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Abstract

Background: The performance of RNA sequencing (RNA-seq) aligners and assemblers varies greatly across different
organisms and experiments, and often the optimal approach is not known beforehand. Results: Here, we show that the
accuracy of transcript reconstruction can be boosted by combining multiple methods, and we present a novel algorithm to
integrate multiple RNA-seq assemblies into a coherent transcript annotation. Our algorithm can remove redundancies and
select the best transcript models according to user-specified metrics, while solving common artifacts such as erroneous
transcript chimerisms. Conclusions: We have implemented this method in an open-source Python3 and Cython program,
Mikado, available on GitHub.
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Background

The annotation of eukaryotic genomes is typically a complex
process that integrates multiple sources of extrinsic evidence
to guide gene predictions. Improvements and cost reductions
in the field of nucleic acid sequencing now make it feasible
to generate a genome assembly and to obtain deep transcrip-
tome data, even for nonmodel organisms. However, for many of
these species, there are only minimal expressed sequence tag
(EST) and cDNA resources and limited availability of proteins
from closely related species. In these cases, transcriptome data
from high-throughput RNA sequencing (RNA-seq) provides a vi-
tal source of evidence to aid gene structure annotation. A de-
tailed map of the transcriptome can be built from a range of
tissues, developmental stages, and conditions, aiding the anno-
tation of transcription start sites, exons, alternative splice vari-
ants, and polyadenylation sites.

Currently, one of the most commonly used technologies for
RNA-seq is Illumina sequencing, which is characterized by ex-

tremely high throughput and relatively short read lengths. Since
its introduction, numerous algorithms have been proposed to
analyze its output. Many of these tools focus on the problem of
assigning reads to known genes to infer their abundance [2–5] or
of aligning them to their genomic locus of origin [6–8]. Another
challenging task is the reconstruction of the original sequence
and genomic structure of transcripts directly from sequencing
data. Many approaches developed for this purpose leverage ge-
nomic alignments [9–12], although there are alternatives based
instead on de novo assembly [10, 13, 14]. While these methods
focus on how to analyze a single dataset, related research has
examined how to integrate assemblies from multiple samples.
While some researchers advocate for merging together reads
from multiple samples and assembling them jointly [10], others
have developed methods to integrate multiple assemblies into a
single coherent annotation [9, 15].

The availability of multiple methods has generated interest
in understanding the relative merits of each approach [16–18].
The correct reconstruction of transcripts is often hampered by
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the presence of multiple isoforms at each locus and the ex-
treme variability of expression levels, and therefore in sequenc-
ing depth, within and across gene loci. This variability also af-
fects the correct identification of transcription start and end
sites, as sequencing depth typically drops near the terminal
ends of transcripts. The issue is particularly severe in compact
genomes, where genes are clustered within small intergenic dis-
tances. Further, the presence of tandemly duplicated genes can
lead to alignment artifacts that then result in multiple genes be-
ing incorrectly reconstructed as a fused transcript. As observed
in a comparison performed by the RGASP consortium [19], the
accuracy of each tool depends on how it corrects for each of
these potential sources of errors. However, it also depends on
other external factors such as the quality of the input sequenc-
ing data as well as on species-dependent characteristics, such
as intron sizes and the extent of alternative splicing. It has
also been observed that no single method consistently deliv-
ers the most accurate transcript set when tested across different
species. Therefore, none of them can be determined a priori as
the most appropriate for a given experiment [20]. These consid-
erations are an important concern in the design of genome an-
notation pipelines, as transcript assemblies are a common com-
ponent of evidence-guided approaches that integrate data from
multiple sources (e.g., cDNAs, protein, or whole genome align-
ments). The quality and completeness of the assembled tran-
script set can therefore substantially have an impact on down-
stream annotation.

Following these studies, various approaches have been pro-
posed to determine the best assembly using multiple measures
of assembly quality [20, 21] or to integrate RNA-seq assemblies
generated by competing methods [22–24]. In this study, we show
that alternative methods not only have different strengths and
weaknesses, but that they also often complement each other by
correctly reconstructing different subsets of transcripts. There-
fore, methods that are not the best overall might nonetheless be
capable of outperforming the “best” method for a subset of loci.
An annotation project typically integrates datasets from a range
of tissues or conditions or may utilize public data generated
with different technologies (e.g., Illumina, Pacific Biosciences
[PacBio]) or sequencing characteristics (e.g., read length, strand
specificity, ribo-depletion). In such cases, it is not uncommon
to produce at least one set of transcript assemblies for each of
the different sources of data, assemblies that then need to be
reconciled. To address these challenges, we developed MIKADO
[1], an approach to integrate transcript assemblies. The tool de-
fines loci, scores transcripts, determines a representative tran-
script for each locus, and finally returns a set of gene models fil-
tered to individual requirements, e.g., removing transcripts that
are chimeric, fragmented, or with short or disrupted coding se-
quences. Our approach was shown to outperform both stand-
alone methods and those that combine assemblies, by returning
more transcripts reconstructed correctly and less chimeric and
unannotated genes.

Results and Discussion
Assessment of RNA-seq based transcript
reconstruction methods

We evaluated the performance of four commonly utilized tran-
script assemblers: Cufflinks, StringTie, CLASS2, and Trinity.
Their behavior was assessed in four species using as input data
RNA-seq reads aligned with two alternative leading aligners,
TopHat2 and STAR. We generated 32 different transcript assem-

blies, 8 per species. In line with the previous RGASP evaluation,
we performed our tests on the three metazoan species of Caen-
horabditis elegans, Drosophila melanogaster, and Homo sapiens us-
ing RNA-seq data from that study as input. We also added to the
panel a plant species, Arabidopsis thaliana, to assess the perfor-
mance of these tools on a non-metazoan genome. Each species
has undergone extensive manual curation to refine gene struc-
tures. Importantly, these annotations exhibit very different gene
characteristics in terms of their proportion of single exon genes,
average intron lengths, and number of annotated transcripts per
gene (Supplementary Table S1). Similar to previous studies [19,
25], we based our initial assessment on real rather than simu-
lated data to ensure we captured the true characteristics of RNA-
seq data. Prediction performance was benchmarked against the
subset of annotated transcripts, with all exons and introns (min-
imum 1X coverage) identified by at least one of the two RNA-seq
aligners.

The number of transcripts assembled varied substantially
across methods, with StringTie and Trinity generally reporting
a greater number of transcripts (Supplementary Fig. S1). As-
sembly with Trinity was performed using the genome-guided de
novo method where RNA-seq reads are first partitioned into loci
ahead of de novo assembly. This approach is in contrast to the
genome-guided approaches employed by the other assemblers
that allow small drops in read coverage to be bridged and en-
able the exclusion of retained introns and other lowly expressed
fragments. As expected, Trinity annotated more fragmented loci
with a higher proportion of mono-exonic genes (Supplementary
Fig. S1).

The accuracy of transcript reconstruction was measured us-
ing recall and precision. For any given feature (nucleotide, exon,
transcript, gene), recall is defined as the percentage of cor-
rectly predicted features out of all expressed reference features,
whereas precision is defined as the percentage of all features
that correctly match a feature present in the reference. In line
with previous evaluations, we found that accuracy varied con-
siderably among methods, with clear trade-offs between re-
call and precision (Supplementary Fig. S2). For instance, CLASS2
emerged as the most precise of all methods tested, but its preci-
sion came at the cost of reconstructing fewer transcripts overall.
In contrast, Trinity and StringTie often outperformed the recall
of CLASS2 but were also much more prone to yield transcripts
absent from the curated public annotations (Supplementary
Figs. S2, S3). Although many of these might be real, yet-unknown
transcripts, the high number of chimeric transcripts suggests
that these novel models be treated with suspicion. Notably, the
performance and the relative ranking of the methods differed
among the four species (Table1). We found CLASS2 and StringTie
to be overall the most accurate (with either aligner); however, ex-
ceptions were evident. For instance, the most accurate method
in D. melanogaster (CLASS2 in conjunction with Tophat align-
ments) performed worse than any other tested method in A.
thaliana. The choice of RNA-seq aligner also substantially im-
pacted assembly accuracy, with clear differences between the
two when used in conjunction with the same assembler.

Across the four species and depending on the aligner used,
22% to 35% of transcripts could be reconstructed by any combi-
nation of aligner and assembler (Supplementary Table S2). How-
ever, some genes were recovered only by a subset of the methods
(Supplementary Table S2), with on average 5% of the genes being
fully reconstructable only by one of the available combinations
of aligner and assembler. Closer inspection of the data shows
that this effect is not due to a single assembler having greater
efficiency. Rather, each tool is shown to be the only one capa-



Venturini et al. 3

Table 1: Cumulative z-score for each method aggregating individual z-scores based on base, exon, intron, intron chain, transcript, and gene F1
score .

A. thaliana C. elegans D. melanogaster H. sapiens All methods

Method Z-score Rank Z-score Rank Z-score Rank Z-score Rank Z-score Rank

CLASS2 (STAR) 7.627 1 7.309 1 −3.310 6 5.258 1 16.884 1
StringTie
(TopHat2)

0.584 4 5.502 3 6.612 2 3.199 3 15.897 2

CLASS2
(TopHat2)

−5.542 8 6.698 2 9.314 1 4.998 2 15.738 3

StringTie (STAR) 2.621 3 −2.197 4 1.587 3 2.991 4 5.001 4
Cufflinks (STAR) 2.716 2 −2.306 5 −1.730 5 1.037 5 −0.283 5
Cufflinks
(TopHat2)

−0.526 5 −5.363 8 −1.504 4 −0.993 6 −8.386 6

Trinity (STAR) −4.120 7 −5.079 7 −4.762 7 −3.417 7 −17.458 7
Trinity (TopHat2) −3.280 6 −4.833 6 −6.206 8 −13.073 8 −27.392 8

Top ranked method in bold, bottom ranked method underlined and in italics.

ble of correctly reconstructing hundreds of the expressed tran-
scripts (Supplementary Fig. S4). Taking the union of genes fully
reconstructed by any of the methods shows that an additional
14.92% to 19.08% of genes could be recovered by an approach
that would integrate the most sensitive assembly with less com-
prehensive methods. This complementarity manifests as well in
relation to genes missed by any particular method. While each
approach failed to reconstruct several hundred genes on aver-
age, the majority of these models could be fully or partially re-
constructed by an alternative method (Supplementary Fig. S3A).
Another class of error is artifactual fusion/chimeric transcripts
that chain together multiple genes. These artifacts usually arise
from an incorrect identification of start and end sites during
transcript reconstruction. This is an issue that appears most
prominently in compact genomes with smaller intergenic dis-
tances [10]. Among the methods tested, Cufflinks was particu-
larly prone to this class of error, while Trinity and CLASS2 assem-
bled far fewer such transcripts. Again, alternative methods com-
plemented each other, with many genes fused by one assembler
being reconstructed correctly by another approach (Supplemen-
tary Fig. S3B). Finally, the efficiency of transcript reconstruction
depends on coverage, a reflection of sequencing depth and ex-
pression level. Methods in general agree on the reconstruction
of well-expressed genes, while they show greater variability with
transcripts that are present at lower expression levels. Even at
high expression levels, though, only a minority of genes can be
reconstructed correctly by every tested combination of aligner
and assembler (Supplementary Fig. S5). Our results underscore
the difficulty of transcript assembly and highlight advantageous
features of specific methods. A naive combination of the out-
put of all methods would yield the greatest sensitivity, but at
the cost of a decrease in precision as noise from erroneous re-
constructions accumulates. Indeed, this is what we observe: in
all species, while the recall of the naive combination markedly
improves, even upon the most sensitive method, the precision
decreases (Supplementary Fig. S2). As transcript reconstruction
methods exhibit idiosyncratic strengths and weaknesses, an ap-
proach that can integrate multiple assemblies can potentially
lead to a more accurate and comprehensive set of gene models.

Overview of the Mikado method

Mikado provides a framework for integrating transcripts from
multiple sources into a consolidated set of gene annotations.

Our approach assesses, scores (based on user configurable crite-
ria), and selects transcripts from a larger transcript pool, lever-
aging transcript assemblies generated by alternative methods or
from multiple samples and sequencing technologies.

The software takes as input transcript structures in stan-
dard formats such as General Transfer Format (GTF) and General
Feature Format 3 (GFF3), with optionally Basic Local Alignment
Search Tool (BLAST) similarity scores or a set of high-quality
splice junctions. Using this information, Mikado will then de-
fine gene loci and their associated transcripts. Each locus will be
characterized by a primary transcript, i.e., the transcript in the
region that best fits the requirements specified by the user and
that therefore receives the highest score. If any suitable alterna-
tive splicing event for the primary transcript is available, Mikado
will add it to the locus. The software is written in python3 and
Cython, and extensive documentation is available on Read The
Docs [26].

Mikado is composed of three core programs (prepare, serial-
ize, pick) executed in series. The Mikado prepare step validates
and standardizes transcripts, removing exact duplicates and ar-
tifactual assemblies such as those with ambiguous strand ori-
entation (as indicated by canonical splicing). During the Mikado
serialize step, data from multiple sources are brought together in-
side a common database. By default, Mikado analyses and inte-
grates three types of data: open reading frames (ORFs) currently
identified via TransDecoder, protein similarity derived through
BLASTX or Diamond, and high-quality splice junctions identified
using tools such as Portcullis [27] or Stampy [28]. The selection
phase (Mikado pick) groups transcripts into loci and calculates
for each transcript more than 50 numerical and categorical met-
rics based on either external data (e.g., BLAST support) or intrin-
sic qualities relating to coding sequence (CDS), exon, intron, or
untranslated region (UTR) features (summarized in Supplemen-
tary Table S3).

While some metrics are inherent to each transcript (e.g., the
cDNA length), others depend on the context of the locus the
transcript is placed in. A typical example would be the propor-
tion of introns of the transcript relative to the number of introns
associated with the genomic locus. Such values are dependent
on the loci grouping and can change throughout the computa-
tion as transcripts are moved into a different locus or filtered out.
Notably, the presence of ORFs is used in conjunction with pro-
tein similarity to identify and resolve fusion transcripts. Tran-
scripts with multiple ORFs are marked as candidate false fu-
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Figure 1: The algorithm employed by Mikado is capable of solving complex loci with multiple potential assemblies. This locus in A. thaliana is particularly challenging
as an ancestral gene in the locus tandemly duplicated into the current AT5G66610, AT5G66620, and AT5G66630 genes. Due to these difficulties, no single assembler

was capable of reconstructing all loci correctly. For instance, Trinity was the only method that correctly assembled AT5G66631, but it failed to reconstruct any other
transcript correctly. The reverse was true for Cufflinks, which correctly assembled the three duplicated genes but completely missed the monoexonic AT566631. By
choosing between different alternative assemblies, Mikado was capable to provide an evidence-based annotation congruent to the TAIR10 models.

sions. Homology to reference proteins is then optionally used to
determine whether the ORFs derive from more than one gene. If
the fusion event is confirmed, the transcript is split into multiple
transcripts (Fig.1).

To determine the primary transcript at a locus, Mikado as-
signs a score for each metric of each transcript by assessing its
value relative to all other transcripts associated with the locus.
Once the highest scoring transcript for the group has been se-
lected, Mikado will exclude all transcripts that are directly in-
tersecting it; if any remain, it will iteratively select the next
best scoring transcripts, pruning the graph until all noninter-
secting transcripts have been selected. This iterative strategy
ensures that no locus is excluded if, e.g., there are unresolved
read-through events that would connect two or more gene loci.
Grouping and filtering happen in multiple sequential phases,
each defined by different rules for clustering transcripts into loci
(see the Methods section). After the gene loci and associated
primary transcripts have been defined, Mikado will look for po-
tential alternative splicing events. Only transcripts that can be
unambiguously assigned to a single gene locus will be consid-
ered for this phase. Mikado will add to the locus only transcripts
whose structures are nonredundant with those already present
and that are valid alternative splicing events for the primary
transcript, as defined by the class codes [29]. Moreover, Mikado
will discard any transcript whose score is too low when com-
pared to the primary (by default, only transcripts with a score
of 50% or more of the primary transcript will be considered).
The process is controlled by a configuration file that determines
desirable gene features, allowing the user to define criteria for
transcript filtering and scoring as well as specifying minimum
requirements for potential alternative splicing events. The on-
line documentation contains details on the format of the con-
figuration file [30] and provides a tutorial on how to create such
files or adapt existing ones to new projects [31].

Candidate isoforms will be ranked according to their score
and considered in decreasing order, with a cap on the maximum

number of alternative isoforms and on the minimum score for
a candidate to be considered valid (by default, at a minimum
50% of the score of the primary transcript). Mikado will add to
the locus only transcripts whose structures are nonredundant
with those already present and that are valid alternative splicing
events for the primary transcript, as defined by class codes [29].
The process is controlled by a configuration file that determines
desirable gene features, allowing the user to define criteria for
transcript filtering and scoring as well as specifying minimum
requirements for potential alternative splicing events.

We also developed a Snakemake-based pipeline, Daijin, in or-
der to drive Mikado, including the calls to external programs to
calculate ORFs and protein homology. Daijin works in two inde-
pendent stages, assemble and mikado. The former stage enables
transcript assemblies to be generated from the read datasets us-
ing a choice of read alignment and assembly methods. In par-
allel, this part of the pipeline will also calculate reliable junc-
tions for each alignment using Portcullis. The latter stage of the
pipeline drives the steps necessary to execute Mikado, both in
terms of the required steps for our program (prepare, serialize,
pick) and of the external programs needed to obtain additional
data for the picking stage (currently, homology search and ORF
detection). A summary of the Daijin pipeline is provided in Fig.
2.

Performance of Mikado

To provide a more complete assessment, we evaluated the per-
formance of Mikado on both simulated and real data. While real
data represent more fully the true complexity of the transcrip-
tome, simulated data generate a known set of transcripts to en-
able a precise assessment of prediction quality. For our purposes,
we used SPANKI to simulate RNA-seq reads for all four species,
closely matching the quality and expression profiles of the cor-
responding real data. Simulated reads were aligned and assem-
bled following the same protocol that was used for real data,
described above. For each of the four species under analysis,
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Figure 2: Schematic representation of the Mikado workflow.

we also obtained reference-quality protein sequences from re-
lated species to inform the homology search through BLAST; de-
tails on our selection can be found in Supplementary Table S4.

Mikado was then used to integrate the four different transcript
assemblies for each alignment.
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A

B

Figure 3: Performance of Mikado on simulated and real data. (A) We evaluated the performance of Mikado using both simulated data and the original real data. The

method with the best transcript-level F1 is marked by a circle. (B) Number of reconstructed, missed, and chimeric genes in each assembly. Notice the lower level of
chimeric events in simulated data.

Across the four species and on both simulated and real data,
Mikado was able to successfully combine the different assem-
blies, obtaining a higher accuracy than most individual tools in
isolation. Compared with the best overall combination, CLASS2
on STAR alignments, Mikado improved the accuracy by, on aver-
age, 6.58% and 9.23% on simulated and real data at the transcript
level, respectively (Fig. 3 and Additional File 2). Most of this im-
provement accrues due to an improved recall rate without sig-
nificant losses in precision. We register a single exception, on H.
sapiens simulated data, due to an excess of intronic gene models

that pervade the assemblies of all other tools. On simulated data,
CLASS2 is able to detect these models and exclude them, most
likely using its refined filter on low-coverage regions [12]. How-
ever, this increase in precision is absent when TopHat2 is used
as an aligner and on real data. While Mikado does not calculate
or utilize coverage to score and select transcripts, we do make
provision for externally generated metrics that could be used in
conjunction with Mikado’s fragment filtering to screen out lowly
expressed intronic models. Aside from the accuracy in correctly
reconstructing transcript structures, in our experiments, merg-
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ing and filtering the assemblies proved an effective strategy for
producing a comprehensive transcript catalogue. Mikado con-
sistently retrieved more loci than the most accurate tools while
avoiding the sharp drop in precision of more sensitive methods
such as, e.g., Trinity (Fig. 3B). Finally, Mikado was capable of accu-
rately identifying and solving cases of artifactual gene fusions,
which mar the performance of many assemblers. As this kind
of error is more prevalent in our real data, the increase in pre-
cision obtained by using Mikado was greater using real rather
than simulated data.

We further assessed the performance of Mikado in com-
parison with three other methods that are capable of integrat-
ing transcripts from multiple sources: CuffMerge [32], StringTie-
merge [15], and EvidentialGene [24, 33]. CuffMerge and StringTie-
merge perform a meta-assembly of transcript structures with-
out considering ORFs or homology. In contrast, EvidentialGene
is similar to Mikado in that it classifies and selects transcripts,
calculating ORFs and associated quality metrics from each tran-
script to inform its choice. In our tests, Mikado consistently per-
formed better than alternative combiners, in particular, when
compared to the two meta-assemblers. The performance of
StringTie-merge and CuffMerge on simulated data underscored
the advantage of integrating assemblies from multiple sources
as both methods generally improved recall over input methods.
However, this was accompanied by a drop in precision, most no-
ticeably for CuffMerge, as assembly artifacts present in the in-
put assemblies accumulated in the merged dataset. In contrast,
the classification and filtering-based approach of EvidentialGene
led to a more precise dataset, but at the cost of a decrease in
recall. Mikado managed to balance both aspects, thus show-
ing a better accuracy than any of the alternative approaches
(A. thaliana +6.24%, C. elegans +7.66%, D. melanogaster +9.48%,
and H. sapiens +4.92% F1 improvement over the best alternative
method). On real and simulated data, Mikado and Evidential-
Gene generally performed better than the two meta-assemblers,
with an accuracy differential that ranged from moderate in H.
sapiens (1.67% to 4.32%) to very marked in A. thaliana (14.87% to
29.58%). An important factor affecting the accuracy of the meta-
assemblers with real data is the prevalence of erroneous tran-
script fusions that can result from incorrect read alignment, ge-
nomic DNA contamination, or bona fide overlap between tran-
scriptional units. Both StringTie-merge and CuffMerge were ex-
tremely prone to this type of error, as across the four species
they generated, on average, 2.39 times the number of fusion
genes compared to alternative methods (Fig. 3B). Between the
two selection-based methods, EvidentialGene performed simi-
larly to Mikado on real data but much worse on simulated data.
Its accuracy was, on average, 2 points lower than that of Mikado
on real data and 8.13 points lower in the simulations. This is pri-
marily due to a much higher precision differential between the
two methods in simulated data, with Mikado performing much
better than EvidentialGene on this front (+8.95% precision on
simulated data).

Filtering lenient assemblies

Although our tests have been conducted using default param-
eters for the various assemblers, these parameters can be ad-
justed to alter the balance between precision and sensitivity ac-
cording to the goal of the experiment. In particular, three of the
assemblers we tested provide a parameter to filter out alterna-
tive isoforms with a low abundance. This parameter is com-
monly referred to as “minimum isoform fraction,” or MIF, and
sets for each gene a minimum isoform expression threshold

relative to the most expressed isoform. Only transcripts whose
abundance ratio is greater than the MIF threshold are reported.
Therefore, lowering this parameter will yield a higher number
of isoforms per locus, retaining transcripts that are expressed at
low levels and potentially increasing the number of correctly re-
constructed transcripts. This improved recall is obtained at the
cost of a drop in precision, as more and more incorrect splicing
events are reported (Fig.4). Mikado can be applied on top of these
very permissive assemblies to filter out spurious splicing events.
In general, filtering with Mikado yielded transcript datasets that
are more precise than those produced by the assemblers at any
level of chosen MIF or even when comparing the most relaxed
MIF in Mikado with the most conservative in the raw assembler
output (Fig.4).

Multisample transcript reconstruction

Unraveling the complexity of the transcriptome requires as-
sessing transcriptional dynamics across many samples. Projects
aimed at transcript discovery and genome annotation typically
utilize datasets generated across multiple tissues and experi-
mental conditions in order to provide a more complete represen-
tation of the transcriptional landscape. Even if a single assembly
method is chosen, there is often a need to integrate transcript as-
semblies constructed from multiple samples. StringTie-merge,
CuffMerge, and the recently published TACO [34] have been de-
veloped with this specific purpose in mind. The meta-assembly
approach of these tools can reconstruct full-length transcripts
when they are fragmented in individual assemblies but, as ob-
served earlier, it is prone to creating fusion transcripts. TACO
directly addresses this issue with a dedicated algorithmic im-
provement, i.e., change-point detection. This solution is based
on fusion transcripts showing a dip in read coverage in regions
of incorrect assembly; this change in coverage can then be used
to identify the correct breakpoint. A limitation of the implemen-
tation in TACO is that it requires expression estimates to be en-
coded in the input GTFs, and some tools do not provide this in-
formation.

To assess the performance of Mikado for multisample re-
construction, we individually aligned and assembled the 12 A.
thaliana seed development samples from PRJEB7093, using the
four single-sample assemblers described previously. The collec-
tion of 12 assemblies per tool was then integrated into a sin-
gle set of assemblies using different combiners. StringTie-merge
and TACO could not be applied to the Trinity dataset, as they
both require embedded expression data in the GTF files, which
is not provided in the Trinity output. In line with the results pub-
lished in the TACO article [34], we observed a high rate of fusion
events in both StringTie-merge and CuffMerge results (Fig. 5B),
which TACO reduced. However, none of these tools performed
as well as EvidentialGene or Mikado, either in terms of accuracy
or in avoiding gene fusions (Fig. 5). Mikado achieved the high-
est accuracy irrespective of the single sample assembler used,
with an improvement in F1 over the best alternative method of
+8.25% for Cufflinks assemblies, +2.23% for StringTie, +0.95% for
CLASS2, and +6.65% for Trinity.

Transcript assemblies are commonly incorporated into
evidence-based gene finding pipelines, often in conjunction
with other external evidence such as cross species protein se-
quences, proteomics data, or synteny. The quality of transcript
assembly can therefore potentially have an impact on down-
stream gene prediction. To test the magnitude of this effect,
we used the data from these experiments on A. thaliana to
perform gene prediction with the popular MAKER annotation
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Figure 4: Performance of Mikado while varying the MIF parameter. Precision/recall plot at the gene and transcript levels for CLASS and StringTie at varying minimum

isoform fraction thresholds in A. thaliana, with and without applying Mikado. Dashed lines mark the F1 levels at different precision and recall values. CLASS sets MIF
to 5% by default (red), while StringTie uses a slightly more stringent default value of 10% (cyan).

A B

Figure 5: Integrating assemblies coming from multiple samples. (A) Mikado performs consistently better than other merging tools. StringTie-merge and TACO are

not compatible with Trinity results and as such have not been included in the comparison. (B) Rate of recovered, missed, and fused genes for all the assembler and
combiner combinations.

pipeline, using Augustus with default parameters for the species
as a gene predictor. Our results (Supplementary Fig. S6) show
that, as expected, an increased accuracy in the transcriptomic
dataset leads to an increased accuracy in the final annotation.
Importantly, MAKER was not capable of reducing the preva-
lence of gene fusion events present in the transcript assem-
blies. This suggests that ab initio Augustus predictions utilized by
MAKER do not compensate for incorrect fusion transcripts that
are provided as evidence and stress the importance of pruning
these mistakes from transcript assemblies before performing an
evidence-guided gene prediction.

Expansion to long-read technologies

Short-read technologies, due to their low per-base cost and ex-
tensive breadth and depth of coverage, are commonly utilized in
genome annotation pipelines. However, like the previous gener-
ation of Sanger ESTs, their short size requires the use of sophis-
ticated methods to reconstruct the structure of the original RNA
molecules. Third-generation sequencing technologies promise
to remove this limitation by generating full-length cDNA se-
quences. These new technologies currently offer lower through-
put and are less cost effective but have, in recent studies, been
employed alongside short-read technologies to define the tran-
scriptome of species with large gene content [35, 36].

We tested the complementarity of the two technologies by
sequencing two samples of a standard human reference RNA
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library with the leading technologies for both approaches, Illu-
mina HiSeq for short reads (250 bp, paired-end reads) and the
PacBio IsoSeq protocol for long reads. Given the currently higher
per-base costs of long-read sequencing technologies, read cov-
erage is usually much lower than for short-read sequencing. We
found many genes to be reconstructed by both platforms. How-
ever, as expected given the lower sequencing depth, there was
a clear advantage for the Illumina dataset on genes with ex-
pression lower than 10 Transcripts Per Million (Supplementary
Fig. S7). We verified the feasibility of integrating the results given
by the different sequencing technologies by combining the long
reads with the short-read assemblies, either simply concatenat-
ing them or by filtering them with EvidentialGene and Mikado
(Supplementary Fig. S8). An advantage of Mikado over the two
alternative approaches is that it enables it to prioritize PacBio
reads over Illumina assemblies by giving them a slightly higher
base score. In this analysis, we saw that even PacBio data on its
own might require some filtering, as the original sample con-
tains a mixture of whole and fragmented molecules, together
with immature transcripts. Both Mikado and EvidentialGene are
capable of identifying mature coding transcripts in the data, but
Mikado shows a better recall and general accuracy rate, albeit at
the cost of some precision. However, Mikado performed much
better than EvidentialGene in filtering either the Illumina data
on its own or the combination of the two technologies. Although
the filtering inevitably loses some of the real transcripts, the loss
is compensated by an increased overall accuracy. Mikado per-
formed better than EvidentialGene in this respect, as the latter
did not noticeably improve in accuracy when given a combina-
tion of PacBio and Illumina data, rather than the Illumina data
alone.

Conclusions

Transcriptome assembly is a crucial component of genome
annotation workflows; however, correctly reconstructing tran-
scripts from short RNA-seq reads remains a challenging task.
In recent years, methods for both de novo and reference-guided
transcript reconstruction have accumulated rapidly. When com-
bined with the large number of RNA-seq mapping tools, de-
ciding on the optimal transcriptome assembly strategy for a
given organism and RNA-seq dataset (stranded/unstranded,
polyA/ribodepleted) can be bewildering. Here, we showed that
different assembly tools are complementary to each other, fully
reconstructing genes only partially reconstructed or missing en-
tirely from alternative approaches. Similarly, when analyzing
multiple RNA-seq samples, the complete transcript catalogue is
often only obtained by collating together different assemblies.
For a gene annotation project, it is therefore typical to have mul-
tiple sets of transcripts, be they derived from alternative assem-
blers, different assembly parameters, or arising from multiple
samples. Our tool, Mikado, provides a framework for integrating
transcript assemblies, exploiting the inherent complementarity
of the data to produce a high-quality transcript catalogue. As
Mikado is capable of accepting data from multiple standard file
formats (GFF3, BED12, GTF), its applications are wider than those
presented in this article. Although it is not discussed fully here,
the Daijin pipeline already supports additional aligners and as-
semblers, such as Scallop [37] or HISAT2 [8]. Similar to what
we have shown in this manuscript, Mikado can be fruitfully ap-
plied to assembly workflows based on these tools (Supplemen-
tary Fig. S9); as such, it provides a mechanism to integrate tran-
script assemblies from both new and established methods.

Rather than attempting to capture all transcripts, our ap-
proach aims to mimic the selective process of manual cura-
tion by evaluating and identifying a subset of transcripts from
each locus. The criteria for selection can be configured by the
user, enabling them to, e.g., penalize gene models with trun-
cated ORFs, those with noncanonical splicing, targets for non-
sense mediated decay, or chimeric transcripts spanning multi-
ple genes. Such gene models may represent bona fide transcripts
(with potentially functional roles) but can also arise from aber-
rant splicing or, as seen from our simulated data, from incorrect
read alignment and assembly. Mikado acts as a filter principally
to identify coding transcripts with complete ORFs and is there-
fore in line with most reference annotation projects that simi-
larly do not attempt to represent all transcribed sequences. Our
approach is made possible by integrating the data on transcript
structures with additional information generally not utilized by
transcript assemblers such as similarity to known proteins, the
location of ORFs, and information on the reliability of splicing
junctions. This information aids Mikado in performing opera-
tions such as discarding spurious alternative splicing events or
detecting chimeric transcripts. This allows Mikado to greatly im-
prove precision over the original assemblies, with, in general,
minimal drops in recall. Moreover, similar to TACO, Mikado is
capable of identifying and resolving chimeric assemblies, which
negatively affect the precision of many of the most sensitive
tools, such as StringTie or the two meta-assemblers Cuffmerge
and StringTie-merge.

Genome annotation involves making choices about what
genes and transcripts to include in the gene set, and differ-
ent annotators will make different choices dependent on their
own motivations and available data. The manually annotated
genomes of human and A. thaliana exhibit clear differences. The
annotation of the human genome is very comprehensive, with
an average of five transcripts per gene. In contrast, the TAIR10
annotation of A. thaliana captures fewer splice variants, with
most genes being annotated with a single, coding isoform. This
reflects not only potentially real differences in the extent of al-
ternative splicing between the species but also differences in
the annotation approach, with the human gene set capturing,
in addition to coding splice variants, transcripts lacking anno-
tated ORFs and those with retained introns or otherwise flagged
as targets for nonsense mediated decay. Neither the more com-
prehensive nor the more conservative approach is necessarily
the most correct. The purpose of the annotation, i.e., how it will
be used by the research community, and the types of supporting
data will guide the selection process. Mikado provides a frame-
work to apply different selection criteria, therefore similar to
ab initio programs where the results are heavily dependent on
the initial training set. Also for Mikado, the results will depend
on the experimenter’s choices. In the online documentation, we
provide a discussion on how to customize scoring files according
to the needs of the experimenter and a tutorial to guide through
its creation [31].

Our experiments show that Mikado can aid genome anno-
tation by generating a set of high-quality transcript assemblies
across a range of different scenarios. Rather than having to iden-
tify the best aligner/assembly combination for every project,
Mikado can be used to integrate assemblies from multiple meth-
ods, with our approach reliably identifying the most accurate
transcript reconstructions and allowing the user to tailor the
gene set to their own requirements. It is also simple to incor-
porate assemblies from new tools, even if the new method is
not individually the most accurate approach. Given the chal-
lenges associated with short-read assembly, it is desirable (when
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available) to integrate these with full-length cDNA sequences.
Mikado is capable of correctly integrating analyses coming from
different assemblers and technologies, including mixtures of Il-
lumina and PacBio data. Our tool has already been employed for
such a task on the large, repetitive genome of Triticum aestivum
[36], where it was instrumental in selecting a set of gene mod-
els from more than 10 million transcript assemblies and PacBio
IsoSeq reads. The consolidated dataset returned by Mikado was
almost 30 times smaller than the original input dataset, and this
polishing was essential to both ensure a high-quality annotation
and to reduce the running times of downstream processes.

In conclusion, Mikado is a flexible tool that is capable of han-
dling a plethora of data types and formats. Its novel selection al-
gorithm was shown to perform well in model organisms and was
central in the genome annotation pipeline of various species [36,
38, 39]. Its deployment should provide genome annotators with
another powerful tool to improve the accuracy of data for sub-
sequent ab initio training and evidence-guided gene prediction.

Methods
Input datasets

For C. elegans, D. melanogaster, and H. sapiens, we retrieved from
the European Nucleotide Archive (ENA) the raw reads used for
the evaluation in [19], under Bioproject PRJEB4208. We further se-
lected and downloaded a publicly available strand-specific RNA-
seq dataset for A. thaliana, PRJEB7093. Congruent with the as-
sessment in [19], we used genome assemblies and annotations
from EnsEMBL v. 70 for all metazoan species, while for A. thaliana
we used the TAIR10 version. For all species, we simulated reads
using the input datasets as templates. Reads were trimmed with
TrimGalore v0.4.0 [40] and aligned onto the genome with Bowtie
v1.1.2 [41] and HISAT v2.0.4 [8]. The HISAT alignments were used
to calculate the expression levels for each transcript using Cuf-
flinks v2.2.1, while the Bowtie mappings were used to generate
an error model for the SPANKI Simulator v.0.5.0 [42]. The tran-
script coverages and the error model were then used to gen-
erate simulated reads, at a depth of 10X for C. elegans and D.
melanogaster and 3X for A. thaliana and H. sapiens. A lower cover-
age multiplier was applied to the latter species to have a similar
number of reads for all four datasets, given the higher sequenc-
ing depth in the A. thaliana dataset and the higher number of ref-
erence transcripts in H. sapiens. cDNA sequences for A. thaliana
were retrieved from the National Center for Biotechnology Infor-
mation (NCBI) nucleotide database on 21 April 2017, using the
query:

‘‘Arabidopsis’’ [Organism] OR arabidopsis[All

Fields]) AND ‘‘Arabidopsis thaliana’’ [porgn] AND

biomol\ mrna [PROP]

For the second experiment on H. sapiens, we sequenced two
samples of the Stratagene Universal Human Reference RNA (cat-
alogue ID 740000), which consists of a mixture of RNA derived
from 10 cell lines. One sample was sequenced on an Illumina
HiSeq2000 and the second on a PacBio RSII machine. Sequencing
runs were deposited in ENA, under the project accession code
PRJEB22606.

Preparation and sequencing of Illumina libraries
The libraries for this project were constructed using the
NEXTflex Rapid Directional RNA-seq Kit (PN: 5138-08) with the
NEXTflex DNA Barcodes - 48 (PN: 514104) diluted to 6 μm. The
library preparation involved an initial quality check of the RNA

using Qubit DNA (Life Technologies Q32854) and RNA (Life Tech-
nologies Q32852) assays as well as a quality check using the
PerkinElmer GX with the RNA assay (PN:CLS960010)

Then, 1 μg of RNA was purified to extract mRNA with
a poly-A pull-down using biotin beads; fragmented and first-
strand cDNA was synthesized. This process reverse transcribes
the cleaved RNA fragments primed with random hexamers
into first-strand cDNA using reverse transcriptase and random
primers. The second-strand synthesis process removes the RNA
template and synthesizes a replacement strand to generate
dscDNA. The ends of the samples were repaired using the 3′ to
5′ exonuclease activity to remove the 3′ overhangs and the poly-
merase activity to fill in the 5′ overhangs, creating blunt ends. A
single ‘A’ nucleotide was added to the 3′ ends of the blunt frag-
ments to prevent them from ligating to one another during the
adapter ligation reaction. A corresponding single ‘T’ nucleotide
on the 3′ end of the adapter provided a complementary overhang
for ligating the adapter to the fragment. This strategy ensured a
low rate of chimera formation. The ligation of a number index-
ing adapters to the ends of the DNA fragments prepared them
for hybridization onto a flow cell. The ligated products were sub-
jected to a bead-based size selection using Beckman Coulter
XP beads (PN: A63880). In addition to performing a size selec-
tion, this process removed the majority of unligated adapters.
Prior to hybridization to the flow cell, the samples were sub-
jected to polymerase chain reaction (PCR) to enrich for DNA frag-
ments with adapter molecules on both ends and to amplify the
amount of DNA in the library. Directionality is retained by adding
deoxyuridine triphosphate during the second strand synthesis
step and subsequent cleavage of the uridine-containing strand
using uracil DNA glycosylase. The strand that was sequenced is
the cDNA strand. The insert size of the libraries was verified by
running an aliquot of the DNA library on a PerkinElmer GX using
the high-sensitivity DNA chip (PerkinElmer CLS760672); the con-
centration was determined using a high-sensitivity Qubit assay
and q-PCR.

The constructed stranded RNA libraries were normalized and
equimolar pooled into two pools. The pools were quantified us-
ing a KAPA Library Quant Kit Illumina/ABI (KAPA KK4835) and
found to be 6.71 nm and 6.47 nm, respectively. A 2- nm dilution
of each pool was prepared with NaOH at a final concentration of
0.1 N and incubated for 5 minutes at room temperature to de-
nature the libraries. Then, 5 μL of each 2- nm dilution was com-
bined with 995 μL HT1 (Illumina) to give a final concentration of
10 pm; 135 μL of the diluted and denatured library pool was then
transferred into a 200- μL strip tube, spiked with 1% PhiX Control
v3 (Illumina FC-110-3001), and placed on ice before loading onto
the Illumina cBot with a Rapid v2 Paired-end flow cell and HiSeq
Rapid Duo cBot Sample Loading Kit (Illumina CT-403-2001). The
flow cell was loaded on a HiSeq 2500 (rapid mode) following the
manufacturer’s instructions with a HiSeq Rapid SBS Kit v2 (500
cycles) (Illumina FC-402-4023) and HiSeq PE Rapid Cluster Kit v2
(Illumina PE-402-4002). The run setup was as follows: 251 cy-
cles/7 cycles(index)/251 cycles utilizing HiSeq Control Software
2.2.58 and RTA 1.18.64. Reads in .bcl format were demultiplexed
based on the 6-bp Illumina index by CASAVA 1.8 (Illumina), al-
lowing for a one base-pair mismatch per library, and converted
to FASTQ format by bcl2fastq (Illumina).

Preparation and sequencing of PacBio libraries
The Iso-Seq libraries were created starting from 1 μg of hu-
man total RNA; full-length cDNA was then generated using the
SMARTer PCR cDNA Synthesis Kit (Clontech, Takara Bio Inc.,
Shiga, Japan) following PacBio recommendations set out in the
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Iso-Seq method [43]. PCR optimization was carried out on the
full-length cDNA using the KAPA HiFi PCR Kit (Kapa Biosystems,
Boston, Massachusetts, USA); 12 cycles were sufficient to gen-
erate the material required for ELF size selection. A timed set-
ting was used to fractionate the cDNA into 12 individual-sized
fractions using the SageELF (Sage Science Inc., Beverly, Mas-
sachusetts, USA) on a 0.75% ELF Cassette. Prior to further PCR,
the ELF fractions were equimolar pooled into the following sized
bins: 0.7–2kb, 2–3kb, 3–5kb, and > 5kb. PCR was repeated on each
bin to generate enough material for SMRTbell library prepara-
tion; this was completed following PacBio recommendations in
the Iso-Seq method. The four libraries generated were quality
checked using Qubit Florometer 2.0 and sized using the Bio-
analyzer HS DNA chip. The loading calculations for sequenc-
ing were completed using the PacBio Binding Calculator v2.3.1.1
[44]. The sequencing primer was used from the SMRTbell Tem-
plate Prep Kit 1.0 and was annealed to the adapter sequence
of the libraries. Each library was bound to the sequencing poly-
merase with the DNA/Polymerase Binding Kit v2. The complex
formed was then bound to Magbeads in preparation for sequenc-
ing using the MagBead Kit v1. Calculations for primer and poly-
merase binding ratios were kept at default values. The libraries
were prepared for sequencing using the PacBio-recommended
instructions laid out in the Binding Calculator. The sequencing
chemistry used to sequence all libraries was DNA Sequencing
Reagent Kit 4.0; the Instrument Control Software version was
v2.3.0.0.140640. The libraries were loaded onto PacBio RS II SMRT
Cells 8Pac v3; each library was sequenced on three SMRT Cells.
All libraries were run without stage start and 240 minute movies
per cell. Reads for the four libraries were extracted using SMRT
Pipe v2.3.3, following the manufacturer’s instructions [45].

Alignments and assemblies

Reads from the experiments were aligned using STAR v2.4.1c
and TopHat v2.0.14. For STAR, read alignment parameters for all
species were as follows:

--outFilterMismatchNmax 4 --alignSJoverhangMin 12

--alignSJDBoverhangMin 12 --outFilterIntronMotifs

RemoveNoncanonical --alignEndsType EndToEnd

--alignTranscriptsPerReadNmax 100000 --alignIntronMin

MININTRON --alignIntronMax MAXINTRON --alignMatesGapMax

MAXINTRON

For TopHat2, we used the following parameters:
-r 50 -p 4 --min-anchor-length 12 --max-multihits 20

--library-type fr-unstranded -i MININTRON -I MAXINTRON

The parameters “MINTRON” and “MAXINTRON” were varied
for each species, as follows:

� A. thaliana: minimum 20, maximum 10,000
� C. elegans: minimum 30, maximum 15,000
� D. melanogaster: minimum 20, maximum 10,000
� H. sapiens: minimum 20, maximum 10,000

Each dataset was assembled using the following four tools:
CLASS v 2.12, Cufflinks 2.1.1, StringTie v. 1.03, and Trinity
r20140717. Command lines for the tools were as follows:

� CLASS: we executed this tools through a wrapper included
in Mikado, class run.py, with command line parameters -F

0.05
� Cufflinks: -u -F 0.05; for the A. thaliana dataset, we further

specified --library-type fr-firststrand.
� StringTie: -m 200 -f 0.05
� Trinity: --genome guided max intron MAXINTRON (see above)

Trinity assemblies were mapped against the genome
using GMAP v20141229 [46], with parameters -n 0

--min-trimmed-coverage=0.70 --min-identity=0.95. For
simulated data, we elected to use a more modern version of
Trinity (v.2.3.2), as the older version was unable to assemble
transcripts correctly for some of the datasets. For assembling
separately the samples in PRJBE7093, we used Cufflinks (v.2.2.1)
and StringTie v1.2.3 with default parameters.

Mikado analyses

All analyses were run with Mikado 1.0.1, using Daijin to drive
the pipeline. For each species, we built a separate reference pro-
tein dataset to be used for the BLAST comparison (see Sup-
plementary Table S4). We used NCBI BLASTX v2.3.0 [47], with
a maximum e-value of 10e-7 and a maximum number of tar-
gets of 10. ORFs were predicted using TransDecoder 3.0.0 [10].
Scoring parameters for each species can be found in Mikado
v1.0.1 [48], with a name scheme of species name scoring.yaml
(e.g., “athaliana scoring.yaml” for A. thaliana). The same scoring
files were used for all runs, both with simulated and real data.
Filtered junctions were calculated using Portcullis v1.0 beta5, us-
ing default parameters.

Mikado was instructed to look for models with, among other
features, a good UTR/CDS proportion (adjusted per species), ho-
mology to known proteins, and a high proportion of validated
splicing junctions. We further instructed Mikado to remove tran-
scripts that do not meet minimum criteria, such as having at
least a validated splicing junction if any is present in the locus
and a minimum transcript length or CDS length. The configu-
ration files are bundled with the Mikado software as part of the
distribution.

Details on the algorithms of Mikado

The Mikado pipeline is divided into three distinct phases, de-
scribed below.

Mikado prepare
Mikado prepare is responsible for bringing together multiple an-
notations into a single GTF file. This step of the pipeline is ca-
pable of handling both GTF and GFF3 files, making it adaptable
to use data from most assemblers and cDNA aligners currently
available. Mikado prepare will not just make the data format uni-
form but will also perform the following operations:

(i) It will optionally discard any model below a user-specified
size (default 200 base pairs).

(ii) It will analyze the introns present in each model and ver-
ify their canonicity. If a model is found to contain introns
from both strands, it will be discarded by default, although
the user can decide to override this behavior and keep such
models in. Each multiexonic transcript will be tagged with
this information, making it possible for Mikado to under-
stand the number of canonical splicing events present in a
transcript later on.

(iii) Mikado will also switch the strand of multiexonic tran-
scripts if it finds that their introns are allocated to the
wrong strand, and it will strip the strand information
from any monoexonic transcript coming from nonstrand-
specific assemblies

(iv) Finally, Mikado will sort the models, providing a coordinate-
ordered GTF file as output, together with a FASTA file of all
the cDNAs that have been retained.
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Mikado prepare uses temporary SQLite databases to perform
the sorting operation with a limited amount of memory. As such,
it is capable of handling millions of transcripts from multiple
assemblies with the memory found on a regular modern desktop
PC (less than 8 GB of random access memory).

Mikado serialize
Mikado serialize is the part of the pipeline whose role is to collect
all additional data on the models and store it into a standard
database. Currently, Mikado is capable of handling the following
types of data:

(i) FASTAs, i.e., the cDNA sequences produced by Mikado pre-
pare, and the genome sequence.

(ii) Genomic BED files containing the location of trusted in-
trons. Usually these are either output directly from the
aligners themselves (e.g., the “junctions.bed” file produced
by TopHat) or derived from the alignment using a special-
ized program such as Portcullis.

(iii) Transcriptomic BED or GFF3 files containing the location of
the ORFs on the transcripts. These can be calculated with
any program chosen by the user. We highly recommend us-
ing a program capable of indicating more than one ORF per
transcript if more than one is present, as Mikado relies on
this information to detect and solve chimeric transcripts.
Both TransDecoder and Prodigal have such capability.

(iv) Homology match files in XML format. These can be pro-
duced either by BLAST+ or by DIAMOND (v 0.8.7 and later)
with the option “-outfmt 5.”

Mikado serialize will try to keep the memory consumption at a
minimum by limiting the amount of maximum objects present
in memory (the threshold can be specified by the user, with the
default being at 20,000). XML files can be analyzed in parallel,
so Mikado serialize can operate more efficiently if BLAST or DIA-
MOND runs are performed by prechunking the cDNA FASTA file
and producing corresponding multiple output files.

Mikado serialize will output a database with the structure
shown in Supplementary Fig. S10.

Mikado pick
Mikado pick selects the final transcript models and outputs them
in GFF3 format. In contrast with many ab initio predictors, cur-
rently Mikado does not provide an automated system to learn
the best parameters for a species. Rather, the choice of what
types of models should be prioritized for inclusion in the final
annotation is left to the experimenter, depending on his or her
needs and goals. For the experiments detailed in this article, we
configured Mikado to prioritize complete protein-coding mod-
els and to apply only a limited upfront filtering to transcripts. A
stricter upfront hard-filtering of transcripts, e.g., involving dis-
carding any monoexonic transcript without sufficient homol-
ogy support, might have yielded a more precise collated annota-
tion at the price of discarding any potentially novel monoexonic
genes. Although we provide the scoring files used for this article
in the software distribution, we encourage users to inspect them
and adjust them to their specific needs. As part of the workflow,
Mikado also produces tabular files, with all the metrics calcu-
lated for each transcript, and the relative scores. It is therefore
possible for the user to use this information to adjust the scoring
model. The GFF3 files produced by Mikado comply with the for-
mal specification of GFF3, as defined by the sequence ontology
and verified using GenomeTools v.1.5.9 or later. Earlier versions
of GenomeTools would not validate Mikado files completely due

to a bug in their calculation of CDS phases for truncated models,
see issue 793 on GenomeTools GitHub [49].

Integration of multiple transcript assemblies

Evidential Gene v20160320 [24] was run with default param-
eters in conjunction with CDHIT v4.6.4 [50]. Models selected
by the tools were extracted from the combined GTFs using a
mikado utility, mikado grep, and further clustered into gene
loci using gffread from Cufflinks v2.2.1. StringTie-merge and
Cuffmerge were run with default parameters. Limited to the ex-
periment regarding the integration of assemblies from multiple
samples, we used TACO v0.7. For all three tools, we used their
default isoform fraction parameter. The GTFs produced by the
TACO meta-assemblies were reordered using a custom script
(“sort taco assemblies.py”) present in the script repository.

MAKER runs

We used MAKER v2.31.8 [51] in combination with Augustus
3.2.2 [52] for all our runs. GFFs and GTFs were converted to a
match/match part format for MAKER using the internal script of
the tool “cufflinks2gff3.pl.” MAKER was run using Message Pass-
ing Interface (MPI) and default parameters; the only input files
were the different assemblies produced by the tested tools.

Comparison with reference annotations

All comparisons have been made using Mikado compare v1.0.1.
Briefly, Mikado compare creates an interval tree structure of the
reference annotation, which is used to find matches in the vicin-
ity of any given prediction annotation. All possible matches are
then evaluated in terms of nucleotide, junction and exonic re-
call, and precision; the best one is reported as the best match for
each prediction in a transcript map (TMAP) file. After exhausting
all possible predictions, Mikado reports the best match for each
reference transcript in the “reference map” (REFMAP) file and
general statistics about the run in a statistics file. Mikado com-
pare is capable of detecting fusion genes in the prediction, de-
fined as events where a prediction transcript intersects at least
one transcript per gene from at least two different genes, with ei-
ther a junction in common with the transcript or an overlap over
10% of the length of the shorter between the prediction or the
reference transcripts. Fusion events are reported using a modi-
fied class code, with a “f,” prepending it. For a full introduction to
the program, we direct the reader to the online documentation
[53].

Creation of reference and filtered datasets for the comparisons
For A. thaliana, we filtered the TAIR10 GFF3 to retain only
protein coding genes. For the other three species, reference
GTF files obtained through EnsEMBL were filtered using the
“clean reference.py” python script present in the “Assemblies”
folder of the script repository (see the Script availability section).
The YAML configuration files used for each species can be found
in the Biotypes folder. The retained models constitute our refer-
ence transcriptome for comparisons.

For all analyses, we deemed a transcript reconstructable if
all of its splicing junctions (if any) and all of its internal bases
could be covered by at least one read. As read coverage typi-
cally decreases or disappears at the end of transcripts, we used
the mikado utility “trim” to truncate the terminal UTR exons
until their lengths reached the maximum allowed value (50
bps for our analysis) or the beginning of the CDS section is
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found. BEDTools v. 2.27 beta (commit 6114307 [54]) was then
used to calculate the coverage of each region. Detected junc-
tions were calculated using Portcullis, specifically using the BED
file provided at the end of the Portcullis junction analysis step.
The “get filtered reference.py” was then used to identify recon-
structable transcripts.

For simulated datasets, we used the BAM file provided by
SPANKI to derive the list of reconstructable transcripts. For the
nonsimulated datasets, we used the union of transcripts found
to be reconstructable from each of the alignment methods. The
utility “mikado util grep” was used to extract the relevant tran-
scripts from the reference files. Details of the process can be
found in the two snakemakes “compare.snakefile” and “com-
pare simulations.snakefile” present in the “Snakemake” direc-
tory of the script repository.

Calculation of comparison statistics
“Mikado compare” was used to assess the similarity of each tran-
script set against both the complete reference and the reference
filtered for reconstructable transcripts. Precision statistics were
calculated from the former, while recall statistics were calcu-
lated from the latter.

Customization and further development

Mikado make it possible to customize its run mode through the
use of detailed configuration files. There are two basic configu-
ration files: one is dedicated to the scoring system and the other
contains run-specific details. The scoring file is divided in four
sections and allows the user to specify which transcripts should
be filtered out at any of the stages during picking and how to pri-
oritize transcripts through a scoring system. Details on the met-
rics and on how to write a valid configuration file can be found
in the supplementry infomation and the online documentation
[58]. These configuration files are intended to be used across
runs, akin to how standard parameter sets are re-used in ab initio
gene prediction programs, e.g., Augustus. The second configura-
tion file contains parameters pertaining to each run, such as the
position of the input files, the type of database to be used, or the
desired location for output files. As such, they are meant to be
customized by the user for each experiment. Mikado provides a
command, “mikado configure,” that will generate this configu-
ration file automatically when given basic instructions.

Availability of source code and requirements
� Project name: Mikado
� Project home page: [1]
� Operating system(s): Linux
� Programming language: Python3
� Other requirements: SnakeMake, BioPython, NumPY, SciPY,

Scikit-learn, BLAST+ or DIAMOND, Prodigal or TransDecoder,
Portcullis

� Available through: PyPI, bioconda, SciCruch (RRID:
SCR 016159)

� License: GNU LGPL3

Availability of supporting data

The datasets supporting the conclusions presented in this arti-
cle are included within the article (and its additional files). Tran-
script assemblies and gene annotation produced during the cur-
rent study are available in the GigaScience Database [57] and in
FigShare [56] together with the source code of the version of

our software tool used to perform all experiments in this study.
The sequencing runs analyzed for this article can be found on
ENA, under the accession codes PRJEB7093 (for A. thaliana) and
PRJEB4028 (for the other three species). The human sequenc-
ing data of our parallel Illumina and PacBio experiment can be
found under the accession code PRJEB22606. Mikado is present
on GitHub [1]. Many of the scripts used to control the pipeline ex-
ecutions, together with the scripts used to create the charts pre-
sented in the article, can be found in the complementary repos-
itory [55]. Extensive documentation for the program is available
in the “docs” folder in the GitHub repository [1] and is pub-
lished on the “Read The Docs” website [26]. All sequencing runs
and reference sequence datasets used for this study are pub-
licly available. Please see the section “Input datasets” for details.
Scripts and configuration files used for the analyses can be found
on GitHub [55], in FigShare [56] and in the GigaScience Database
[57].
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