and improve decision-making through real-time
analytics. They allow continuous remote monitoring and timely
intervention, and enhance documentation and communication
with real-time reporting, ensuring transparency and patient em-
powerment [24]. Fig. 1 presents the results of a Scopus query
that tracks the annual number of manuscripts featuring "Digital
Twin" in their title, abstract, or keywords. The plot illustrates a
significant surge in interest in this topic in recent years. Perhaps
the significance of DTs is best illustrated through one of their
precursors, as told in the story of The Ill-Fated Space Odyssey
of Apollo 13. When an oxygen tank exploded two days after
the launch of the Apollo 13 mission, NASA’s (United States
National Aeronautics and Space Administration) engineers had
to build a mirror system to simulate possible solutions and guide
the astronauts to build an impromptu air purifier that allowed
them to safely get back to Earth [25]. While this mirrored
system does not fit the current definition of a DT, it illus-
trates the undeniable potential of virtual models in solving real-
life problems and overcoming the need for resource-intensive
research. Encouraged by the success of DTs in aviation and
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Fig. 2. A DT model consists of three components: the real space, the
virtual space, and the bidirectional digital thread connecting them.

manufacturing, DTs are now being explored in biomedicine to
streamline testing processes, improve diagnosis and prognosis
accuracy, and personalize treatment approaches, with implica-
tions extending beyond healthcare management to drug develop-
ment, clinical trials, and broader biomedical research domains
[25], [26].

This review explores the potential applications of DTs in
biomedicine, structured as follows: Section II discusses defi-
nitions, history, and construction methods; Section III covers
the benefits, risks, and challenges of DTs; Section IV reviews
modeling applications and literature; and Section V provides
general oversights and future perspectives.

Il. DEFINITION, HISTORY, AND CONSTRUCTION OF DTs

DT is a computational model representing the structure, be-
havior, and context of a unique physical asset, allowing for
thorough study, analysis, and behavior prediction. Initially in-
troduced by Dr. Michael Grieves under different names such as
‘Mirror Space Model’ and ‘Information Mirror Model” in 2002,
DTs gained practical significance when NASA adopted them
for spacecraft simulations [28], [26]. The rapid advancements
in computing power, data storage, and sensor technologies,
alongside the increasing market demand for tools that enhance
asset efficiency and reliability, have propelled DT applications
in various fields. In 2014, Michael Grieves formalized the DT
concept, identifying three major elements, as shown in Fig. 2: the
real space (physical object), the virtual space (digital representa-
tion), and the digital thread (bidirectional data flow between real
and virtual spaces). DTs have evolved into intelligent, dynamic
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Fig. 3. A DT model is constructed through 5 stages: planning stage,

development stage, personalization stage, testing and validation stage,
and ongoing learning stage. The 5 dimensions of DT should be ad-
dressed during the planning stage.

systems incorporating smart sensors, Internet of Things (IoT),
data analytics, and Al to optimize performance and predict future
events [25], [26], [29].

The construction of a DT involves several stages to ensure a
robust and functional model, as shown in Fig. 3. The following
is a summary of the steps to build a DT as described in the
literature [30], [31], [24], [31], [32], [33], [34], [35], [36].

A. The planning stage defines the application, identifies re-
quired data types, determines expected output data, and envi-
sions a conceptual map integrating input data from multiple
sources. This map includes five dimensions:

1) The real entity, be it a physical product, system, or con-
cept, built from multi-level, multi-scale data — crucial for
real-time data collection and feedback from and to the
real space.

2) A virtual model that contains the physical, chemical, bi-
ological, and behavioral characteristics of the real entity.
These aspects are typically fully captured by creating a
multi-dimensional image through virtual, augmented, or
mixed-reality technology.

3) The digital thread for real-time data transmission via
advanced network technology depending on the type of
interface between the physical and virtual twins.

4) A comprehensive data dimension for storage and analysis,
usually in the form of Big Data. Information on the three
elements of the DT model to allow for the efficient inte-
gration of multi-level data and the extraction of valuable
insights.

5) A service and maintenance dimension, for both the real
and virtual entities, to sustain DT performance and fi-
delity.

B. During the development stage, algorithms are constructed
and parameterized according to input data, with validation and
uncertainty quantification being essential.

C. In the personalization stage, the model is calibrated and
contextualized based on the real entity and its environment, and
the input data and expected output are matched. This ensures a
continuous feedback loop for performance adjustment.

D. The testing and validation stage involves extensive
testing under various conditions, with ongoing uncertainty
quantification.
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E. The final stage is an ongoing learning process that sets
DTs apart from other computational models. New data is con-
tinuously integrated to improve performance and adaptability
[30], [31], [32].

DTs are distinguished from simulation-only models because
they provide a continuous, bidirectional exchange of data be-
tween the physical and virtual twins. This closed-loop opti-
mization allows for not only ‘what-if” simulations, but also
for active monitoring, analysis, defect prediction, and fore-
casting. The data stream within the DT system is dynamic,
high-dimensional, decentralized, exponentially growing, and
context-aware, offering significant advantages over traditional,
static, and fragmented data collection and processing methods.
Advanced technologies such as IoT, Cloud Computing, Al, VR,
and supercomputing tools further grant DT models an elevated
level of sophistication and intelligence, as illustrated in Fig. 4
[37].

First, the IoT enables massive data exchange in cyber-physical
systems and is further enhanced by developments in sensor
technologies and wireless communication. IoT devices can be
embedded in real space to collect, send, and receive data about
the physical twin and its surrounding environment, resulting in
a smart, well-informed DT that evolves with time [26]. Second,
Cloud Storage and Computing provide the intense computa-
tional power necessary for DT modeling. A secure cloud server
should be assigned to every DT model for the safekeeping and
integration of data from different sources and the continuous ex-
change of information. Cloud Computing and Edge Computing
are both promising tools for addressing issues of computing effi-
ciency and providing scalable and flexible computing resources
[38]. In addition, a DT model would require SG communication
technology for high-speed mass data transmission. Third, Al
emulates human reasoning and provides the DT model with
Big Data processing, Machine Learning (ML), image process-
ing, and pattern recognition capabilities. Big Data analytics
combined with ML can significantly improve the diagnostic
and prognostic powers of the DT system by performing data
analysis, data fusion, and deep learning of twin data. Fourth,
Blockchain and encryption technology could be integrated into

TABLE |
SUMMARY OF THE SOCIO-ETHICAL BENEFITS OF DTS

Improved Provide real-time, accurate diagnostics, enabling early
Diagnostics disease detection and more effective treatments.

Less Invasive | Enable less invasive diagnostic and treatment methods,
Treatments reducing patient burden and enhancing their healthcare

experience.

Accelerate drug discovery by simulating drug interactions,
reducing the time to market for new treatments.

Precise diagnostics and treatments reduce healthcare costs
by preventing unnecessary procedures and optimizing
drug treatments.

Faster Medicine
Discovery
Cost Reduction

Patient Provide patients with insights into their health, enabling
Empowerment active participation in treatment decisions.

Data Promote data ownership, allowing patients to control and
Ownership share their health data.

Fair and Equal | DHTs provide standardized, data-driven medical
Treatment decisions, promoting equitable care for all patients.

Less  Animal | Reduce the need for animal testing, aligning with ethical
Testing and sustainable practices in medicine.

TABLE I
SUMMARY OF THE SOCIO-ETHICAL RISKS OF DTs

Privacy and
Data Security

Extensive data collection necessitates robust security
measures to prevent breaches and misuse, complying
with regulations like GDPR and HIPAA.

Informed Transparent consent processes are vital to maintaining

Consent trust and ensuring patients understand the implications of
sharing their data.

Equity and Ensuring equal access to DHT technology is essential to

Accessibility prevent healthcare disparities.

Trust and Patients must have confidence in the responsible use of

Autonomy DHTs and control over their data sharing.

Psychological Interaction with DHTs can reflect aging and health

Impact changes, necessitating support to cope with these effects.

Algorithmic Ensuring fairness in algorithms is crucial to prevent

Bias and healthcare disparities and biases.

Fairness

Liability Clear legal frameworks are needed to define
responsibilities for errors in DHT predictions.

Regulatory Adhering to regulations from entities like the FDA and

Compliance EMA is necessary for the ethical use of DHTs.

the DT model to provide a reliable guarantee for data security.
Fifth, Computer-Aided Modeling, VR, Augmented Reality, and
Mixed Reality technology could enable lifelike simulations that
would broaden the range of potential applications, particularly
in the medical field [25], [31], [37].

lll. BENEFITS, RISKS, AND CHALLENGES OF DTS

Generally, DTs offer a number of potential benefits, includ-
ing real-time remote monitoring, flexibility, predictive mainte-
nance, better asset administration, scenario and risk manage-
ment, enhanced collaborations, and personalization of products
and services [24]. In a study about the socio-ethical benefits
and socio-ethical risks of DTs in healthcare, Popa et al. inter-
viewed participants from the four major societal sectors: indus-
try and business, civil society, policy, and research. The benefits
and risks of DTs in healthcare are summarized in Tables I
and IT [13], [27]. Addressing various challenges in DT ap-
plications is crucial — the need for accurate and interopera-
ble data from various sources, a lack of standardized models
and protocols, the complexity of representing physiological
processes and achieving physical realism and accurate future
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TABLE Il
SUMMARY OF DTS OF BIOLOGICAL SYSTEMS FOUND IN THE LITERATURE

DT Model

Summary

Ref.

Cells

DeepLife's technology platform focuses on drug discovery.

The approach involves creating DTs of human cells.

Single-cell omics data is utilized to model cell behavior.

The platform aims to uncover mechanisms of action for potential drugs.

[45]

Stem Cells

Research focus: Segmentation, detection, and tracking of stem cell images
Introduction of DTs in the study

Implementation of lightweight deep learning methods

Emphasis on image analysis techniques for stem cells

Integration of DT concepts for improved understanding

[47]

Brain and
Neurons

Proposal: Bionic Digital Brain (BDB) for Digital Twin-Cutting Process (DTCP) framework.

BDB monitors, predicts, optimizes, and controls cutting processes in real-time.

Digital Neurons (DN) are basic functional units for intelligent computation.

The left brain gathers theoretical processing information; the right brain receives perceptive processing information.

Fusion enables BDB to output real-time optimal control solutions; the DTCP system demonstrates precision machining
effects, confirming the feasibility of DT technology.

[44]

Heart

Cardiovascular computer model uses GPU-acceleration for heart dynamics simulation.
Validated with accurate replication of clinical scenarios.

Reduces reliance on real patients in research.

Opens possibilities for in-silico clinical trials.

[40]

Heart

Introduction of a comprehensive parameter vector for ventricular electrophysiology (EP).
Proposal of an abstract reference frame for unattended manipulation of model parameters.
Development of a fast-forward electrocardiogram (ECG) model for efficient simulation.
Novel workflow for generating CDTs, involving anatomical and functional twinning.
Demonstrated efficiency and fidelity in generating biophysically-detailed CDTs at scale.

[50]

Heart

Detailed mathematical description of a fully coupled multi-scale model of the human heart.

Proposed as a powerful tool for precision medicine and clinical decision-making.

Allows personalization from ion channels to the organ level, facilitating the development of DT models.

Model validated through simulations on a personalized whole heart geometry from magnetic resonance imaging data.

Used to evaluate the effects of atrial ablation scar on the cardiovascular system, offering insights for understanding and
treating cardiovascular diseases.

[52]

Proximal
Colon

Standard dissolution apparatuses have limitations in replicating colonic hydrodynamics.

Advocate for physiologically representative models for assessing oral dosage forms targeting the colon.
Introduce a DT of the Dynamic Colon Model (DCM) to simulate human ascending colon hydrodynamics.
DT accurately replicates flow patterns under different physiological conditions.

Considerations include media viscosity, volume, and peristaltic wave speed for comprehensive simulation.

[43]

Vertebra

ReconGAN Al framework reconstructs a realistic DT of the human vertebra.

Uses DCGAN, image processing, and FE-based optimization.

Generates synthetic trabecular microstructure seamlessly integrated with the cortical shell.
Transforms the geometrical model into a high-fidelity FE model.

Simulates vertebral fracture response under compression and flexion loading conditions.

[52]

Left Ventricle
(LV) and
Aortic Root

Multi-fidelity approach efficiently personalizes a detailed active stress model.
Achieved with 2 to 4 organ-scale simulations, suitable for clinical applications.
Models reproduce clinical pressure with good agreement.

Comparison of simulated and clinical biomarkers, including pressure and volume.

[53]

Liver

Mathematical model for liver regeneration after drug-induced damage.

DT predicts perturbations and guides experiments.

Assesses whether hypothesized mechanisms explain results.

Provides expectations for how perturbations modify experimental readouts.
Enhances understanding of liver regeneration dynamics.

[41]

Tibiotalar
Joint

DTs, Al and machine learning identify personalized ankle motion axes in ankle replacement.
Patient-specific axis determined using talus center of mass as the origin.

Insights contribute to understanding the ankle axis for robotic arthroplasty.

Technology enhances precision in total ankle replacement.

Highlights potential of personalized approaches in joint surgeries.

[54]

Tumor Tissue

Authors introduce a high-performance framework for large-scale tissue simulation.
Framework combines a cellular Potts model and an agent-based layer.

Capable of simulating tissues consisting of tens of millions of cells.

Represents a powerful tool for studying complex biological systems at a large scale.

[55]

Autonomic
Nervous
System

Introduction of a multiscale neurocardiac model and simulator.

Predicts effects of sympathetic and parasympathetic stimulation on cardiac sinoatrial node (SAN) and ventricular
myocardium.

Based on experimental data and atomistic simulations.

Serves as a DT, predicting responses from subcellular signaling to tissue-level reactions.

[56]
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TABLE Ill
(CONTINUED.)
o Identifies proarrhythmia conditions and provides insights for potential neuromodulatory therapies.
Blood e A DT model accurately predicts post-operative portal hypertension. 17)
Circulation e The model can improve patient outcomes and modify selection criteria.
Cardiovascular | e Synthetic PPG generation from cardiovascular DT. 39]
System e Validation of platform for clustering CAD and non-CAD PPG data
e Introduction of a scalable framework for modeling dynamic changes in DTs.
Allergic . APplicable. on c?el]ulome— and genome-wide scales: .
Rhinitis e Aims to prioritize upstream regulators (URs) for biomarker and drug discovery. [57]
e Enables organization and prioritization of UR genes.
e Provides a valuable tool for advancing biomarker and drug discovery efforts.
e Authors propose a machine learning (ML) approach for real-time and robust DTs of cancers.
e Conceptualized for use in the Metaverse for diagnosis and treatment.
Breast Cancer | e Utilizes four classic ML techniques: ML linear regression (ML LR), Decision tree regression (DTR), Random Forest (58]
Patients Regression (RFR), Gradient Boosting Algorithm (GBA).
e Aims to enhance accuracy and efficiency in cancer diagnostics and treatment planning.
e Represents an innovative application of ML techniques in the healthcare domain.
o Blockchain-based metaverse for dental DTs of cervical vertebral maturation (CVM).
Cervical o Utilizes MobileNetV2 for efficient automated diagnosis of CVM images.
Vertebral e Simple, fast, and cost-effective digital twinning suitable for medical specialists. [59]
Maturation e High-performance on a small dataset highlights the potential for low-cost deep learning in diagnosis.
e DTs in dentistry reduce infrastructure and cut costs for patients.
Cognitive e Investigates coupling a geometrical model with a cognitive digital user. 60]
User Model e Evaluates the usability of different interface variants and virtual product representations
e Research defines seven stages of diabetes reversal.
. e Examines changes in these stages, along with metrics like hemoglobin Alc (HbAlc) and weight.
Diabetes .. L . .
Paticnts e Precision nutrition therapy enabled by a DT is employed for a 90-day treatment period. [61]
e Significant progress was observed in reversing diabetes stages during the therapy.
e Suggests monitoring and understanding these stages could benefit clinicians and patients in precision nutrition therapy.
e Introduction of a modular software design for developing medical DTs customized for individual patients using diverse data.
e Involves an open-source platform supporting model integration and simulation.
Immune o . . s
Response e Facilitates a decentralized, comrqunlty-based model-bu.lldu.lg process. . ‘ o . [62]
e Includes a case study demonstrating the platform's application in modeling a respiratory fungal infection in an animal model.

o Signifies the potential for collaborative, patient-specific DT development in medical research.

Lung Cancer

e Development of a new deep neural model for searching IoT vulnerabilities in healthcare DTs.
e The model captures bi-directional context relationships among risky code keywords. [63]

Patients e Outperforms state-of-the-art deep learning-based methods for vulnerability detection.
e Systematic method for creating a '"Metabolic Digital Twin Envelope' (MDTE) for Type 1 diabetes.
Diabetes e MDTE allow.s at-home tests, ca.pturi.ng diverse blood glucose responses with minimal testing.
Patients e Method considers errors from simplified models and unmodeled disturbances. [64]
e Utilizes convex optimization for developing an insulin injection policy.
e Policy minimizes peak blood glucose levels and ensures a strict lower bound on hyperglycemic events probability.
Patients e Algorithm developed for automated estimation of patient height and weight during CT. (65]
e Automated estimation provides high precision for protocol design in CT.
e The proposed platform uses Big Data and Al to study Multiple Sclerosis patients' behavioral changes.
Multiple e Emphasizes understanding rare brain disorders affecting around 30 million people in Europe.
Sclerosis e Platform includes diagnostic, rehabilitation components, and advanced analytical tools. [66]
Patients o Highlights the importance of effective data sharing and standardized processing.

e Aims to translate research findings into clinical applications for improved patient care.

e Utilizes ICD codes and lab values for accuracy.
o Simulated trajectories closely match real data.
o Potential applications in informing clinical decisions.

Stroke Patients

e DT model accurately projects patient trajectories leading up to and beyond ischemic stroke.

o Suggested use in providing virtual control arms for efficient clinical trials.

[67]

projections, time-consuming model validation, the cost of infras-
tructure, data management concerns, continuous model updates,
transparency and interpretability, and large-scale computation
[13], [24]. To address these challenges, collaboration between
healthcare professionals, data scientists, policymakers, and reg-
ulatory bodies is essential. Investments in research, standard-
ization, and governance frameworks are needed to fully lever-
age the potential of DTs in healthcare while overcoming these
obstacles.

IV. DTS OF BIOLOGICAL SYSTEMS

As biological systems have different levels of organization,
different types of DTs can be constructed. Starting with DTs
of bodily systems, organs, and then to finer components at the
cellular, subcellular, and molecular levels [26].

Atthe system level, Laubenbacher et al. [30] present a step-by-
step guide to building a DT model of the human immune system.
Mazumder et al. [39] constructed a cardiovascular DT model
consisting of a two-chambered heart along with pulmonary and
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systemic flow and components of the central nervous system to
autoregulate blood pressure, modeled by hemodynamic equa-
tions and a baroreflex-based pressure control mechanism. Golse
et al. [17] developed a mathematical model encompassing the
entire blood circulation, automatically adjusted based on patient
characteristics. Their findings illustrated that a DT model, uti-
lizing the estimated hepatic flow rate as input data, accurately
anticipated post-operative portal hypertension.

A recent study by Viola et al. [40] presented a virtual heart
model with all the main features of the cardiovascular function,
accounting for the dynamics of the active myocardium and
passive valves, the hemodynamics of the blood, and the elec-
trophysiology of the heart tissue. The GPU-accelerated model
utilizes a vast number of spatial degrees of freedom and time
steps, capturing the complexity of heart dynamics with impec-
cable accuracy. However, the absence of biochemical data in
building this DT compromises the authors’ claim of accuracy.
Other organs modeled by DT technology include the liver [41],
[42], the colon [43], and the brain [44].

Significant progress has been made in the modeling of cells
and cellular structures, with one recent development being the
introduction of DeepLife — a platform designed for generating
DTs of human cells. DeepLife utilizes omics data to simulate
DTs of cells in silico. Shifting from in vitro to in silico analysis
for single-cell studies carries significant implications for drug
discovery. By leveraging DTs to forecast cellular responses to
various molecules, DeepLife can efficiently assess billions of
drug combinations [45]. In an earlier study, Karr et al. [46]
formulated a *whole-cell’ model for the bacterium Mycoplasma
genitalium, a human urogenital parasite with a genome housing
525 genes. The DT model provided insights into numerous
previously unobserved cellular behaviors, including in vivo rates
of protein-DNA association and an inverse relationship between
the durations of DNA replication initiation and replication.
Additionally, directed by model predictions, the experimental
analysis identified previously undetected kinetic parameters and
biological functions. Du et al. [47] constructed DT models based
onimage analysis of stem cells, aiming to improve segmentation,
detection, and tracking methods of stem cell images in the fields
of regenerative medicine and tissue damage restoration. Table I11
shows a list of DTs of biological systems found in current
literature.

Considering that the most sophisticated biological system is
the human body, there have been multiple attempts to com-
putationally model it. One of the earliest applications in this
regard is HumMod, a human model comprising 5000 variables
describing cardiovascular, respiratory, renal, neural, endocrine,
skeletal muscle, and metabolic physiology, modeled by a collec-
tion of approximately 10000 interconnected algebraic and dif-
ferential equations. HumMod is accessible at http://hummod.org
[48], [49]. However, it is crucial to keep in mind that while
HumMod is a digital representation of the human body, it is
not a ‘DT’ as it lacks the bidirectional digital thread and the
ongoing data exchange between the physical and the digital
entities. On the other hand, recent attempts at constructing
DTs of patients have shown incredible potential, as summarized
in Table III.

V. CONCLUSION

DTs are sophisticated models capable of simulating a spec-
trum of biological systems from the entire human body to
cellular structures, promising a new era of possibilities in
biomedicine. By facilitating disease modeling, drug testing, and
personalized medicine, DTs offer enhanced diagnostic accuracy,
minimally invasive treatments, expedited drug discovery, cost
mitigation, patient empowerment, and ethical advancements like
data ownership and reduced reliance on animal testing. However,
the realization of these benefits hinges upon collaborative efforts
of various stakeholders including healthcare professionals, data
scientists, policymakers, and regulatory bodies. Overcoming
challenges with data accuracy, establishing standardization pro-
tocols, and managing computational complexity necessitates co-
hesive partnerships and coordinated action. Robust governance
frameworks are imperative to ensure the ethical and equitable
deployment of DTs in healthcare. With continued collabora-
tion, innovation, and ethical stewardship, DTs prompt a course
towards a future where healthcare is not only data-driven and
efficient but also more humane, equitable, and patient-centered.
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